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We describe a method for recovering the underlying parametriza-
tion of scattered data (mi) lying on a manifold M embedded in
high-dimensional Euclidean space. The method, Hessian-based
locally linear embedding, derives from a conceptual framework of
local isometry in which the manifold M, viewed as a Riemannian
submanifold of the ambient Euclidean space �n, is locally isometric
to an open, connected subset � of Euclidean space �d. Because �

does not have to be convex, this framework is able to handle a
significantly wider class of situations than the original ISOMAP
algorithm. The theoretical framework revolves around a quadratic
form H (f ) � �M �Hf (m)�F

2dm defined on functions f : M � �. Here
Hf denotes the Hessian of f, and H ( f ) averages the Frobenius norm
of the Hessian over M. To define the Hessian, we use orthogonal
coordinates on the tangent planes of M. The key observation is
that, if M truly is locally isometric to an open, connected subset of
�d, then H (f ) has a (d � 1)-dimensional null space consisting of the
constant functions and a d-dimensional space of functions spanned
by the original isometric coordinates. Hence, the isometric coordi-
nates can be recovered up to a linear isometry. Our method may be
viewed as a modification of locally linear embedding and our
theoretical framework as a modification of the Laplacian eigen-
maps framework, where we substitute a quadratic form based on
the Hessian in place of one based on the Laplacian.

manifold learning � ISOMAP � tangent coordinates � isometry �
Laplacian eigenmaps

1. Introduction

A recent article in Science (1) proposed to recover a low-
dimensional parametrization of high-dimensional data by

assuming that the data lie on a manifold M which, viewed as a
Riemannian submanifold of the ambient Euclidean space, is
globally isometric to a convex subset of a low-dimensional
Euclidean space. This bold assumption has been surprisingly
fruitful, although the extent to which it holds is not fully
understood.

It is now known (2, 3) that there exist high-dimensional
libraries of articulated images for which the corresponding data
manifold is indeed locally isometric to a subset of a Euclidean
space; however, it is easy to see that, in general, the assumption
that the subset will be convex is unduly restrictive. Convexity can
fail in the setting of image libraries due to (i) exclusion phe-
nomena (2, 3), where certain regions of the parameter space
would correspond to collisions of objects in the image, or (ii)
unsystematic data sampling, which investigates only a haphaz-
ardly chosen region of the parameter space.

In this article we describe a method that works to recover a
parametrization for data lying on a manifold that is locally
isometric to an open, connected subset � of Euclidean space �d.
Because this subset need not be convex, whereas the original
method proposed in ref. 1 demands convexity, our proposal
significantly expands on the class of cases that can be solved by
isometry principles.

Justification of our method follows from properties of a
quadratic form H(f) � �M �Hf (m)�F

2 dm defined on functions
f : M � �. H(f ) measures the average, over the data manifold

M, of the Frobenius norm of the Hessian of f. To define the
Hessian, we use orthogonal coordinates on the tangent planes of M.

The key observation is that, if M is locally isometric to an open,
connected subset of �d, then H(f ) has a (d � 1)-dimensional
null space consisting of the constant function and a d-
dimensional space of functions spanned by the original isometric
coordinates. Hence, the isometric coordinates can be recovered,
up to a rigid motion, from the null space of H(f ).

We describe an implementation of this procedure on sampled
data and demonstrate that it performs consistently with the
theoretical predictions on a variant of the ‘‘Swiss roll’’ example,
where the data are not sampled from a convex region in
parameter space.

2. Notation and Motivation
Suppose we have a parameter space � � �d and a smooth
mapping � : � � �n, where the embedding space �n obeys d �
n. We speak of the image M � �(�) as the manifold, although
of course from the viewpoint of manifold theory it is actually the
very special case of a single coordinate patch.

The vector � can be thought of as some control parameters
underlying a measuring device and the manifold as the enumer-
ation m � �(�) of all possible measurements as the param-
eters vary. Thus the mapping � associates parameters to
measurements.

