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We investigate the multiple attribute decision-making (MADM) problems with hesitant triangular fuzzy information. Firstly,
de	nition and some operational laws of hesitant triangular fuzzy elements are introduced. �en, we develop some hesitant
triangular fuzzy aggregation operators based onBonferronimeans anddiscuss their basic properties. Some existing operators can be
viewed as their special cases. Next, we apply the proposed operators to deal withmultiple attribute decision-making problems under
hesitant triangular fuzzy environment. Finally, an illustrative example is given to show the developed method and demonstrate its
practicality and e
ectiveness.

1. Introduction

Fuzzy set (FS), proposed by Zadeh in 1965 [1], has achieved
a great success in various 	elds since it appears. As exten-
sions of FS, the intuitionistic fuzzy set and interval-valued
intuitionistic fuzzy set have received much attention [2–6].
Furthermore, Torra [7] generalized FS to hesitant fuzzy set
(HFS), which allows the membership to a set represented
by several possible values. HFS is very useful to express
people’s hesitancy in daily life and a series of aggregation
operators for hesitant fuzzy information have been devel-
oped [8–13]. Although HFS is a powerful tool to deal with
uncertainty, it still has inherent drawbacks. HFS only permits
the membership having a set of possible exact and crisp
values. However, due to the increasing complexity of the
socioeconomic environment and the vagueness of inherent
subjective nature of human think, the information provided
by a decision-maker is o�en imprecise or uncertain, so exact
and crisp values are usually insu�cient to model real-life
decision. Chen et al. [14] introduced the interval-valued
hesitant fuzzy set, based on whichWei et al. [15] proposed the

hesitant triangular fuzzy set. As we all know, triangular fuzzy
number is a very suitable tool to express uncertainty. Hesitant
triangular fuzzy set (HTFS), whose membership degrees are
expressed by several possible triangular fuzzy numbers, is
more adequate or su�cient to solve real-life decision problem
than real numbers. For example [16], suppose three reviewers
are to estimate the degrees that a candidate satis	es the
criterion of honest. As they have not met each other before,
the evaluation is uncertain.�e 	rst reviewer thinks themost
possible of the candidate satisfying the criterion of honest is
0.8, the minimum possible is 0.7, and the maximum possible
is 0.9. �en, he can give the evaluation by a triangular fuzzy
number (0.7, 0.8, 0.9). Similarly, the second reviewer and the
third reviewer give their evaluations as (0.4, 0.5, 0.6) and(0.6, 0.9, 1.0), respectively. As a result, this comprehensive
evaluation can be expressed by a hesitant triangular fuzzy
element {(0.7, 0.8, 0.9), (0.4, 0.5, 0.6), (0.6, 0.9, 1.0)}. In this
case, HTFS describes the dilemma vividly.

In [15], Wei et al. also developed some hesitant tri-
angular fuzzy aggregation operators such as the hesitant
triangular fuzzy weighted averaging (HTFWA) operator,
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hesitant triangular fuzzy weighted geometric (HTFWG)
operator, hesitant triangular fuzzy ordered weighted averag-
ing (HTFOWA) operator, hesitant triangular fuzzy ordered
weighted geometric (HTFOWG)operator, hesitant triangular
fuzzy hybrid averaging (HTFHA) operator, and hesitant
triangular fuzzy hybrid geometric (HTFHG) operator.

However, the above operators, which are the extensions
of the average mean (AM) and the geometric mean (GM),
only consider the situations where all the elements are
independent. Luckily, the Bonferroni mean (BM), which is
originally introduced by Bonferroni [17] and generalized
by Yager [18], can capture the interrelationships among
arguments [17, 19–24]. Moreover, the Choquet integral is
also an important tool to consider the correlations among
attributes [6, 25–27]. With the analysis above, we attempt to
develop new hesitant triangular fuzzy aggregation operators
based on the BM and the Choquet integral so as to capture
both the interrelationships between input arguments and the
correlations among the attributes.

To facilitate our discussion, the remainder of this paper
is organized as follows. In the next section, we review
some basic concepts. Hesitant triangular fuzzy geometric
Bonferroni mean operator and its properties are studied in
Section 3. In Section 4, families of hesitant triangular fuzzy
aggregation operators based on BM are studied.�e relations
between these new operators and the existing operators are
also investigated. In Section 5, we develop a method for
multiple attribute decision-making based on new operators
under hesitant triangular fuzzy environment. An illustrative
example is also given to show the e
ectiveness of the
developed approach in Section 6. In Section 7, we conclude
the paper and give some remarks.

2. Preliminaries

2.1. Triangular Fuzzy Numbers and Hesitant Triangular Fuzzy
Set. FS was 	rst proposed by Zadeh [1] in 1965.

De	nition 1 (see [1]). Let� be an universe of discourse; then
a fuzzy set is de	ned as � = {⟨�, ��(�)⟩ | � ∈ �} which is
characterized by a membership function �� : � → [0, 1],
where �� denotes the degree of membership of the element �
to the set �.

Torra [7] generalized FSs to HFSs as follows.

De	nition 2 (see [7]). Let � be a reference set; then one
de	nes hesitant fuzzy set on � in terms of a function that
when applied to� returns a sunset of [0, 1].

To be easily understood, Xia and Xu [8] express the HFS
by a mathematical symbol: 
 = (⟨�, ℎ�(�)⟩ | � ∈ �), whereℎ�(�) is a set of some values in [0, 1], denoting the possible
membership degree of the element � ∈ � to the set 
. For
convenience, Xia and Xu [8] call ℎ = ℎ�(�) a hesitant fuzzy
element (HFE) and � the set of all HFEs when there is no
confusion.

Triangular fuzzy number, which is proposed by van
Laarhoven and Pedrycz [28], is also a useful tool to express
uncertainty.

De	nition 3 (see [28]). A triangular fuzzy number �̃ can be

de	ned by a triplet (��, ��, ��). �e membership function��̃(�) is de	ned as

��̃ (�) =
{{{{{{{{{{{{{{{{{{{

0, � < ��,� − ���� − �� , �� ≤ � ≤ ��,
� − ���� − �� , �� ≤ � ≤ ��,
0, � ≥ ��,

(1)

where 0 < �� ≤ �� ≤ ��, �� and �� stand for the lower and
upper values of the support of �̃, respectively, and �� stands
for the modal value.

