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Hessian geometry of nonequilibrium chemical reaction networks and
entropy production decompositions
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We derive the Hessian geometric structure of nonequilibrium chemical reaction networks on the flux and
force spaces induced by the Legendre duality of convex dissipation functions and characterize their dynamics
as a generalized flow. With this geometric structure, we can extend theories of nonequilibrium systems with
quadratic dissipation functions to more general cases with nonquadratic ones, which are pivotal for studying
chemical reaction networks. By applying generalized notions of orthogonality in Hessian geometry to chemical
reaction networks, two generalized decompositions of the entropy production rate are obtained, each of which
captures gradient-flow and minimum-dissipation aspects in nonequilibrium dynamics.
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I. INTRODUCTION

Thermodynamics aims at establishing the general descrip-
tion of macroscopic systems. Although such a description
was obtained for equilibrium situations [1,2], its extension
to nonequilibrium ones has been limited to specific systems
and models. For near-equilibrium situations, Onsager and
Machlup evaluated the entropy production rate using the lin-
ear approximation known as the force-flux relation [3–6],
which corresponds to a quadratic dissipation function. With
the recent development of macroscopic fluctuation theory and
stochastic thermodynamics [7–9], this result was extended
to far-from equilibrium situations in fluid dynamics and dif-
fusion processes in a continuous space, but the dissipation
functions are still quadratic even though they are general-
ized to be state-dependent. Those systems are characterized
geometrically via the inner product structure induced by the
quadratic functions and associated formal Riemannian geom-
etry. However, the knowledge obtained from such systems
and models is not directly applicable to other systems with
a discrete state space or with nonlinearities in the governing
equations, where the natural dissipation functions may not be
quadratic.1 In such cases, the inner product structure is no
longer an adequate mathematical basis. Although Wasserstein
geometry has recently been introduced into the thermody-
namics of diffusion processes as a new geometric approach
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1Mathematically, for a given governing equation, there can exist
multiple dissipation functions, all of which can induce the same
governing equation. Thus, we need to find or choose dissipation
functions that are physically natural and relevant to the target system
and related problems [10,11].

[12,13], it also employs the formal Riemannian geometric
structure associated with the Wasserstein distance via the
Benamou-Brenier formula and thereby is not directly appli-
cable to systems characterized by nonquadratic dissipation
functions [14–16].

In this paper, we clarify that this problem can be resolved
by using the Hessian (information) geometric structure of
the flux and force spaces. Hessian geometry or information
geometry [17–19] enables us to relate the force and flux
by a nonlinear Legendre transformation induced by the con-
vex dissipation functions.2 Because the Riemannian metric
is regarded as the Legendre transformation with quadratic
dissipation functions, Hessian geometry can work as a non-
linear extension of the inner product structure in Riemannian
geometry. Even with being a nonlinear extension, Hessian
geometry still preserves many important aspects of the inner
product structure in the form of generalized orthogonalities
and Pythagorean theorem, among others [18,19]. Therefore,
we can naturally and consistently extend various previous re-
sults for systems with quadratic dissipation functions to those
with nonquadratic ones.

We derive and demonstrate the structure by focusing
mainly on chemical reaction networks (CRN) because they
are representative thermodynamic systems with both discrete
state space and nonlinearity in the governing rate equa-
tions [20–23]. CRN also include Markov jump processes
(MJP) on a graph, which is an important class of systems in
stochastic thermodynamics with a discrete state space but with
a linear governing equation.3 In addition, CRN are also impor-
tant in light of their biological and engineering applications
[24–26]. The relevant dissipation functions of these systems

2When the dissipation functions are quadratic, the force and the
corresponding flux are related by a linear transformation induced by
the associated Riemannian metric.

3It should be noted that a linear governing equation does not nec-
essarily mean that its dissipation functions are quadratic.
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are not necessarily quadratic, but can be more general convex
functions.4

The nonquadratic property makes it difficult to dissect
the equilibrium-like aspects from nonequilibrium dynamics
by the notion of orthogonality from the usual inner product
structure, as was done for overdamped diffusion processes
[28]. As a result, some entropy decomposition formulas have
not yet been generalized to MJP and CRN. By employing
the generalized notions of orthogonality in Hessian geometry
[17–19], we demonstrate that different aspects of nonequilib-
rium CRN can be dissected as generalized decompositions of
the entropy production rate (EPR). In particular, we derive a
CRN version of the Maes-Netočnỳ relation by generalizing
the Helmholtz decomposition. If the dissipation functions are
quadratic, these results are automatically and formally re-
duced to the original results obtained for diffusion processes.
Thus, Hessian geometry provides a natural generalization for
resolving the problem. Finally, we also discuss how Hessian
geometry can potentially fill the gap between quadratic and
nonquadratic cases by geometrically capturing the nonlinear
dual relation between force and flux, unify the description
of those systems, and thereby extend the applicability of
nonequilibrium thermodynamics. As such an example, we
mention a relation of our results with the thermodynamic
uncertainty relation, and describe how our formulation can
contribute to network thermodynamics and variational char-
acterizations of nonequilibrium systems.