In such a setting, we are interested in obtaining data examples
mi, i � 1, . . . , N showing (we assume) the results of measure-
ments with many different choices of control parameters (�i, i �
1, . . . , N). We will speak of M as the data manifold, i.e., the
manifold on which our data mi must lie. In this article we
consider only the situation where all data points mi lie exactly in
the manifold M.

There are several concrete situations related to image analysis
and acoustics where this abstract model may apply.

Y Scene variation: pose variations and facial gesturing;
Y Imaging variations: changes in the position of lighting sources

and in the spectral composition of lighting color; and
Y Acoustic articulations: changes in distance from source to

receiver, position of the speaker, or direction of the speaker’s
mouth.

In all such situations, there is an underlying parameter control-
ling articulation of the scene; here are two examples.

Y Facial expressions: The tonus of several facial muscles control
facial expression; conceptually, a parameter vector � records
the contraction of each of those muscles.

Y Pose variations: Several joint angles (shoulder, elbow, wrist,
etc.) control the combined pose of the elbow–wrist–finger
system in combination.

We also speak of M as the articulation manifold.

Abbreviations: LLE, locally linear embedding; HLLE, Hessian LLE.
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In the above settings and presumably many others, we can
make measurements (mi), but they are without access to the
corresponding articulation parameters (�i).

It would be interesting to be able to recover the underlying
parameters �i from the observed points mi on the articulation
manifold. Thus we have the following.

Parametrization Recovery Problem. Given a collection of data points
(mi) on an articulation manifold M, recover the mapping � and the
parameter points �i.

As stated, this of course is ill-posed, because if � is one
solution, and � : �d � �d is a morphing of the Euclidean space
�d, the combined mapping � � � is another solution. For this
reason, several extra assumptions must be made in order to
uniquely determine solutions.

3. ISOMAP
In an insightful article, Tenenbaum et al. (1) proposed a method
that, under certain assumptions, could indeed recover the under-
lying parametrization of a data manifold. The assumptions were:

(ISO1) Isometry: The mapping � preserves geodesic
distances. That is, define a distance between two points
m and m� on the manifold according to the distance
travelled by a bug walking along the manifold M ac-
cording to the shortest path between m and m�. Then the
isometry assumption says that

G�m, m�� � �� � ���, @m7 �, m�7 ��,

where ��� denotes Euclidean distance in �d.

(ISO2) Convexity: The parameter space � is a convex
subset of �d. That is, if �, �� is a pair of points in �, then
the entire line segment {(1 	 t)� � t�� : t � (0, 1)} lies
in �.

Tenenbaum et al. (1) introduced a procedure, ISOMAP, which
under these assumptions recovered � up to rigid motion. That
is, up to a choice of origin and a rotation and possible mirror
imaging about that origin, ISOMAP recovered �. In their
article, they gave an example showing successful recovery of
articulation parameters from an image database that showed
many views of a wrist rotating and a hand opening at various
combinations of rotation�opening.

The stated assumptions lead to two associated questions:

(Q1) Do interesting articulation manifolds have iso-
metric structure?

(Q2) Are interesting parameter spaces truly convex?

We (2, 3) studied these questions in the case of image libraries.
Namely, we modeled images m as continuous functions m(x, y)
defined on the plane (x, y) � �2 and focused attention on images
in special articulation families defined by certain mathematical
models. As one example, we considered images of a ball on a
white background, where the underlying articulation parameter
is the position of the ball’s center. In this model, let B� denote
the ball of radius 1 centered at � � �2, and define

m��x, y� � 1B�
�x, y�.

This establishes a correspondence between � � �2 and m� in
L2(�2). After dealing with technicalities associated with having
L2(�2) as the ambient space in which M is embedded, we derived
expressions for the metric structure induced from L2(�2) and
showed that indeed, if � is a convex subset of �2, then isometry
holds.