In [28], basic operational laws related to triangular fuzzy
numbers were also given as

�̃⊕ �̃ = [��, ��, ��]⊕[��, ��, ��] = [��+��, ��+��,�� + ��];�̃ ⊗ �̃ = [��, ��, ��] ⊗ [��, ��, ��] = [����, ����,����];� ⊗ �̃ = � ⊗ [��, ��, ��] = [���, ���, ���], � > 0.
In order to compare triangular fuzzy numbers, many

ranking methods have been proposed and each method has
its advantages as well as drawbacks [29]. We adopt one of
them as below.

De	nition 4 (see [30]). Let �̃ = [��, ��, ��] and �̃ = [��,��, ��] be two triangular fuzzy numbers; then the degree of

possibility of �̃ ≥ �̃ is de	ned as

� (�̃ ≥ �̃)
= � max{1 −max[ (�� − ��)(�� − �� + �� − ��) , 0] , 0}
+ (1 − �)
×max{1 −max[ (�� − ��)(�� − �� + �� − ��) , 0] , 0} ,

(2)

where the value � is an index of rating attitude. It re�ects
the decision-maker’s risk-bearing attitude. If � > 0.5, the
decision-maker is risk lover. If � = 0.5, the decision-maker is
neutral to risk. If � < 0.5, the decision-maker is risk averter.

From this de	nition, we can get the following results
easily:

(1) 0 ≤ �(�̃ ≥ �̃) ≤ 1, 0 ≤ �(�̃ ≥ �̃) ≤ 1;



�e Scienti	c World Journal 3

(2) �(�̃ ≥ �̃) + �(�̃ ≥ �̃) = 1. Especially, �(�̃ ≥ �̃) = �(�̃ ≥�̃) = 0.5.
Wei et al. [15] generalized the HFS to HTFS as follows.

De	nition 5 (see [15]). Let � be a 	xed set; a hesitant
triangular fuzzy set (HTFS) on � is in terms of a function
when applied to each � in� and returns a subset of values in[0, 1].

To be easily understood, Wei et al. [15] express the HTFS

by a mathematical symbol: 
 = {⟨�, ℎ̃�(	)⟩ | � ∈ �}, whereℎ̃�(	) is a set of some possible triangular fuzzy values in [0, 1],
denoting the possiblemembership degrees of the element � ∈� to the set 
. For convenience, they also call ℎ̃�(	) a hesitant
triangular fuzzy element (HTFE) and �̃ the set of all HTFEs.

Given three HTFEs ℎ̃, ℎ̃1, ℎ̃2 and � > 0, Wei et al. [15]
de	ned their operations as follows:

(1) ℎ̃
 = ∪�∈ℎ̃{((%�)
, (%�)
, (%�)
)};
(2) �ℎ̃ = ∪�∈ℎ̃{(1− (1−%�)
, 1 − (1−%�)
, 1 − (1−%�)
)};
(3) ℎ̃1 ⊕ ℎ̃2 = ∪�1∈ℎ̃1 ,�2∈ℎ̃2{(%�1 + %�2 − %�1 %�2 , %�1 + %�2 −%�1 %�2 , %�1 + %�2 − %�1 %�2 )};
(4) ℎ̃1 ⊗ ℎ̃2 = ∪�1∈ℎ̃1 ,�2∈ℎ̃2{(%�1 %�2 , %�1 %�2 , %�1 %�2 )}.
In order to compare two HTFEs, the score function was

de	ned as follows.

De	nition 6 (see [15]). For a HTFE ℎ̃, &(ℎ̃) = (1/♯ℎ)∑�̃∈ℎ̃ %̃ is
called the score function of ℎ̃, where ♯ℎ̃ is the number of the

triangular fuzzy values in ℎ̃ and &(ℎ̃) is a triangular fuzzy value
belonging to [0, 1]. For twoHTFEs ℎ̃1 and ℎ̃2, if &(ℎ̃1) ≥ &(ℎ̃2),
then ℎ̃1 ≥ ℎ̃2.
2.2. Choquet Integral and Bonferroni Mean. In order to
weight the elements in �, a fuzzy measure � was de	ned as
follows.

De	nition 7 (see [31]). A fuzzy measure � on the set� is a set
function � : -(�) → [0, 1] satisfying the following axioms
and -(�) is the set of all subsets of�:

(1) �(2) = 0, �(�) = 1;
(2) � ⊆ ; implies �(�) ≤ �(;), for all �, ; ⊆ �;
(3) �(�∪;) = �(�) +�(;) + ?�(�)�(;), for all�, ; ⊆ �

and � ∩ ; = 2, where ? ∈ (−1,∞).
Especially, if ? = 0, then condition (3) reduces to the

axiom of additive measure: �(� ∪ ;) = �(�) + �(;), for
all �, ; ⊆ � and � ∩ ; = 2. If all the elements in � are
independent, then we have �(�) = ∑	�∈� �({��}), ∀� ⊆ �.

�e discrete Choquet integral is a linear expression up to
a reordering of the elements.

De	nition 8 (see [32]). Let C be a positive real-valued
function on�, and let� be a fuzzymeasure on�.�e discrete
Choquet integral of C with respect to � is de	ned by

D� (C) = �∑
�=1
C�(�) [� (��(�)) − � (��(�−1))] , (3)

where (H(1), H(2), . . . , H(J)) is a permutation of (1, 2, . . . , J),
such that C�(�−1) ≥ C�(�) for all K = 2, 3, . . . , J, ��(�) = {��(�) |M ≤ N}, for N ≥ 1, and ��(0) = 2.

As extensions of the arithmetic average and the geometric
mean, the Bonferroni mean (BM) and the geometric Bonfer-
roni mean (GBM) are very practical aggregation operators,
which consider the interrelationships among arguments. We
review the two operators as follows.

De	nition 9 (see [17, 33]). Let �, O ≥ 0 and let �� (K =1, 2, . . . , J) be a collection of nonnegative numbers. �en

BM�,� (�1, �2, . . . , ��) = ( 1J(J − 1)
�∑

�,�=1,� ̸= �
��� ���)

1/(�+�)

GBM�,� (�1, �2, . . . , ��) = 1� + O
�∏

� ̸= �,�,�=1
(��� + O��)1/�(�−1),

(4)

are called Bonferroni mean (BM) [17] and geometric Bonfer-
roni mean (GBM) [33], respectively.

2.3. e Existing Hesitant Triangular Fuzzy Operators. Here,
we will brie�y recall the existing hesitant triangular fuzzy
operators. To see more details, we can refer to [15, 34].