This paper is organized as follows. In Sec. II, we define
MJP and CRN. In Sec. III, we introduce the Legendre duality
between flux and force, and the associated notion of gen-
eralized flow. In Sec. IV, we clarify the Hessian geometric
structure in the flux-force space and generalized orthogonal-
ities, which are one of the main contributions of this work.
In Sec. V, we demonstrate how the generalized notions of
orthogonality lead to different types of EPR decompositions
and their geometric meaning. In Sec. VI, we verify the ob-
tained decompositions using CRN that can have equilibrium,
complex-balanced, and noncomplex balanced steady states.
In Sec. VII, we summarize our results and provide possible
applications and contributions of the Hessian structure in the
flux-force space to other thermodynamic problems.

II. MODELS

In this section, we define MJP and CRN and show how
MJP can be regarded as a special case of CRN.

A. Markov jump processes

A reversible Markov jump diffusion process describes ran-
dom jumps of noninteracting particles on a graph G consisting
of Nv vertices, {vi}i∈[1,Nv], and Ne oriented edges {ee}e∈[1,Ne].
k+

e � 0 is the forward jump rate from the head of the oriented

4At least, two types of dissipation functions have been proposed
for deterministic CRNs [10,27]. One is quadratic, and the other is
nonquadratic. We focus on the latter, which is more natural and
relevant in the sense that it was derived from the large deviation rate
function of the underlying stochastic CRN models.

edge ee to its tail. k−
e � 0 is the reverse jump rate from the

tail to the head of ee. For infinitely many such particles, we
consider pi(t ) ∈ [0, 1], the fraction of particles on vertex vi at
time t . Then, the forward and reverse one-way fluxes on the
eth edge are

j+e (p) = k+
e pv+(ee ), j−e (p) = k−

e pv−(ee ), (1)

where v+(ee) and v−(ee) are the head and tail vertices of
edge ee.5 The total flux function is the difference of one-
way flux functions as j(p) = j+(p) − j−(p) ∈ RNe where
j±(p) = ( j±1 (p), · · · , j±Ne

(p))T . Then, the dynamics of the

density vector p(t ) := (p1(t ), · · · , pNv (t ))T ∈ RNv
�0 is repre-

sented by the master equation

ṗ = −B j(p) = −divB j(p), (2)

where B ∈ {0,±1}Nv×Ne is the incidence matrix of graph G
and divB := B. More specifically, for B = (bi,e),

bi,e : = +1 if vi is the head of edge ee,

bi,e : = −1 if vi is the tail of edge ee,

bi,e : = 0 otherwise.

Equation (2) is the continuity equation for diffusion on a
graph6 and B can be regarded as a discrete divergence operator
on a graph [29].7 We also define the head and tail inci-
dence matrices, respectively, as B+ := max[B, 0] and B− :=
max[−B, 0]. Thus, B = B+ − B−.

Then, the flux functions are compactly described in a vec-
tor form as

j±(p) = k± ◦ (B±)T p, (3)

where ◦ is the component-wise product of two vectors. In this
paper, we assume that all edges describe reversible transitions,
i.e., k±

e > 0 for all e. While the representation of the master
equation by Eq. (2) is different from that used conventionally
in stochastic thermodynamics, they are equivalent and this
representation suits our purpose of unveiling the relationship
between MJP and CRN as well as the underlying geometric
structure.

B. Chemical reaction networks

Deterministic chemical reaction networks (CRN) are an
important class of macroscopic models in light of their his-
torical role played in thermodynamics since Gibbs [30] and
of their wide range of applications in engineering and biology
[24–26,31]. A reversible CRN is composed of a collection of

5Here, we have abused the notation v+(ee) to indicate the index of
the vertex v+(ee).

6Mathematically, the same equation describes the time-evolution of
the occupation probability of states between which a system transit
stochastically.