G��, ��� � �� � ���, @�, �� � �

We found that isometry held for a dozen examples of interesting
image articulation families including cartoon faces with articu-
lated eyes, lips, and brows. Hence Q1 admits of positive answers
in a number of interesting cases.

On the other hand, in our studies of image articulation
families, we (2, 3) noted that Q2 can easily have a negative
answer. A simple example occurs with images showing two balls
that articulate by translation, as in the single-ball case mentioned
above, but where the ball centers obey exclusion: The two balls
never overlap. In this case, the parameter space � � �4 becomes
nonconvex; writing � � (�1, �2) as a concatenation of the
parameters of the two ball centers, we see that it is missing a tube
where ��1 	 �2� � 1.

The case of two balls moving independently and subject to
exclusion is merely one in a series of examples where the
articulation manifold fails to obey ISO1 and ISO2 but instead
obeys something weaker.

(LocISO1) Local isometry: In a small enough neigh-
borhood of each point m, geodesic distances to nearby
points m� in M are identical to Euclidean distances
between the corresponding parameter points � and ��.

(LocISO2) Connectedness: The parameter space � is
an open, connected subset of �d.

In such settings, the original assumptions of ISOMAP are
violated, and as shown (ref. 2 and unpublished data), the method
itself fails to recover the parameter space up to a linear mapping.
We (unpublished data) pointed out the possibility of recovering
nonconvex � by applying ISOMAP to a suitable decomposition
of M into overlapping geodesically convex pieces. However, a
fully automatic procedure based on a general principle would be
preferable in solving this problem. In this article we propose such
a procedure.

4. The H Functional
We now set up notation to define the quadratic form H(f )
referred to in the Abstract and Introduction.

We suppose that M � �n is a smooth manifold, and thus the
tangent space Tm(M) is well defined at each point m � M.
Thinking of the tangent space as a subspace of �n, we can
associate to each such tangent space Tm(M) � �n an orthonor-
mal coordinate system using the inner product inherited from
�n. (It will not matter in the least how this choice of coordinate
system varies from point to point in M.)

Think momentarily of Tm(M) as an affine subspace of �n that
is tangent to M at m, with the origin 0 � Tm(M) identified with
m � M. There is a neighborhood Nm of m such that each point
m� � Nm has a unique closest point v� � Tm(M) and such that
the implied mapping m� � v� is smooth. The point in Tm(M) has
coordinates given by our choice of orthonormal coordinates for
Tm(M). In this way, we obtain local coordinates for a neighbor-
hood Nm of m � M, call them x1

(tan,m), . . . , xd
(tan,m), where we

retain tan, m in the notation to remind us that they depend on
the way in which coordinates were defined on Tm(M).

We now use the local coordinates to define the Hessian of a
function f : M � � that is C2 near m. Suppose that m� � Nm

has local coordinates x � x(tan,m). Then the rule g(x) � f(m�)
defines a function g : U � �, where U is a neighborhood of 0
in �d. Because the mapping m� � x is smooth, the function g is
C2. We define the Hessian of f at m in tangent coordinates as the
ordinary Hessian of g.

�Hf
tan�m��i,j �

�

�xi

�

�xj
g�x��

x�0

5592 � www.pnas.org�cgi�doi�10.1073�pnas.1031596100 Donoho and Grimes



In short, at each point m, we use the tangent coordinates and
differentiate f in that coordinate system. We call this construc-
tion the tangent Hessian for short.

We now consider a quadratic form defined on C2 functions by

H� f � � �
M

�Hf
�tan��m��F

2 dm,

where dm stands for a probability measure on M that has strictly
positive density everywhere on the interior of M. H( f ) measures
the average ‘‘curviness’’ of f over the manifold M.

Theorem. Suppose M � �(�) where � is an open, connected subset
of �d, and � is a locally isometric embedding of � into �n. Then
H( f ) has a (d � 1)-dimensional null space consisting of the
constant function and a d-dimensional space of functions spanned
by the original isometric coordinates.
We give the proof in Appendix.