Let ℎ� (K = 1, 2, . . . , J) be a collection of HTFEs,

let �, O ≥ 0, and let S = (S1, S2, . . . , S�)� be the
weight of ℎ�, where S� denotes the importance degree ofℎ�, satisfying S� > 0 and ∑��=1 S� = 1. �en the hesitant
triangular fuzzy weighted averaging (HTFWA) operator was
de	ned as [15] HTFWA(ℎ1, ℎ2, . . . , ℎ�) = ⨁��=1(S�ℎ�) and
the hesitant triangular fuzzy weighted geometric (HTFWG)
operator was de	ned as [15] HTFWG(ℎ1, ℎ2, . . . , ℎ�) =⨂��=1(ℎ�)�� . Furthermore, suppose (H(1), H(2), . . . , H(J)) is a
permutation of (1, 2, . . . , J), such that ℎ�(�−1) ≥ ℎ�(�) for allM = 2, 3, . . . , J. �en, the hesitant triangular fuzzy ordered
weighted averaging (HTFOWA) operator was de	ned as [15]
HTFOWA(ℎ1, ℎ2, . . . , ℎ�) = ⨁��=1(S�ℎ�(�)) and the hesitant

triangular fuzzy ordered weighted geometric (HTFOWG)
operator was de	ned as [15] HTFOWG(ℎ1, ℎ2, . . . , ℎ�) =⨂��=1(ℎ�(�))�� .

Suppose ℎ̃�(�) is the jth largest element of the hesitant

triangular fuzzy arguments (ℎ̃� = (JS�)ℎ�, M = 1, 2, . . . , J);
then HTFHA(ℎ1, ℎ2, . . . , ℎ�) = ⨁��=1(S�ℎ̃�(�)) is called the

hesitant triangular fuzzy hybrid average (HTFHA) operator
[15].

Suppose ℎ̃�(�) is the jth largest element of the hesitant tri-

angular fuzzy arguments (ℎ̃� = (ℎ�)��� , M = 1, 2, . . . , J); then
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HTFHG(ℎ1, ℎ2, . . . , ℎ�) = ⨂��=1(ℎ̃�(�))�� is called the hesitant

triangular fuzzy hybrid geometric (HTFHG) operator [15].
Let � be a fuzzy measure on �;

HTFCOA�(ℎ1, ℎ2, . . . , ℎ�) = ⨁��=1(�(��(�)) − �(��(�−1))ℎ�(�)
is called the hesitant triangular fuzzy Choquet ordered
averaging (HTFCOA) operator [34].

3. Hesitant Triangular Fuzzy Geometric
Bonferroni Mean

Based on De	nition 5, we can easily verify the following
distributive properties.

�eorem 10. Let ℎ1, ℎ2 be two HTFEs; then
(1) �(ℎ1 ⊕ ℎ2) = �ℎ1 ⊕ �ℎ2;
(2) (ℎ1 ⊗ ℎ2)
 = ℎ
1 ⊗ ℎ
2 .
We can extend the GBM operator to hesitant triangular

fuzzy set.

De	nition 11. Let ℎ� (K = 1, 2, . . . , J) be a collection of HTFEs.
For any �, O ≥ 0, if

HTFGBM�,� (ℎ1, ℎ2, . . . , ℎ�)
= 1� + O (

�⨂
�,�=1,� ̸= �

(�ℎ� ⊕ Oℎ�)1/�(�−1)) , (5)

then HTFGBM�,� is called the hesitant triangular fuzzy
geometric Bonferroni mean (HTFGBM).

Especially, if hesitant triangular fuzzy set reduces to
hesitant fuzzy set, then theHTFGBM reduces to the I-revised
geometric Bonferroni mean developed by Sun and Liu [23].

Based on the operational laws of HTFEs, we can derive
the following easy-to-prove theorem whose proof is omitted.

�eorem 12. Let �, O ≥ 0 and let ℎ� (M = 1, 2, . . . , J) be a
collection of HTFEs; then the aggregated value by using the
HTFGBM is also a HTFE and

HTFGBM�,� (ℎ1, ℎ2, . . . , ℎ�)
= 1� + O (

�⨂
�,�=1,� ̸= �

(�ℎ� ⊕ Oℎ�)1/�(�−1))

= ⋃
��∈ℎ� ,��∈ℎ�

{{{(1 − (1 −
�∏

�,�=1,� ̸= �
(1 − (1 − %�� )�(1 − %�� )�)1/�(�−1))

1/(�+�),

1 − (1 − �∏
�,�=1,� ̸= �

(1 − (1 − %�� )�(1 − %�� )�)1/�(�−1))
1/(�+�),

1 − (1 − �∏
�,�=1,� ̸= �

(1 − (1 − %�� )�(1 − %�� )�)1/�(�−1))
1/(�+�))}}} .

(6)

In order to capture the connections between two hesitant
fuzzy elements (HFEs), Zhu et al. [22, 35] constructed
the hesitant Bonferroni element (HBE) and hesitant fuzzy
geometric Bonferroni element (HFGBE), which can be used
as calculation units. Inspired by this idea, we can rewrite
HTFGBM in another way.

�eorem 13. Let �, O ≥ 0 and let ℎ� (K = 1, 2, . . . , J) be a
collection of HTFEs; then the HTFGBM can be rewritten as

HTFGBM�,� (ℎ1, ℎ2, . . . , ℎ�)
= 1� + O

�⨂
�,�=1,�<�

((�ℎ� ⊕ Oℎ�) ⊗ (�ℎ� ⊕ Oℎ�))1/�(�−1).
(7)

From De	nition 11, its proof is straightforward.

Based on the operational laws of HTFEs, we can derive
the following theorem.

�eorem 14. Let �, O ≥ 0 and let ℎ� (K = 1, 2, . . . , J) be a
collection of HTFEs; then the aggregated value by using the
HTFGBM is a HTFE and

HTFGBM�,� (ℎ1, ℎ2, . . . , ℎ�)
= ⋃
���∈���,�<�

{{{1 − (1 −
�∏
�,�=1;�<�

a1/�(�−1)�� )1/(�+�)}}} , (8)

where b��,�<� = (�ℎ� ⊕ Oℎ�) ⊗ (�ℎ� ⊕ Oℎ�), K, M = 1, 2, . . . , J.
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Proof. By the operational laws of HTFEs and�eorem 10, we
get b��,�<� = (�ℎ� ⊕ Oℎ�) ⊗ (�ℎ� ⊕ Oℎ�) is also a HTFE and

HTFGBM�,� (ℎ1, ℎ2, . . . , ℎ�) = 1� + O
�⨂
�,�=1,�<�

b1/�(�−1)�� . (9)

By�eorem 10, we further obtain

�⨂
�,�=1,�<�

b1/�(�−1)��

= ( �⨂
�,�=1,�<�

b��)
1/�(�−1)

= ⋃
���∈���,�<�

{{{(
�∏
�,�=1;�<�

a��)
1/�(�−1)}}}

= ⋃
���∈���,�<�

{{{
�∏
�,�=1;�<�

a1/�(�−1)��
}}} .