7The usual divergence in vector calculus includes the information
of the metric associated with the manifold on which the divergence
is defined [29]. In contrast, divB is defined only by the topological
information of the underlying graph and does not include metric
information. More precisely, divB is the adjoint of exterior derivative
on the graph [29].
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(a) (b)

FIG. 1. Diagrammatic illustration of CRN (a) Diagrammatic
representation of chemical reaction equations with reaction rate con-
stants {k±i}i=1,2,3. (b) The graph-theoretic structure of the CRN in
(a). v1, v2, and v3 correspond to complex 2X1, 2X2, and X1 + X2,
respectively. Each directed edge represents a pair of forward and
reverse reactions, and the direction of the edge indicates the direction
of the forward reaction.

forward and reverse reaction pairs [Fig. 1(a)], the eth forward
reaction of which is described by the following chemical
reaction equation [24]:

α1,eX1 + · · · + αNX,eXNX → β1,eX1 + · · · + βNX,eXNX , (4)

where Xi is the ith molecular species, NX is the number
of different kinds of molecular species, and αi,e ∈ N�0 and
βi,e ∈ N�0 are the numbers of molecule Xi involved as the
reactants and products of the eth reaction, respectively. The
stoichiometric vector of the eth forward reaction is defined
as se := (β1,e − α1,e, · · · , βNX,e − αNX,e)T . The stoichiomet-
ric matrix is S := (s1, · · · , sNe ). The stoichiometric vector of
the eth reverse reaction is obtained by just changing the sign
of the forward one: −se. Thus, the stoichiometric matrix S
defined only for the forward reactions is sufficient to charac-
terize a reversible CRN. Let j+e (x) and j−e (x) be the one-way
fluxes of the eth forward and reverse reactions in which
x = (x1, · · · , xNX )T ∈ X := RNX

>0 represents the concentration
of molecules. The total flux is j(x) = j+(x) − j−(x) where
j±(x) = ( j±1 (x), ·, j±Ne

(x))T . Then, we have the deterministic
chemical rate equation (CRE) [23,24,31] as

ẋ = S j(x) = −divS j(x). (5)

Equation (5) is the continuity equation for the CRN with the
divergence operator divS = −S.

The intrinsic graph structure of CRN can be manifested by
considering the sets of reactants and products as vertices of the
graph G connected by the reaction edges [Fig. 1(b)]. Specifi-
cally, the set of reactants v+

e := (α1,eX1 + · · · + α1,eXNx ) and
the set of products v−

e := (β1,eX1 + · · · + β1,eXNx ) are re-
garded as the head and tail vertices of the eth reaction edge,
respectively. Such sets (vertices) are called complexes in the
CRN theory [31]. Because each complex is a set of molecular
species, a CRN is a kind of hypergraph in which multiple
molecular species are connected by oriented edges (reactions)
[32]. Reflecting this hypergraph nature, S can be decomposed
as

S = −�B = −�(B+ − B−), (6)

where Nv is the number of different vertices (complexes),
B is the incidence matrix of the complex graph G, and
� = (γ1, · · · , γNv

) ∈ ZNX×Nv where γ i specifies the molec-

ular species involved in the ith vertex (complex) as vi :=
(γ1,iX1 + · · · + γNX,iXNX ).

If we adopt the law of mass action kinetics, the eth forward
and reverse reaction fluxes can be represented as

j±e (x) = k±
e

Nv∑
i=1

b±
i,e

NX∏
j=1

x
γ j,i

j , (7)

where b±
i,e is the (i, e) component of B± as B± = (b±

i,e) and
k+

e ∈ R�0 and k−
e ∈ R�0 are the reaction rate constants of the

eth forward and reverse reactions, respectively. In vector form,
we can compactly represent it as

j±(x) = k± ◦ (B±)T x�T
, (8)

where xγ := ∏NX
j=1 x

γ j

j ∈ R>0 and x�T
:= (xγ1 , · · · , xγNv )T .

We should note an important relation, (B±)T x�T = x(�B± )T
,

which holds because every column vector of B± contains only
one +1 and the others are 0 (see also Appendix A for the
notation).

By comparing Eq. (2) and Eq. (3) with Eq. (5) and Eq. (8),
we can see that CRN contain MJP as a special case. Specif-
ically, if we identify x with p and set � = I , where I is the
identity matrix, Eq. (5) and Eq. (8) are reduced to Eq. (2)
and Eq. (3), respectively. In other words, a MJP is a CRN,
each complex of which contains only one molecular species.
Such a CRN is called a monomolecular reaction network and
its thermodynamic nature has been investigated in the context
of equilibrium and nonequilibrium chemical thermodynamics,
especially by Hill [20]. Because CRN include MJP, we work
only on CRN in the following sections.8

III. LEGENDRE DUALITY OF FLUX AND FORCE

Next, we introduce the Legendre duality between flux and
force for CRN,9 and summarize their relation to entropy
production. The specific type of convex function introduced
here was recently derived in the large deviation theory
[10,11,27,33–38].