Corollary. Under the same assumptions as Theorem, the original
isometric coordinates � can be recovered, up to a rigid motion, by
identifying a suitable basis for the null space of H( f ).

5. Hessian Locally Linear Embedding (HLLE)
We now consider the setting where we have sampled data (mi)
lying on M, and we would like to recover the underlying
parametrization � and underlying parameter settings �i, at least
up to rigid motion. The Theorem and its Corollary suggest the
following algorithm for attacking this problem. We model our
algorithm structure on the original LLE algorithm (4).

HLLE algorithm:

Input: (mi : i � 1, . . . , N) a collection of N points
in �n.

Parameters: d, the dimension of the parameter space;
k, the size of the neighborhoods for
fitting.

Constraints: min(k, n) 
 d.

Output: (wi : i � 1, . . . , N) a collection of N points
in �d, the recovered parametrization.

Procedure:

Y Identify neighbors: For each data point mi, i � 1, . . . n,
identify the indices corresponding to the k-nearest neighbors
in Euclidean distance. Let Ni denote the collection of those
neighbors. For each neighborhood Ni, i � 1, . . . , N, form a
k � n matrix Mi with rows that consist of the recentered points
mj 	 m� i, j � Ni, where m� i � Ave{mj : j � Ni}.

Y Obtain tangent coordinates: Perform a singular value decom-
position of Mi, getting matrices U, D, and V; U is k by
min(k, n). The first d columns of U give the tangent coordi-
nates of points in Ni.

Y Develop Hessian estimator: Develop the infrastructure for
least-squares estimation of the Hessian. In essence, this is a
matrix Hi with the property that if f is a smooth function
f : M � �, and fj � ( f (mi)), then the vector vi with entries
that are obtained from f by extracting those entries corre-
sponding to points in the neighborhood Ni; then, the matrix
vector product Hivi gives a d(d � 1)�2 vector with entries that
approximate the entries of the Hessian matrix, (�f��Ui�Uj).

Y Develop quadratic form: Build a symmetric matrix Hij having,
in coordinate pair ij, the entry

Hi ,j � �
l

�
r

��Hl�r,i�Hl�r,j�.

Here by Hl we mean, again, the d(d � 1)�2 � k matrix associated
with estimating the Hessian over neighborhood Nl, where rows
r correspond to specific entries in the Hessian matrix and
columns i correspond to specific points in the neighborhood.

Y Find approximate null space: Perform an eigenanalysis of H,
and identify the (d � 1)-dimensional subspace corresponding
to the d � 1 smallest eigenvalues. There will be an eigenvalue
0 associated with the subspace of constant functions; and the
next d eigenvalues will correspond to eigenvectors spanning a
d-dimensional space V̂d in which our embedding coordinates
are to be found.

Y Find basis for null space: Select a basis for V̂d, which has the
property that its restriction to a specific fixed neighborhood
N0 (the neighborhood may be chosen arbitrarily from those
used in the algorithm) provides an orthonormal basis. The
given basis has basis vectors w1, . . . wd; these are the embed-
ding coordinates.

The algorithm is a straightforward implementation of the idea
of estimating tangent coordinates, the tangent Hessian, and the
empirical version of the operator H.

Remarks:

Y Coding requirements: This can be implemented easily in
MATLAB, MATHEMATICA, S-PLUS, R, or similar quantitative
programming environment; our MATLAB implementation is
available at http:��basis.stanford.edu�HLLE.

Y Storage requirements: This is a ‘‘spectral method’’ and in-
volves solving the eigenvalue problem for an N � N matrix.
Although it would appear to require O(N2) storage, which can
be prohibitive, the storage required is actually proportional to
n�N, i.e. the storage of the data points. In fact, this storage can
be kept on disk; the remaining storage is basically proportional
to Nk. Note that the matrix H is a sparse matrix with �O(Nk)
nonzero entries.