(10)

�us

HTFGBM�,� (ℎ1, ℎ2, . . . , ℎ�)
= 1� + O

�⨂
�,�=1,�<�

b1/�(�−1)��

= ⋃
���∈���,�<�

{{{1 − (1 −
�∏
�,�=1;�<�

a1/�(�−1)�� )1/(�+�)}}} ,
(11)

where

a�� = (�ℎ� ⊕ Oℎ�) ⊗ (�ℎ� ⊕ Oℎ�)
= ⋃
��∈ℎ� ,��∈ℎ�

{(1 − (1 − %�� )�(1 − %�� )� ,
1 − (1 − %�� )�(1 − %�� )�,
1 − (1 − %�� )�(1 − %�� )�)}

⊗ ⋃
��∈ℎ� ,��∈ℎ�

{(1 − (1 − %�� )�(1 − %�� )�,
1 − (1 − %�� )�(1 − %�� )�,
1 − (1 − %�� )�(1 − %�� )�)} .

(12)

Here, we call b�� a hesitant triangular fuzzy geometric Bonfer-
roni element (HTFGBE). �e HTFGBE can take much more
information into account and can fully represent the con-
nections between two HTFEs. As the basic calculation unit
of the HTFGBM, HTFGBE has some desirable properties as
follows. As their proofs are straightforward, we omit them
here.

Proposition 15. Let ℎ�� and ℎ�� be two collections of HTFEs,b���,�<� = (�ℎ�� ⊕ Oℎ��) ⊗ (�ℎ�� ⊕ Oℎ��) and b���,�<� = (�ℎ�� ⊕Oℎ��) ⊗ (�ℎ�� ⊕ Oℎ��). If, for any %�� ∈ ℎ�� and %�� ∈ ℎ�� (K, M =1, 2, . . . , J; K ̸= M), we have %�� ≤ %�� and %�� ≤ %�� , then b���,�<� ≤b���,�<� .
Proposition 16. Let ℎ� (K = 1, 2, . . . , J) be a collec-
tion of HTFEs, b��,�<� = (�ℎ� ⊕ Oℎ�) ⊗ (�ℎ� ⊕ Oℎ�)
and ℎ−� = ∪��∈ℎ�(min{%�� },min{%�� },min{%�� }), ℎ+� =∪��∈ℎ�(max{%�� },max{%�� },max{%�� }), K, M ∈ {1, 2, . . . , J}; then
⋃
�−∈ℎ−�

((1 − (1 − %−�)�+�)2, (1 − (1 − %−�)�+�)2,
(1 − (1 − %−�)�+�)2)

≤ b��,�<�
≤ ⋃
�+∈ℎ+�

((1 − (1 − %+�)�+�)2, (1 − (1 − %+�)�+�)2 ,
(1 − (1 − %+�)�+�)2) .

(13)

Proposition 17. Exchanging � and O, we have b��,�<� = (�ℎ� ⊕Oℎ�) ⊗ (�ℎ� ⊕ Oℎ�) = (Oℎ� ⊕ �ℎ�) ⊗ (Oℎ� ⊕ �ℎ�).
is indicates that the parameters � and O are symmetric

in�ijk;
.
Proposition 18. If one takes ℎ = ℎ� = ℎ� = {(0, 0, 0)} andℎ = ℎ� = ℎ� = {(1, 1, 1)}, respectively, the corresponding results
are b��,�<� = {(0, 0, 0)} or b��,�<� = {(1, 1, 1)}.

Based on the studies above, we can investigate some basic
properties of HTFGBM as below.

�eorem 19 (Monotonicity). Let ℎ�� and ℎ�� (K = 1, 2, . . . , J)
be two collections of HTFEs; if, for any %�� ∈ ℎ�� and %�� ∈ℎ�� (K, M = 1, 2, . . . , J; K ̸= M), one has %�� ≤ %�� and %�� ≤ %�� ,
then

HTFGBM�,� (ℎ�1 , ℎ�2 , . . . , ℎ��)
≤ HTFGBM�,� (ℎ�1 , ℎ�2 , . . . , ℎ��) . (14)

Proof. By Proposition 15, we get a��� ≤ a��� , K, M ∈ {1, 2, . . . , J},K ̸= M.
�en

1 − (1 − �∏
�,�=1;� ̸= �

a1/�(�−1)��� )1/(�+�)

≤ 1 − (1 − �∏
�,�=1;� ̸= �

a1/�(�−1)��� )1/(�+�).
(15)
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By De	nition 6, we acquire

HTFGBM�,� (ℎ�1 , ℎ�2 , . . . , ℎ��)
= 1� + O

�⨂
�,�=1,�<�

b1/�(�−1)���

= ⋃
����∈���,�<�

{{{1 − (1 −
�∏
�,�=1;�<�

a1/�(�−1)��� )1/(�+�)}}}
≤ ⋃
����∈���,�<�

{{{1 − (1 −
�∏
�,�=1;�<�

a1/�(�−1)��� )1/(�+�)}}}
= 1� + O

�⨂
�,�=1,�<�

b1/�(�−1)���

= HTFGBM�,� (ℎ�1 , ℎ�2 , . . . , ℎ��) .

(16)

�eorem 20 (boundness). Let ℎ� (K = 1, 2, . . . , J) be a collec-
tion of HTFEs, ℎ−� = ∪��∈ℎ�(min{%�� },min{%�� },min{%�� }), andℎ+� = ∪��∈ℎ�(max{%�� },max{%�� },max{%�� }), K, M ∈ {1, 2, . . . , J};
then

⋃
�−∈ℎ−�

(1 − (1 − (1 − (1 − %−�)�+�)2)1/(�+�),
1 − (1 − (1 − (1 − %−�)�+�)2)1/(�+�),
1 −(1 − (1 − (1 − %−�)�+�)2)1/(�+�))

≤ HTFGBM�,� (ℎ1, ℎ2, . . . , ℎ�)
≤ ⋃
�+∈ℎ+�

(1 − (1 − (1 − (1 − %+�)�+�)2)1/(�+�),
1 − (1 − (1 − (1 − %+�)�+�)2)1/(�+�),
1 − (1 − (1 − (1 − %+�)�+�)2)1/�+�) .