For a given pair of one-way fluxes j±, the total flux and
force are defined as

j := j+ − j− ∈ J , f := 1
2 ln

j+

j−
∈ F , (9)

where J = V is an Ne-dimensional vector space and F = V∗
is its linear-algebraic dual space.10 The force of this form
comes from the local detailed balance condition [39], and is

8The state of MJP is the probability vector p(t ). Thus, the conserva-
tion of probability

∑
i pi(t ) = 1 should be satisfied. To regard MJP

as a CRN, we here do not impose such a conservation in advance
because the conservation of probability over time, i.e.,

∑
i pi(t ) =

const. is automatically satisfied by the property of the incidence
matrix B such that 1T B = 0. Thus, by restricting the dynamics of
the system with the initial condition satisfying

∑
i pi(0) = 1, the

constraint
∑

i pi(t ) = 1 is automatically obtained.
9We abbreviate the thermodynamic force as force hereafter.
10The definition of the force here includes 1/2, which does not

appear in the conventional definition of thermodynamic force. This
is because we adopt the derivation of this form of force from the
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also consistent with macroscopic chemical thermodynamics
with the mass action kinetics [2,21,23]. If j and f are defined
as in Eq. (9), the entropy production rate (EPR) is obtained as

�̇ := 2〈 j, f 〉 = ( j+ − j−)T ln
j+

j−
� 0, (10)

where 〈 j, f 〉 := ∑Ne
e=1 je fe is the usual bilinear pairing on V ×

V∗.
As Eq. (9) implies, the pair of flux and force has a nonlinear

relationship. To show that the relation is a Legendre duality,
we introduce the frenetic activity [40],11

ω := 2
√

j+ ◦ j− ∈ RNe
>0. (11)

Then, we have j = ω
2 ◦ [e f − e− f ]. Thus, if ω is given, the

force f can be converted to the corresponding flux j that
satisfies Eq. (9). This relation between the pair ( j, f ) is a
one-to-one Legendre duality induced by the following strictly
convex smooth functions:

�∗
ω( f ) := ωT [cosh( f ) − 1],

�ω( j) := jT sinh−1

(
j
ω

)
− ωT

⎡
⎣

√
1 +

(
j
ω

)2

− 1

⎤
⎦, (12)

which lead to the Legendre transformations

j = ∂ f �
∗
ω( f ) = ω ◦ sinh( f ), (13)

f = ∂ j�ω( j) = sinh−1

(
j
ω

)
. (14)

Here, cosh( f ) and sinh( j) are the hyperbolic cosine
and sin functions applied in a componentwise manner
as [cosh( f )]e = cosh( fe) = (e fe + e− fe )/2 and [sinh( j)]e =
sinh( je) = (e je − e− je )/2. We can easily verify that Eq. (13)
and Eq. (14) are equivalent to Eq. (9) by direct computation
(see also Appendix B). In the following, we abbreviate ∂ f �

∗
ω

and ∂ j�ω with ∂�∗
ω and ∂�ω because we do not use differ-

entiation of �∗
ω and �ω with respect to other variables in this

work. Moreover, the pair ( j, f ) satisfies the Legendre identity

�∗
ω( f ) + �ω( j) − 〈 j, f 〉 = 0. (15)

The convex functions �∗
ω( f ) and �ω( j) of the form in

Eq. (12) were recently derived via large deviation functions of
the corresponding microscopic models [10,11,33–38], where
they are called dissipation functions. Both dissipation func-
tions are nonnegative and symmetric,

�ω( j) = �ω(− j) � 0, �∗
ω( f ) = �∗

ω(− f ) � 0, (16)

and satisfy min f �∗
ω( f ) = �∗

ω(0) = 0 and min j �ω( j) =
�ω(0) = 0. From these properties, we can verify that f = 0

large deviation theory [38]. We can remove it by including 1/2 in the
definition of the dissipation functions.

11The definition of the activity here includes 2, which does not
appear in the definition of the activity in [40]. This is because we
adopt the derivation of this form of activity from the large deviation
theory [38]. We can remove it by including 2 in the definition of the
dissipation functions.

and j = 0 are Legendre dual: 0 = ∂�∗
ω(0) and 0 = ∂�ω(0),

This is consistent with the thermodynamic requirement that
if the force is zero, the corresponding flux becomes zero, and
vice versa.

In addition, from the Legendre identity [Eq. (15)], the
nonnegativity of the EPR can also be attributed to the non-
negativity of the dissipation functions,

�̇/2 = 〈 j, f 〉 = �∗
ω( f ) + �ω( j) � 0. (17)

It should be noted that the dissipation functions naturally
provide a decomposition of the EPR into nonnegative terms.