Y Computational complexity: In effect, the computational cost
difference between a sparse and a full matrix using the sparse
eigenanalysis implementation in MATLAB 6.1 (using Arnoldi
methods) depends on the cost of computing a matrix-vector
product using the input matrix. For our sparse matrix, the cost
of each product is �2kN, whereas for a full matrix the cost is
�2N2, making the overall cost of the sparse version O(kN2).

Y Building the Hessian estimator: Consider first the case d � 2.
Form a matrix Xi consisting of the following columns.

Xi � 1 U �,1 U �,2 �U �,1
2 � �U �,2

2 � �U �,1 � U �,2�� [1]

In the general case d 
 2, create a matrix with 1 � d � d(d �
1)�2 columns; the first d � 1 of these consist of a vector of
ones, and then the first d columns of U, and the last d(d � 1)�2
consist of the various cross products and squares of those d
columns. Perform the usual Gram–Schmidt orthonormaliza-
tion process on the matrix Xi, yielding a matrix X̃i with
orthonormal columns; then define Hi by extracting the last
d(d � 1)�2 columns and transposing.

�Hi�r,l � �X̃i�l ,1�d�r

Y Finding the basis for the null space: Let V be the N � d matrix
of eigenvectors built from the nonconstant eigenvectors as-
sociated to the (d � 1) smallest eigenvalues, and let Vl,r denote
the lth entry in the rth eigenvector of H. Define the matrix
(R)rs � �j�N1

Vj,rVj,s. The desired N � d matrix of embedding
coordinates is obtained from

W � V�R	1/2.
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In section 7, we apply this recipe to a canonical isometric
example.

6. Comparison to LLE�Laplacian Eigenmaps
The algorithm we have described bears substantial resemblance
to the LLE procedure proposed by Roweis and Saul (4). The
theoretical framework we have described also bears substantial
resemblance to the Laplacian eigenmap framework of Belkin
and Niyogi (5), only with the Hessian replacing the Laplacian.
The Laplacian eigenmap setup goes as follows: Define
the Laplacian operator in tangent coordinates by �(tan)( f ) �
� i�1

d (�2f��xi
2), and define the functional L( f ) �

�M(�(tan)( f ))2dm. This functional computes the average of the
Laplacian operator over the manifold; Laplacian eigenmap
methods propose to solve embedding problems by obtaining the
d � 1 lowest eigenvalues of L and using the corresponding
eigenfunctions to embed the data in low-dimensional space. The
LLE method is an empirical implementation of the same prin-
ciple, defining a discrete Laplacian based on a nearest-neighbor
graph and embedding scattered n-dimensional data by using the
first d nonconstant eigenvectors of the graph Laplacian.

7. Data Example
In this example we take a random sample (mi) on the Swiss roll
surface (4) in three dimensions. The resulting surface is like a
rolled-up sheet of paper and thus is exactly isometric to Euclid-
ean space (i.e. to a rectangular segment of �2). Successful results
of LLE and ISOMAP on such data have been published (1, 4).
However, here we consider a change in sampling procedure.
Instead of sampling parameters in a full rectangle, we sample
from a rectangle with a missing rectangular strip punched out of

the center. The resulting Swiss roll is then missing the corre-
sponding strip and thus is not convex (while still remaining
connected).

Using this model and the code provided for ISOMAP and
LLE in refs. 1 and 4, respectively, we test the performance of all
three algorithms on a random sample of 600 points in three
dimensions. The points were generated by using the same code
published by Roweis and Saul (4). The results, as seen in Fig. 1,
show the dramatic effect that nonconvexity can have on the
resulting embeddings. Although the data manifold is still locally
isometric to Euclidean space, the effect of the missing sampling
region is, in the case of LLE, to make the resulting embedding
functions asymmetric and nonlinear with respect to the original
parametrization. In the case of ISOMAP, the nonconvexity
causes a strong dilation of the missing region, warping the rest
of the embedding. Hessian LLE, on the other hand, embeds the
result almost perfectly into two-dimensional space.