(17)

Proof. By Proposition 16, we have

⋃
�−∈ℎ−�

((1 − (1 − %−�)�+�)2, (1 − (1 − %−�)�+�)2,
(1 − (1 − %−�)�+�)2)

≤ a��,�<�

≤ ⋃
�+∈ℎ+�

((1 − (1 − %+�)�+�)2 ,
(1 − (1 − %+�)�+�)2,
(1 − (1 − %+�)�+�)2) .

(18)

So

(1 − (1 − (1 − (1 − %−�)�+�)2)1/(�+�),
1 − (1 − (1 − (1 − %−�)�+�)2)1/(�+�),
1 − (1 − (1 − (1 − %−�)�+�)2)1/(�+�))
≤ 1 − (1 − ∏

�,�=1;� ̸= �
a1/�(�−1)��,�<� )1/(�+�)

≤ (1 − (1 − (1 − (1 − %+�)�+�)2)1/(�+�),
1 − (1 − (1 − (1 − %+�)�+�)2)1/(�+�),
1 − (1 − (1 − (1 − %+�)�+�)2)1/(�+�)) .

(19)

By De	nition 6, we complete the proof.

�eorem 21 (commutativity). Let ℎ� (K = 1, 2, . . . , J) be a

collection of HTFEs and let (ℎ̃1, ℎ̃2, . . . , ℎ̃�) be any permutation
of (ℎ1, ℎ2, . . . , ℎ�); then

HTFGBM�,� (ℎ1, ℎ2, . . . , ℎ�)
= 1(� + O)

�⨂
�,�=1,�<�

b1/�(�−1)��

= 1(� + O)
�⨂
�,�=1,�<�

b̃��1/�(�−1)
= HTFGBM�,� (ℎ̃1, ℎ̃2, . . . , ℎ̃�) ,

(20)

where b��,�<� = (�ℎ� ⊕ Oℎ�) ⊗ (�ℎ� ⊕ Oℎ�) and b̃��,�<� = (�ℎ̃� ⊕Oℎ̃�) ⊗ (�ℎ̃� ⊕ Oℎ̃�), K, M ∈ {1, 2, . . . , J}.
�eorem 22. Let ℎ� (K = 1, 2, . . . , J) be a collection of HTFEs;
then

HTFGBM�,� (ℎ1, ℎ2, . . . , ℎ�) = HTFGBM�,� (ℎ1, ℎ2, . . . , ℎ�) .
(21)

�eorem 23. Let ℎ� (K = 1, 2, . . . , J) be a collection of HTFEs;
if ℎ1 = ℎ2 = ⋅ ⋅ ⋅ = ℎ� = ℎ = {(0, 0, 0)}, one has�ijk;o�,�(ℎ1, ℎ2, . . . , ℎ�) = {(0, 0, 0)}. If ℎ1 = ℎ2 = ⋅ ⋅ ⋅ =
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ℎ� = ℎ = {(1, 1, 1)}, then �ijk;o�,�(ℎ1, ℎ2, . . . , ℎ�) ={(1, 1, 1)}.
4. Families of Hesitant Triangular

Fuzzy Aggregation Operators Based on
Bonferroni Means

In practical society, the decision-makers may have di
erent
needs. In order to meet the di
erent needs, we develop
various hesitant triangular fuzzy aggregation operators based
on Bonferroni means in this section. As their properties are
similar to HTFGBM, we omit them for the sake of simplicity.

Based on De	nition 9, we can develop hesitant triangular
fuzzy Bonferroni mean as below.

De	nition 24. Let ℎ� (K = 1, 2, . . . , J) be a collection of
HTFEs. For any �, O ≥ 0, one calls

HTFBM�,� (ℎ1, ℎ2, . . . , ℎ�)
= ( 1J(J − 1)

�⨁
�,�=1,� ̸= �

(ℎ�� ⊗ ℎ�� ))
1/(�+�) (22)

the hesitant triangular fuzzy Bonferroni mean (HTFBM).

Remark 25. Especially, if hesitant triangular fuzzy set reduces
to triangular fuzzy set, then HTFBM reduces to the trian-
gular fuzzy Bonferroni mean developed by Zhu et al. [24].
Furthermore, let � = 1, O = 0; then HTFBM reduces

to HTFBM1,0(ℎ1, ℎ2, . . . , ℎ�) = (1/J)(⊕��=1ℎ�). Besides, if
hesitant triangular fuzzy set reduces to hesitant fuzzy set,
then HTFBM reduces to the hesitant fuzzy Bonferroni mean
proposed by Zhu and Xu [22].

In some practical applications, we have to weight the
hesitant triangular fuzzy arguments. �en, by giving weights
to each attribute, we can develop the weighted operators as
below.

De	nition 26. Let ℎ� (K = 1, 2, . . . , J) be a collection of

HTFEs, �, O ≥ 0, and S = (S1, S2, . . . , S�)� the weight ofℎ�, where S� denotes the importance degree of ℎ�, satisfyingS� > 0 and ∑��=1 S� = 1. �en

HTFWGBM�,� (ℎ1, ℎ2, . . . , ℎ�)
= 1� + O (

�⨂
�,�=1,� ̸= �

(�ℎ��� ⊕ Oℎ��� )1/�(�−1)) ,
HTFWBM�,� (ℎ1, ℎ2, . . . , ℎ�)

= ( 1J(J − 1)
�⨁

�,�=1,� ̸= �
(S�ℎ�� ⊗ S�ℎ�� ))

1/(�+�)

(23)

are called the hesitant triangular fuzzy weighted geometric
Bonferroni mean (HTFWGBM) and the hesitant triangular
fuzzy weighted Bonferroni mean (HTFWBM), respectively.

Remark 27. Suppose there is only one triangular
fuzzy value in each ℎ� (K = 1, 2, . . . , J) and let� = 1, O = 0; then HTFWGBM1,0(ℎ1, ℎ2, . . . , ℎ�) =⨂��=1(ℎ��� )1/� = (HTFWG(ℎ1, ℎ2, . . . , ℎ�))1/� and

HTFWBM1,0(ℎ1, ℎ2, . . . , ℎ�) = (1/J)⨁��=1(S�ℎ�) =(1/J)HTFWA(ℎ1, ℎ2, . . . , ℎ�).
Sometimes, we may need to weight the ordered positions

of the hesitant triangular fuzzy arguments instead of weight-
ing the arguments themselves. In this case, we can develop
the ordered weighted operators as follows.