In the following, a pair of flux and force with the same
decoration, e.g., ( j, f ), ( j′, f ′), or ( j(x), f (x)), represents a
Legendre dual pair linked by Eq. (13) and Eq. (14). Because
of the one-to-one Legendre duality, the CRE [Eq. (5)] can be
represented as

ẋ = S j(x) = S∂�∗
ω(x)[ f (x)] = −divS∂�∗

ω(x)[ f (x)]. (18)

The equation of this form is a generalized flow driven by the
force f (x) [16,35,38]. The representation of the dynamics in
this form is not specific to CRN or MJP. Thus, it can cover
other systems such as overdamped diffusion by appropriately
defining div, �ω(x), �∗

ω(x), and f (x).
It should be noted that the derivations of Legendre duality

and associated quantities and relations are not dependent on
the specific functional form of the one-way fluxes, i.e., Eq. (8)
or Eq. (3), the former of which is from the kinetic law of mass
action assumption. Thus, the result here might be applied to a
wider class of kinetic laws.

IV. HESSIAN GEOMETRY AND GENERALIZED
ORTHOGONALITIES

Because of the nonlinearity of Legendre duality with the
nonquadratic dissipation functions, we can no longer employ
the inner product structure between flux and force and the
associated formal Riemannian geometric notions (Fig. 2). We
clarify that this problem is resolved by employing Hessian
geometry and its geometric notions.12 The elucidation of the
fundamental roles played by Hessian geometry in nonequi-
librium dynamics of MJP and CRN is one of the main
contributions of this paper.

A. Hessian geometry

Hessian geometry is the geometry induced by convex po-
tential functions �( j) and �∗( f ) to a pair of dual spaces
J and F [17,18].13 In this section, �( j) and �∗( f ) are not
restricted to the specific form of Eq. (12) to obtain general

12It should be noted that, in differential geometry, Hessian geom-
etry is a class of Riemannian geometry with a metric given by a
Hessian matrix, which additionally induces the Legendre dual struc-
ture [17].

13Hessian geometry is generally defined on affine manifolds. How-
ever, because we relate the Hessian geometric structure with inner
product one, we here restrict J and F to be the dual vector spaces
for simplicity of presentation.
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FIG. 2. (a) Linear-algebraic dual spaces (J ,F ) with the inner
product structure defined by a metric via M and M∗ = M−1. Linear
subspaces in J , e.g., blue-solid and red-dashed lines, are mapped to
linear subspaces in F . (b) Linear-algebraic dual spaces (J ,F ) with
the Hessian geometric structure defined by Legendre transformations
∂� and ∂∗�. A linear subspace in J , e.g., red-dashed line, is mapped
to a curved subspace in F whereas a linear subspace in F , e.g., blue-
solid line, is mapped to a curved subspace in J .

results. We consider the case for each fixed ω.14 Thus, the
dependence of �( j) and �∗( f ) on ω is omitted for the sake
of notational simplicity. They are assumed more generally to
be just smooth and strictly convex functions satisfying the
Legendre duality

�∗( f ) = max
j

[〈 j, f 〉 − �( j)], (19)

�( j) = max
f

[〈 j, f 〉 − �∗( f )]. (20)

Instead of the association of j and f by a linear transformation
j = M∗ f on the inner product space [Fig. 2(a)], j and f are
associated by the Legendre transformation [Fig. 2(b)]

j = ∂ f �
∗( f ), f = ∂ j�( j). (21)

Hessian geometry is fundamental for capturing nonlinear
geometry induced by the convex functions. As important
applications, it has played the essential roles in describing
the geometry of statistical models in information geometry
[18,19] and that of equilibrium thermodynamics [2,41,42].

To regard the Hessian geometric structure as a nonlinear
generalization of the inner product structure,15 we addi-
tionally assume that �( j) satisfies the symmetry condition
�( j) = �(− j). From this symmetry condition for �( j),
we also obtain the symmetry of �∗( f ) = �∗(− f ) via the

14This also means fixed x if ω is a function of x. This is similar
to the inner product structure of the tangent and cotangent spaces at
each point x on a Riemannian manifold.

15It should be noted that the Hessian geometric structure is not
necessarily restricted to this interpretation as an extension of the
inner product structure.

Legendre duality. From the symmetries, the minimums of
�( j) and �∗( f ) are attained at 0: arg min j �( j) = 0 and
arg min f �∗( f ) = 0. Because the Legendre transformation
Eq. (21) is independent of a constant in �( j) and �∗( f ),
without losing generality, we can assume that min j �( j) =
�(0) = 0 and min f �∗( f ) = �∗(0) = 0. Thus

�( j) = �(− f ) � 0, �∗( f ) = �∗(− f ) � 0. (22)

In the following, we call �( j) and �∗( f ) with these properties
of dissipation functions.