The computational demands of LLE algorithms are very
different than those of the ISOMAP distance-processing step.
LLE and HLLE are both capable of handling large N problems,
because initial computations are performed only on smaller
neighborhoods, whereas ISOMAP has to compute a full matrix
of graph distances for the initial distance-processing step. How-
ever, both LLE and HLLE are more sensitive to the dimension-
ality of the data space, n, because they must estimate a local
tangent space at each point. Although we introduce an orthogo-
nalization step in HLLE that makes the local fits more robust to
pathological neighborhoods than LLE, HLLE still requires
effectively a numerical second differencing at each point that can
be very noisy at low sampling density.

Fig. 1. (Upper Left) Original data. (Upper Right) LLE embedding (Roweis and Saul code, k � 12; ref. 4). (Lower Left) Hessian eigenmaps (Donoho and Grimes
code, k � 12; as described in section 5). (Lower Right) ISOMAP (Tenenbaum et al. code, k � 7; ref. 1). The underlying correct parameter space that generated
the data is a square with a central square removed, similar to what is obtained by the Hessian approach (Lower Left).
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8. Discussion
We have derived an LLE algorithm from a conceptual frame-
work that provably solves the problem of recovering a locally
isometric parametrization of a manifold M when such a param-
etrization is possible. The existing ISOMAP method can solve
the same problem in the special case where M admits a globally
isometric parametrization. This special case requires that M be
geodesically convex or equivalently that � be convex.

Note that in dealing with data points (mi) sampled from a
naturally occurring manifold M, we can see no reason that the
probability measure underlying the sampling must have geodesi-
cally convex support. Hence our local isometry assumption
seems much more likely to hold in practice than the more
restrictive global isometry assumption in ISOMAP.

HLLE requires the solution of N separate k � k eigenprob-
lems and, similar to Roweis and Saul’s original LLE algorithm,
a single N � N sparse eigenproblem. The sparsity of this
eigenproblem can confer a substantial advantage over the gen-
eral nonsparse eigenproblem. This is an important factor dis-
tinguishing LLE techniques from the ISOMAP technique, which
poses a completely dense N � N matrix for eigenanalysis. In our
experience, if we budget an equal programming effort in the
two implementations, the implementation of HLLE can solve
much larger-scale data analysis problems (much larger N) than
ISOMAP. [We are aware that there are modifications of the
ISOMAP principle under development that attempt to take
advantage of sparse graph structure (i.e. landmark ISOMAP);
however, the original ISOMAP principle discussed here is not
posable as a sparse eigenproblem.]

A drawback of HLLE versus the other methods just discussed
is the Hessian approach requires estimation of second deriva-
tives, and this is known to be numerically noisy or difficult in very
high-dimensional data samples.

Our understanding of the phenomena involved in learning
parametrizations is certainly not complete, and we still have
much to learn about the implementation of spectral methods for
particular types of data problems.

Appendix: Proof of Our Theorem
Because the mapping � is a locally isometric embedding, the
inverse mapping � � �	1 : M � �d provides a locally isometric
coordinate system on M. Let �1, . . . , �d denote the isometric
coordinates.

Let m be a fixed point in the interior of M, and let f be a C2

function on M. Define the pullback of f to � by g(�) � f(�(�)).
Define the Hessian in isometric coordinates of f at m by

�Hf
iso�i,j�m� �

�

��i

�

��j
g����

����m�
.

This definition postulates knowledge of the underlying isometry
�, so the result is definitely not something we expect to be
‘‘learnable’’ from knowledge of M alone. Nevertheless, it pro-
vides an important benchmark for comparison. Now define the
quadratic form

H iso� f � ��
M

�Hf
iso�F

2 dm.