De	nition 28. Let ℎ� (K = 1, 2, . . . , J) be a collection of

HTFEs, �, O ≥ 0, and S = (S1, S2, . . . , S�)� the associated
weight vector such that S� > 0 and ∑��=1 S� = 1.(H(1), H(2), . . . , H(J)) is a permutation of (1, 2, . . . , J), such
that ℎ�(�−1) ≥ ℎ�(�) for all M = 2, 3, . . . , J. �en

HTFOWGBM�,� (ℎ1, ℎ2, . . . , ℎ�)
= 1� + O (

�⨂
�,�=1,� ̸= �

(�ℎ���(�) ⊕ Oℎ���(�))1/�(�−1)) ,
HTFOWBM�,� (ℎ1, ℎ2, . . . , ℎ�)

= ( 1J (J − 1)
�⨁

�,�=1,� ̸= �
(S�ℎ��(�) ⊗ S�ℎ��(�)))

1/(�+�)

(24)

are called the hesitant triangular fuzzy ordered weighted
geometric Bonferroni mean (HTFOWGBM) and the hes-
itant triangular fuzzy ordered weighted Bonferroni mean
(HTFOWBM), respectively.

Remark 29. Suppose there is only one triangular fuzzy
value in each ℎ� (K = 1, 2, . . . , J) and let � = 1,O = 0; then HTFOWGBM1,0(ℎ1, ℎ2, . . . , ℎ�) =⨂��=1(ℎ���(�))1/� = (HTFOWG(ℎ1, ℎ2, . . . , ℎ�))1/� and

HTFOWBM1,0(ℎ1, ℎ2, . . . , ℎ�) = (1/J)⨁��=1(S�ℎ�(�)) =(1/J)HTFOWA(ℎ1, ℎ2, . . . , ℎ�). If ℎ1 ≥ ℎ2 ≥ ⋅ ⋅ ⋅ ≥ ℎ�, then
HTFOWGBM and HTFOWBM reduce to HTFWGBM and
HTFWBM, respectively.

Inspired by Xu [36], when we want to not only weight
the hesitant triangular fuzzy arguments but also weight the
ordered positions of the hesitant triangular fuzzy arguments,
we can propose the following hybrid average operators.

De	nition 30. Let ℎ� (K = 1, 2, . . . , J) be a collection of

HTFEs, �, O ≥ 0, and S = (S1, S2, . . . , S�)� the associated
weight vector such thatS� > 0 and∑��=1 S� = 1. Let ℎ̃�(�) be the
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jth largest element of the hesitant triangular fuzzy arguments

(ℎ̃� = (ℎ�)��� , M = 1, 2, . . . , J). �en, one calls

HTFHGBM�,� (ℎ1, ℎ2, . . . , ℎ�)
= 1� + O (

�⨂
�,�=1,� ̸= �

(�ℎ̃���(�) ⊕ Oℎ̃���(�))1/�(�−1)) (25)

the hesitant triangular fuzzy hybrid geometric Bonferroni
mean (HTFHGBM).

De	nition 31. Let ℎ� (K = 1, 2, . . . , J) be a collection ofHTFEs,�, O ≥ 0, and S = (S1, S2, . . . , S�)� the associated weight

vector such that S� > 0 and ∑��=1 S� = 1. Let ℎ̃�(�) be the
jth largest element of the hesitant triangular fuzzy arguments

(ℎ̃� = (JS�)ℎ�, M = 1, 2, . . . , J). �en, one calls

HTFHBM�,� (ℎ1, ℎ2, . . . , ℎ�)
= ( 1J (J − 1)

�⨁
�,�=1,� ̸= �

(S�ℎ̃��(�) ⊗ S�ℎ̃��(�)))
1/(�+�)

(26)

the hesitant triangular fuzzy hybrid Bonferroni mean
(HTFHBM).

Remark 32. If there is only one triangular fuzzy value in
each ℎ� (K = 1, 2, . . . , J) and letting � = 1, O = 0,
then HTFHGBM1,0(ℎ1, ℎ2, . . . , ℎ�) = ⨂��=1(ℎ̃���(�))1/� =(HTFHG(ℎ1, ℎ2, . . . , ℎ�))1/�, HTFHBM1,0(ℎ1, ℎ2, . . . , ℎ�) =(1/J)(⨁��=1(S�ℎ̃�(�))) = (1/J)HTFHA(ℎ1, ℎ2, . . . , ℎ�).

However, the above aggregation operators are based
on the assumption that the attributes are independent. In
real decision-making problems, these is usually interaction
among attributes. As we all know, the Choquet integral [37]
can depict the correlations of attributes. Combining the BM
and the Choquet integral, Zhu et al. [35] developed a hesitant
fuzzy Choquet geometric Bonferroni mean. Motivated by
their idea, we develop the hesitant triangular fuzzy Choquet
ordered Bonferroni mean as follows.

De	nition 33. Let ℎ� (K = 1, 2, . . . , J) be a collection of HTFEs
on�, � a fuzzy measure on�, and �, O ≥ 0. �en, one calls

HTFCOBM�,�� (ℎ1, ℎ2, . . . , ℎ�)
= ( 1J (J − 1)

�⨁
�,�=1,� ̸= �

((� (��(�)) − � (��(�−1))) ℎ��(�)
⊗(� (��(�)) − � (��(�−1))) ℎ��(�)))

1/(�+�)

(27)

the hesitant triangular fuzzy Choquet ordered Bonferroni
mean (HTFCOBM), where (H(1), H(2), . . . , H(J)) is a permu-
tation of (1, 2, . . . , J), such that ℎ�(�−1) ≥ ℎ�(�) for all M =2, 3, . . . , J, ��(�) = {��(�) | M ≤ N}, for N ≥ 1, and ��(0) = 2.

Remark 34. If �({��(�)}) = �({��(�)}) − �({��(�−1)}),M = 1, 2, . . . , J, then HTFCOBM reduces to HTFWBM.
Let S� = �({��(�)}) − �({��(�−1)}), M = 1, 2, . . . , J,
then HTFCOBM reduces to HTFOWBM. In addition,
suppose there is only one triangular fuzzy value in eachℎ� (K = 1, 2, . . . , J) and let � = 1, O = 0, then

HTFCOBM1,0� (ℎ1, ℎ2, . . . , ℎ�) = (1/J)(⨁��=1(�(��(�)) −�(��(�−1))ℎ�(�)) = (1/J)HTFCOA�(ℎ1, ℎ2, . . . , ℎ�). �is is
the so-called hesitant triangular fuzzy Choquet ordered
averaging operator proposed by Zhong and Xu [34].

5. An Approach to Multiple Attribute
Decision Making with Hesitant Triangular
Fuzzy Information

In this section, we shall utilize the proposed operators to
multiple attribute decision-makings under hesitant triangu-
lar fuzzy environment. As their procedures are similar, we
only consider the HTFCOBM operator here.