To demonstrate that the Hessian geometric structure in-
cludes the inner product structure, suppose that �̂( j) is a
quadratic function as

�̂( j) = 1
2 〈 j, M j〉 := 1

2‖ j‖2
M, (23)

where M ∈ RNe×Ne is a positive definite matrix. Then, its
Legendre dual becomes

�̂∗( f ) = 1
2 〈M−1 f , f 〉 = 1

2 〈M∗ f , f 〉 := 1
2‖ f‖2

M∗ , (24)

where M∗ := M−1. Thus, �̂( j) and �̂∗( f ) are reduced to the
squared norms associated with the metric M and M∗. The
Legendre transformations become

j = M f = (M∗)−1 f , f = M∗ j = M−1 j. (25)

These are the linear pairing of j and f via the metric M.
Furthermore, for the paired j and f by M, �̂( j) and �̂∗( f )
are essentially identical to the EPR as

1
2 〈 j, f 〉 = �̂( j) = �̂∗( f ) = �̇/4. (26)

However, this identity for �̂( j) and �̂∗( f ) no longer holds
for a nonquadratic �( j) and �∗( f ) pair. As a result, various
notions of geometry in the inner product space are generalized
in Hessian geometry.

B. Generalized distance and Bregman divergence

Owing to the nonlinearity, the notion of distance is gener-
alized into at least two versions.

The first version is to define a generalized distance via the
dissipation functions as

DH ( j, j′) := �( j − j′), (27)

D∗
H ( f , f ′) := �∗( f − f ′). (28)

From Eq. (22), DH ( j, j′) is nonnegative, symmetric
DH ( j, j′) = DH ( j′, j) and satisfies DH ( j, j′) = 0 if and only
if j = j′. The same is true for D∗

H ( f , f ′). In addition, they are
reduced to the usual distance induced by the squared norm for
quadratic cases, as shown in Eq. (23) and Eq. (24).

The second version is the Bregman divergence, which is
defined as

D[ j‖ j′] := �( j) − �( j′) − 〈 j − j′, ∂ j�( j′)〉
D∗[ f ′‖ f ] := �∗( f ) − �∗( f ′) − 〈∂ f �

∗( f ′), f − f ′〉.
The Bregman divergence D[ j‖ j′] is nonnegative and strictly
convex for j16 and also attains the minimum 0 if and only

16Not necessarily for j ′.
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if j = j′.17 However, it is generally asymmetric D[ j; j′] 
=
D[ j′; j]. If �̂( j) is quadratic [Eq. (23)], D[ j‖ j′] is re-
duced to D[ j‖ j′] = 1

2‖ j − j′‖2
M and D∗[ f‖ f ′] is reduced to

D∗[ f‖ f ′] = 1
2‖ f − f ′‖2

M∗ . It should be noted that for any
flux-force pairs ( j, f ) and ( j′, f ′), the divergences D[ j‖ j′]
and D∗[ f ′‖ f ] are the same,

D[ j‖ j′] = D∗[ f ′‖ f ]. (29)

Thus, D[ j‖ j′] and D∗[ f ′‖ f ] are different representations of
the same quantity in the flux space J and the force space F ,
respectively. As a result, D[ j‖ j′] and D∗[ f ′‖ f ] are also the
same as the following mixed representation:

D[ j; f ′] := �( j) + �∗( f ′) − 〈 j, f ′〉, (30)

i.e., D[ j‖ j′] = D[ j; f ′] = D∗[ f ′‖ f ] (see also Appendix C).

C. Generalized Hilbert orthogonality

The two generalized distances naturally lead to two gener-
alized notions of orthogonality.

For any two force vectors f S, f A ∈ F , the first orthogonal-
ity is defined by

�∗( f S + f A) = �∗( f S − f A). (31)

This definition comes from the fact that, if f S and f A are
orthogonal in an inner product space, then ‖ f S + f A‖M∗ =
‖ f S − f A‖M∗ holds. This orthogonality is called a general-
ized Hilbert orthogonality or simply Hilbert orthogonality in
Ref. [43]. Then an orthogonal decomposition of a given force
f into f = f S + f A is obtained by finding an isodissipation
force f iso satisfying �∗( f ) = �∗( f iso) and by computing f S
and f A as

f S = f + f iso

2
, f A = f − f iso

2
. (32)

Note that f iso = f S − f A and also that we can have differ-
ent decompositions of f by choosing different isodissipation
forces f ′

iso. In addition, from the symmetry of �∗, we
have �∗( f ) = �∗( f iso) = �∗(− f iso) = �∗(− f ). As a con-
sequence of the orthogonality, we obtain

2〈 j, f A〉 = D[ j‖ jiso] � 0, (33)

where jiso is the Legendre transform of f iso (see Appendix D 1
for a proof). Similarly, by considering the symmetry of �∗( f ),
we also have

2〈 j, f S〉 = D[ j‖ − jiso] � 0. (34)

From these relations, we have a decomposition of 〈 j, f 〉 into
two nonnegative terms,

〈 j, f 〉 = 〈 j, f S〉 + 〈 j, f A〉

= D[ j‖ − jiso]