This is similar to the quadratic form H except that it is based on
the Hessian in isometric coordinates rather than the Hessian in
tangent coordinates. We will explore the null space of this
quadratic form and relate it to the null space of H.

By its very definition, H iso has a natural pullback from L2(M,
dm) to L2(�, d�). Indeed, letting g : � � � be a function on
� � �d with open interior, letting � be an interior point, and

letting Hg
euc(�) denote the ordinary Hessian in Euclidean coor-

dinates at �, we have actually defined Hiso by Hf
iso � Hf*

euc, where
f*(�) � f(�(�)) is the pullback of f to � � �d. Hence defining,
for functions g : � � �, the quadratic form

H euc�g� ��
�

�Hg
euc�F

2 d�,

(where d� and dm are densities in one-to-one correspondence
under the one-to-one correspondence � 7 m), we have

H iso� f � � H euc� f*� @f � C��M�.

It follows that the null space of H iso is in one-to-one correspon-
dence with the null space of H euc under the pullback by �.
Consider then the null space of H euc.

Lemma 1. Let � � �d be connected with open interior, and let d�
denote a strictly positive density on the interior of �. Let W2

2(�)
denote the usual Sobolev space of functions on � that have finite
L2 norm and the first two distributional derivatives of which exist
and belong to L2. Then H euc, viewed as a functional on the linear
space W2

2(�), has a (d � 1)-dimensional null space consisting of
the span of the constant function together with the d coordinate
functions �1, . . . , �d.

Proof: It of course is obvious that the null space contains the
span of the constant function and all the coordinate functions,
because this span is simply all linear functions and linear
functions have everywhere-vanishing Hessians. In the other
direction, we show that the null space contains only these
functions. Consider any function g in C�(�) that is not exactly
linear. Then there must be some second-order mixed deriva-
tive (�g��� i1

�� i2
) that is nonvanishing on some ball:

��g���i1
��i2

�L2(�,d�) 
 0. But,

H euc�g� ��
�

�Hg�F
2 d� ��

�

�
i,j
� �g

��i1��i2
�2

d�

� �
i,j
�

�

� �g
��i1��i2

�2

d� � �
i,j
	 �g
��i1��i2

	
L2��,d��

2

	 	 �g
��i1��i2

	
L2��,�0�

2


 0.

Hence no smooth nonlinear function can belong to the null space
of H euc. The openness of the interior of � implies that C�(�) is
dense in W2

2(�), and thus we can reach the same conclusion for
all g in W2

2(�).
By pullback, Lemma 1 immediately implies:

Corollary. Viewed as a functional on W2
2(M), H iso has a (d �

1)-dimensional null space consisting of the span of the constant
functions and the d-isometric coordinates �i(m) on M.

We now show the same for the object of our original interest:
H. This follows immediately from the following lemma.

Lemma 2. Let f be a function in C�(M), and let � be a local isometry
between � and M. Then at every m � interior(M),

�Hf
tan�m��F � �Hf

iso�m��F.

Lemma 2 implies that

H� f � � H iso� f � @f � C��M�
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and allows us to see that H and H iso have the same null space.
Our theorem follows.

Proof: Recall that �Hf
tan(m)�F is unchanged by variations in the

choice of orthonormal basis for the tangent plane Tm(M). Recall
that � � �	1 is a local isometry and gives a coordinate system �1,
. . . , �d on M and therefore induces a choice of coordinate system
on Tm(M) that is orthonormal, because � is a local isometry.
Therefore we may assume that our choice of orthonormal basis for
Tm(M) is exactly the same as the choice induced by �. Once this
choice has been made, Lemma 2 follows if we can show that

Hf
tan�m� � Hf

iso�m�, [A1]

which will follow if we show that for every vector v � Tm(M),

v�Hf
tan�m�v � v�Hf

iso�m�v. [A2]

Given a vector v � Tm(M), let �v : [0, �) � M denote the
unit-speed geodesic in M that starts at m � �v(0) and that has
v for its tangent (d�dt)�v�t�0 � v. Consider the induced func-
tion ggeo,v(t) � f(�v(t)). Notice that by definition of isometric
coordinates

g �geo,v�0� � v�Hf
iso�m�v.