�e following assumptions or notations are used to repre-
sent the MADM problems for evaluation of theses with hesi-
tant triangular fuzzy information. Let � = {�1, �2, . . . , ��}
be a set of q alternatives and k = {k1, k2, . . . , k�} a set of J
attributes. If the decision-makers provide values for the alter-
native� � under the attributek� with anonymity, these values
can be considered as a hesitant triangular fuzzy element ℎ��. In
the case where two decision-makers provide the same value,
the value emerges only once in ℎ��. Suppose that the decision
matrix� = (ℎ��)�×� is the hesitant triangular fuzzy decision
matrix, where ℎ�� (K = 1, 2, . . . , q, M = 1, 2, . . . , J) are in the
form of HTFEs.

In the following, we apply the HTFCOBM operator to
the MADM problems for evaluation of theses with hesitant
triangular fuzzy information.

Step 1. Con	rm the fuzzy measures � of attributes of k and
attributes sets of k.
Step 2.We utilize the decision information given in matrix�
and the HTFCOBM operator

ℎ̃� = HTFCOBM�,�� (ℎ�1, ℎ�2, . . . , ℎ��)
= ( 1J (J − 1)

�⨁
�,�=1,� ̸= �

((� (��(�)) − � (��(�−1))) ℎ��(��)
⊗(� (��(�)) − � (��(�−1))) ℎ��(��)))

1/(�+�)

(28)

to derive the overall preference values ℎ̃� (N = 1, 2, . . . , q) of
the alternative ��.
Step 3. Calculate the scores r(ℎ̃�) (N = 1, 2, . . . , q) of the
overall hesitant triangular fuzzy values ℎ̃� by De	nition 6.

Step 4. Compare each r(ℎ̃�) with all the r(ℎ̃�) (K, M =1, 2, . . . , q) by De	nition 4. For convenience, we let ��� =



�e Scienti	c World Journal 9

Table 1: Hesitant triangular fuzzy decision matrix�.

k1 k2 k3 k4�1 {(0.2, 0.3, 0.6), (0.3, 0.4, 0.6)} {(0.2, 0.3, 0.5)} {(0.6, 0.7, 0.8)} {(0.3, 0.4, 0.5)}�2 {(0.2, 0.3, 0.5), (0.4, 0.5, 0.6), (0.5, 0.6, 0.7)} {(0.6, 0.7, 0.9)} {(0.2, 0.4, 0.5)} {(0.6, 0.7, 0.8)}�3 {(0.4, 0.6, 0.8)} {(0.4, 0.5, 0.6)} {(0.2, 0.4, 0.6)} {(0.1, 0.3, 0.4)}�4 {(0.2, 0.4, 0.5), (0.3, 0.6, 0.8)} {(0.1, 0.2, 0.3)} {(0.4, 0.6, 0.7), (0.5, 0.7, 0.9)} {(0.7, 0.8, 0.9)}�5 {(0.3, 0.5, 0.7)} {(0.4, 0.5, 0.7)} {(0.2, 0.5, 0.6), (0.5, 0.6, 0.7)} {(0.6, 0.7, 0.9)}
�(r(ℎ̃�) ≥ r(ℎ̃�)); then we develop a complementary matrix
as s = (���)�×�, where ��� ≥ 0, ��� + ��� = 1, ��� = 0.5, K, M =1, 2, . . . , q. Summing all the elements in each line of matrixs, we have �� = ∑��=1 ���, K = 1, 2, . . . , q.

Step 5. Rank all the alternatives � � (K = 1, 2, . . . , q) in
accordance with the values of �� and select the best one(s).

Step 6. End.

Remark 35. �e advantages of ourmethod lie in four aspects.
First, with the aid of fuzzy measure �, the HTFCOBM

operator can deal with the situation where the attributes
are correlative. �e weight vectors can be obtained by the
source decision information in ourmethod. Traditional addi-
tive aggregation operators, such as HTFWA and HTFWG
operators, are all based on the assumption that the attributes
are independent and each attribute is given a 	xed weight
representing its importance during the decision process. As a
result, they cannot get reasonable results when the attributes
are correlative.

Second, as we all know, the desirable characteristic of the
BM is its ability to capture the interrelation among the input
arguments. As a result, theHTFCOBMoperator can dealwith
the situation where the input arguments are correlative.

�ird, the HTFCOBM operator can accommodate situ-
ations in which the input arguments are hesitant triangular
fuzzy information. As hesitant triangular fuzzy set is a
comprehensive set containing FS and HFS as special cases,
our method can be widely used.

Fourth, the HTFCOBM operator has additional param-
eters �, O which control the power. If the parameters take
di
erent values, the HTFCOBM operator can be viewed as
extensions of some exiting operators under certain condi-
tions. �e decision-makers can choose di
erent parameters
according to their preferences and interests, which makes
decision-making more �exible.

6. Numerical Example

In this section, we will present a numerical example (adapted
from [38]) to show evaluation of theses with hesitant trian-
gular fuzzy information in order to illustrate the proposed
method.

Suppose there are 	ve theses � � (K = 1, 2, 3, 4, 5) and we
want to select the best one. Four attributes are selected by
experts to evaluate the theses: (1)k1 is the language of a thesis;
(2) k2 is the innovation; (3) k3 is the rigor; (4) k4 is the
structure of the thesis. Perhaps the author who has accurate

language also pays great attention to rigorous reasoning.�at
is to say, there are interactions between these attributes. In
order to avoid in�uencing each other, the experts are required
to evaluate the 	ve theses� � (K = 1, 2, 3, 4, 5) under the above
four attributes in anonymity and the decision matrix � =(ℎ��)5×4 is presented in Table 1, where ℎ�� (K = 1, 2, 3, 4, 5, M =1, 2, 3, 4) are in the form of HTFEs. In the review process, if
the thesis has beautiful language, an expert may give better
score to the structure of the thesis due to the previous
good impression. In other words, there are interrelationships
between input arguments. �us, the HTFCOBM operator is
a good choice here. �e fuzzy measure of attribute k� (M =1, 2, . . . , 4) and attribute sets ofk are as follows: �(k1) = 0.30,�(k2) = 0.35, �(k3) = 0.30, �(k4) = 0.22, �(k1, k2) = 0.70,�(k1, k3) = 0.60, �(k1, k4) = 0.55, �(k2, k3) = 0.50,�(k2, k4) = 0.45, �(k3, k4) = 0.40, �(k1, k2, k3) = 0.82,�(k1, k2, k4) = 0.87, �(k1, k3, k4) = 0.75, �(k2, k3, k4) =0.60, and �(k1, k2, k3, k4) = 1.00.
6.1.eDecision-Making Steps. Next, we apply the developed
approach to evaluate these theses with hesitant triangular
fuzzy information.