2
+ D[ j‖ jiso]

2
. (35)

Because 〈 j, f 〉 is proportional to the EPR [Eq. (10)], this
decomposition provides a way to obtain nonnegative de-
compositions of the EPR. It should be noted that we have

17It should be noted that the symmetry property of the dissipation
function Eq. (22) is not required to derive these properties.

infinitely many decompositions of this type. In addition, by
choosing jiso = j, the decomposition reduces to the fluctu-
ation relation �̇ = D[ j‖ − j], where we used j = jiso. This
orthogonality has been proposed [34,36–38] to characterize
the quasipotential and the gradient flow aspects of equilibrium
and nonequilibrium systems as we see in the next section. The
isodissipation hypersurface is known as a level surface of the
convex function in Hessian geometry [17] whose Legendre
transform is a centro-affine surface in affine differential ge-
ometry [44]. In both cases, it works as a central geometric
object. Moreover, this centro-affine surface plays an important
role in isobaric thermodynamics, where volume can change
in conjunction with reactions [42]. The Hilbert orthogonality
is also defined in the flux space using �( j) as �( jA + jS ) =
�( jA − jS ) while we do not use it in this paper. It should be
noted that the orthogonality of f A and f S does not mean the
orthogonality of the corresponding jA and jS in general.

D. Information geometric orthogonality

The second orthogonality comes from the information ge-
ometry [17–19]. For three flux vectors j, j′, j′′ ∈ J satisfying
j = j′ + j′′, the Bregman divergence D[ j‖0] can be decom-
posed as

D[ j‖0] = D[ j‖ j′′] + D[ j′′‖0] + 〈 j′, f ′′〉, (36)

where f ′′ is the Legendre dual of j′′. The second orthogonality
of j′ and j′′ is defined by 〈 j′, f ′′〉 = 0. Then the following
generalized Pythagorean theorem (GPT) holds:

D[ j‖0] = D[ j‖ j′′] + D[ j′′‖0]. (37)

For quadratic dissipation functions, the GPT is reduced to the
conventional Pythagorean theorem

‖ j‖2
M = ‖ j′‖2

M + ‖ j′′‖2
M . (38)

Thus, Eq. (37) is a generalization of the usual orthogonality.
We call this orthogonality the information geometric orthog-
onality. Similarly, for f = f † + f ‡, the dual orthogonality
between f †, f ‡ ∈ F is also defined by 〈 j†, f ‡〉 = 0, leading
to the dual version of GPT,

D∗[ f‖0] = D∗[ f‖ f †] + D∗[ f †‖0]. (39)

The Bregman divergence and the information geometric
orthogonality are the central geometric tools in information
geometry for analyzing manifolds of statistical models and for
conducting statistically meaningful projections onto subman-
ifolds [18,19]. In addition, they have recently been employed
in thermodynamics of diffusion processes, MJP, and CRN
[2,41,42,45–47]. However, these works investigate the infor-
mation and Hessian geometric structures of state space, i.e.,
the space of the probability vector p or the concentration vec-
tor x, in which the relevant thermodynamic potential function
such as the Gibbs free energy works as the convex potential
function inducing the Hessian structure. As a result, the Hes-
sian structure of the state space captures the energetic and
equilibrium aspects of the systems. In contrast, the Hessian
structure of the flux-force space in this work captures the
kinetic and nonequilibrium aspects of the systems.

It should be noted that the Hilbert and information ge-
ometric orthogonalities are reduced to usual orthogonality
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Legendre Transform

Legendre Transformation

Activity

StateContinuity equation(d)
(a)

(b)

(c)

State to force relation

0 0

ecaps ecroFecaps xulF

FIG. 3. Schematic representation of the flux-force relationship
for CRN with mass action kinetics and induced CRE [Eq. (18)].
Depending on the current state x(t ), (a), the force f 0(xt ) is induced
(b). The force is mapped to the corresponding flux j0(xt ) by the
Legendre transformation ∂�∗

ω0 (xt )[ f 0(xt )] (c). The flux induces the
change in xt via the continuity equation (d).

when the dissipation functions are quadratic (see also Ap-
pendix C 1).

V. CHEMICAL REACTION DYNAMICS AND ENTROPY
PRODUCTION DECOMPOSITIONS

In this section, we demonstrate how the two generalizations
of orthogonality enable us to extend the different entropy pro-
duction decompositions to CRN (and MJP). From the explicit
functional forms of the one-way fluxes under mass action
kinetics [Eq. (8)], the total flux, force, and activity defined in
Eq. (9) and Eq. (11) are expressed as

j0(x; k±) = (k+ ◦ BT
+ − k− ◦ BT

−)x�T
,

f 0(x; k±) = 1

2

[
ln

k+

k− − ST ln x
]
, (40)

ω0(x; k±) = 2
√

k+ ◦ k− ◦ x[�(B++B− )]T /2.