On the other hand, the tangent space Tm(M) provides another
local coordinate system for M. Let m : Tm(M) � M denote the
inverse that maps from local coordinates back to M; this is the
inverse of the mapping m� � (xi

tan,m(m�)). Consider the path
�v : [0, �) � Tm(M) defined by dv(t) � tv, which this corresponds
to a path in M defined by �v(t) � m(dv(t)), i.e. projecting the
path in Tm(M) onto a neighborhood of m in M. Consider the
induced function gtan,v � f(�v(t)). Notice that by definition of
tangent coordinates

g �tan,v�0� � v�Hf
tan�m�v.

Hence we have to show that

g �tan,v�0� � g�geo,v�0� [A3]

for all v � Tm(M). This implies Eq. A2 and hence Eq. A1.
The key observation is that

��v�t� � �v�t�� � o�t2�, t 3 0. [A4]

It follows that for every Lipschitz f that

�gtan,v�t� � ggeo,v�t�� � �f��v�t�� � f��v�t��� � o�t2�, t 3 0,

which proves Eq. A3. The key relation (Eq. A4) follows by
combining two basic facts.

Lemma 3. Consider a geodesic � : [0, �) � M of a Riemannian
submanifold M of �n and view it as a space curve in �n. View
Tm(M) as a subspace of �n. The acceleration vector (d2�dt2)� of
this space curve at the point m � �(0) is normal to Tm(M).

Lemma 3 is a classic textbook fact about isometric embeddings
(see chapter 6 of ref. 6). Less well known is that the same fact
is true of �v(t).

Lemma 4. Viewing t � �v(t) as a space curve in �n, its acceleration
vector at t � 0 is normal to Tm(M).

In short, the acceleration components of both �v and �v at 0
reflect merely the extrinsic curvature of M as a curved submani-
fold of �n; neither curve has an acceleration component within
Tm(M). Because both curves by construction have the same
tangent at 0, namely v, the key relation (Eq. A4) holds, and
Lemma 2 is proved. Lemma 4 does not seem to be as well known
as Lemma 3, so we prove it here.

Proof: Let c � n 	 d denote the codimension of M in �n. We
can model M in the vicinity of m as the solution of a system of
equations.

�1�x� � �2�x� � · · · � �c�x� � 0

Let t � x(t) be a path in �n that starts in M at t � 0 and stays
in M. Without loss of generality choose coordinates such that
x(0) � 0 � �n. Then

���i, x�t�� �
1
2

x�t��H�i
x�t� � o�t2�, i � 1, . . . , c,

where ��i denotes the gradient of �i, and H�i
denotes the

Hessian of �i, both evaluated at x � 0. Writing x(t) � tv �
(t2�2)u � o(t2), we conclude that

���i, v� � 0, i � 1, . . . , c,

whereas

t2���i, u� � t2v�H�i
v � o�t2�, i � 1, . . . , c.

In short,

���i, u� � 	v�H�i
v, i � 1, . . . , c. [A5]

Because the ��i span the normal space to M at m, it follows that
u must have the specified coordinates in the normal space.

Now, by definition, �v(t) is the closest point in M to the point
in the tangent plane represented by tv. But then, viewing v �
Tm(M) as a vector in �n, we must have that u � �n satisfies

min
u

�tv � �tv � �t2�2�u�� subject to Eq. A5.

In short, u solves

min
u

�u� subject to Eq. A5.

This minimum-norm problem has a unique solution, with u in
the span of the vectors ��i, i.e. in the normal space perpendic-
ular to Tm(M). Hence the space curve x(t) has no component of
acceleration in Tm(M).
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