Step 1. We use the decision information given in matrix �
and the HTFCOBM operator (here, we take � = O = 1) to
obtain the overall preference values ℎ̃� of the thesis � � (K =1, 2, 3, 4, 5). Due to the large amount of data, we omitted
these results here. When assigning di
erent values to the
parameters � and O, we can obtain di
erent results. Please see
Table 2.

Step 2. Calculate the scores r(ℎ̃�) (K = 1, 2, 3, 4, 5) of

the overall hesitant triangular fuzzy preference values ℎ̃�
by De	nition 6: r(ℎ̃1) = (0.096, 0.134, 0.211), r(ℎ̃2) =(0.132, 0.180, 0.261), r(ℎ̃3) = (0.083, 0.142, 0.209), r(ℎ̃4) =(0.106, 0.180, 0.262), r(ℎ̃5) = (0.121, 0.181, 0.287).
Step 3. Comparing each r(ℎ̃�) with all the r(ℎ̃�) (K, M =1, 2, . . . , 5) byDe	nition 4, thenwe develop a complementary
matrix as s = (���)5×5. Summing all the elements in each
line of the matrix s, we have �1 = 1.478, �2 = 3.277, �3 =1.558, �4 = 2.924, �5 = 3.263.
Step 4. Rank all the alternatives � � (K = 1, 2, . . . , q) in
accordance with the values of ��: �2 ≻ �5 ≻ �4 ≻ �3 ≻ �1.
Note that ≻means “preferred to.” �us, the best thesis is �2.
6.2. Discussion. From Table 2, we 	nd that the values
obtained by the HTFCOBM operator change as the
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Figure 1: Scores for theses obtained by HTFCOBM operator.

parameters �, O vary. Moreover, the rankings are di
erent
when we choose di
erent values of �, O. As the two
parameters are symmetrical, we can 	x one of them and
change the other. Here, we set O = 2, for example. �e trends
are shown in Figure 1 as the parameter � ranges from 0 to 18.
From Figure 1, it can be clearly seen that

(1) when � ∈ (0, 2.3898], the ranking of the 	ve theses is�2 ≻ �5 ≻ �4 ≻ �3 ≻ �1;
(2) when � ∈ (2.3898, 4.46315], the ranking of the 	ve

theses is �2 ≻ �4 ≻ �5 ≻ �3 ≻ �1;
(3) when � ∈ (4.46315, 5.77833], the ranking of the 	ve

theses is �2 ≻ �4 ≻ �5 ≻ �1 ≻ �3;
(4) when � ∈ (5.77833, 18], the ranking of the 	ve theses

is �4 ≻ �2 ≻ �5 ≻ �1 ≻ �3.
Apparently, di
erent parameters can be chosen according

to decision-makers’ interests, whichmakes the decisionmore
�exible.

6.3. Comparative Analysis. In order to show the merit of
the proposed method, we utilized some existing methods
proposed by Wei et al. [15] and Zhong and Xu [34] to solve
this illustrate example. For simplicity, we omit the calculation
process and only list the results in Tables 3 and 4.

From Tables 2, 3, and 4, we can compare these methods
as follows.

(1) During the calculation, we can 	nd that the weight
vectors can be obtained by the source decision information in
our method. As a result, di
erent decision data will acquire
di
erent weight vectors automatically. However, for other
operators such as HTFWA and HTFWG, the weight vectors
must be given by experts in advance. �us, the proposed
method is more reasonable and objective.

(2) Comparing Tables 3 and 4, we can 	nd the relations
such as

HTFWGBM1,0 (ℎ31, ℎ32, ℎ33, , ℎ34)
= (HTFWG (ℎ31, ℎ32, ℎ33, , ℎ34))1/4. (29)

In this case, we can view HTFWG as a special case of
HTFWGBM.�is has been mentioned in Section 4.

(3) From Table 4, we can 	nd the relations such as

HTFOWBM1,1 (ℎ31, ℎ32, ℎ33, , ℎ34)
= HTFWBM1,1 (ℎ31, ℎ32, ℎ33, , ℎ34) . (30)

�us, the HTFOWBM can reduce to HTFWBM under cer-
tain conditions, which has also been pointed out in Section 4.

(4)We 	nd that the rankings in Table 3 are di
erent from
Table 4. �e reason may be that there are interdependent
phenomena among attributes or input arguments in this
numerical example. For example,

� (k1) + � (k2) + � (k3) + � (k4)
= 0.30 + 0.35 + 0.30 + 0.22 > 1
= � (k1, k2, k3, k4)

(31)

also tells us that the attributes are correlative.�eHTFCOBM
operator can perform aggregation of attributes when they
are correlative and it allows argument values to support
each other in the aggregation process. However, the existing
operators, such asHTFWAandHTFWG, always suppose that
the attributes are independent and each attribute is given a
	xed weight subjectively. So the HTFCOBM operator is a
better choice here.

(5) When we change the parameters �, O, we get di
erent
rankings in Table 2. �is indicates that the HTFCOBM
operator can meet the needs of di
erent types of decision-
makers.

7. Conclusion

In this paper, we have investigated the multiple attribute
decision-making (MADM) problems based on the HTF-
COBM operator with hesitant triangular fuzzy information.
Firstly, some basic concepts related to hesitant triangular
fuzzy set have been reviewed. �en, motivated by the ideal
of BM and Choquet integral, some new hesitant triangular
fuzzy aggregation operators such as HTFCOBM have been
developed. �e prominent advantage of HTFCOBM is that
it can consider the correlations between the attributes and
among the input arguments, which makes it more feasible
and practical. At the same time, we have discussed their
basic properties. As di
erent parameters can be chosen in
these new operators, the decision becomesmore �exible. Fur-
thermore, we have discussed the families of new operators.
Under certain conditions, they can be seen as extensions of
the existing operators. Next, we have applied the HTFCOBM
operator to multiple attribute decision-making problems in
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which attribute values take the form of hesitant triangular
fuzzy information. Finally, an illustrative example for evalu-
ation of theses has been given to demonstrate the proposed
method. �ere are some other generalizations of Bonferroni
mean such as the generalized hesitant fuzzy Bonferroni mean
[21] and normalized geometric Bonferroni operators [23],
which can also be used to construct newoperators for hesitant
triangular fuzzy set. �e researches on these new operators
may be interesting and meaningful.
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