We use the subscript (.)0 to designate the flux, force, and
activity given by these particular forms. With these specific
forms of force and activity, the CRN dynamics is described as
a generalized flow [Eq. (18) and Fig. 3].

We further transform the kinetic parameters k± into force
part (K) and activity part (κ) as

k+ = κ ◦ K1/2, k− = κ ◦ K−1/2, (41)

where κ :=
√

k+ ◦ k− and K := k+/k−. Thus, (κ, K ) has the
same information as k±. Moreover, we can verify that the
force and activity are dependent only on K and κ, respec-
tively, i.e., f 0(x; k±) = f 0(x; K ) and ω0(x; k±) = ω0(x; κ).
This clear and physically relevant separation of parameters is
a good property of the nonquadratic dissipation function.

A. Equilibrium dynamics

First, we consider the case in which the dynamics is equi-
librium. For CRN with mass action kinetics, the equilibrium
states are defined as the set Meq(K, κ) satisfying the detailed

balance condition (DBC)

Meq(K, κ) := {x| j0(x; K, κ) = 0}. (42)

For a parameter set (K, κ) that admits the existence of equi-
librium states, i.e., Meq(K, κ) 
= ∅, the CRN becomes an
equilibrium CRN. The condition Meq(K, κ) 
= ∅ is satisfied
if and only if the parameter K satisfies the Wegscheider equi-
librium (EQ) condition [2,23,41],

ln K ∈ ImST , (43)

where ImST means the image of matrix ST . We denote such
K as Keq. Note that the EQ condition is independent of the
activity parameter κ. Then, for each initial condition x0 ∈ X , a
unique equilibrium state xeq exists, which is determined by the
intersection of Meq(Keq ) and the stoichiometric compatibility
class [41,48]

P (x0) := {x|(x − x0) ∈ ImS} (44)

as xeq = Meq(Keq ) ∩ P (x0) 18 [41,48]. Moreover, from the
DBC, we have ln Keq = ST ln xeq. Then, the force f 0(x) of
the equilibrium dynamics is represented as

f 0(x) = − 1
2 ST ln

(
x

xeq

)
= − 1

2 ST ∂xϕeq(x), (45)

where ϕeq(x) := DKL[x‖xeq] := xT ln x
xeq

− 1T (x − xeq ) is the
Gibbs free energy of the equilibrium CRN. This repre-
sentation indicates that f 0(x) ∈ ImST for the equilibrium
dynamics. The matrix ST can be considered as the discrete
version of the gradient gradS := −ST for the chemical hy-
pergraph because −ST is the adjoint operator of divS = −S.
Thus, the equilibrium force is a gradient of ϕeq(x): f 0(x) =
1
2 gradS[∂xϕeq(x)]. Additionally, the Wegscheider condition
[Eq. (43)] is interpreted as ln Keq ∈ Im[gradS]. Then the dy-
namics [Eq. (18)] under the EQ parameter condition becomes
a generalized gradient flow (GF) of ϕeq(x) [10,27],

ẋ = S j0(x) = S∂�∗
x

[
−1

2
ST ∂xϕeq(x)

]
(46)

= −divS ∂�∗
x

[
1

2
gradS [∂xϕeq(x)]

]
, (47)

where �∗
x := �∗

ω0(x). Along xt , ϕeq(xt ) is decreasing because
dϕeq(xt )/dt is always nonpositive as

−dϕeq(xt )

dt
= 〈ẋ,−∂xϕeq(xt )〉 = 〈S j0(xt ),−∂xϕeq(xt )〉
= 〈 j0(xt ),−ST ∂xϕeq(xt )〉 = 2〈 j0(xt ), f 0(xt )〉
= 2[�xt ( j0(xt )) + �∗

xt
( f 0(xt ))] = �̇t � 0,

(48)

where we use Eq. (15) and Eq. (10). By integration, we have
the relation between the change of free energy and the entropy
production,

ϕeq(x0) − ϕeq(xt ) =
∫ t

t ′=0
�̇t ′dt ′. (49)

18The uniqueness of the intersection is a consequence of Hessian
geometric structure on the concentration-chemical potential space.
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B. Complex balanced dynamics, Hilbert orthogonality, and
Hatano-Sasa decomposition

Next, we consider the nonequilibrium complex balanced
(CB) steady state, and the EPR decomposition induced by
the Hilbert orthogonality. The result here is a reinterpretation
of the result in Refs. [35,36,38] from the viewpoint of Hes-
sian geometry. Nevertheless, we include it here because the
decomposition is contrasted with the information geometric
decomposition in the next subsection.

The CB states of CRN are defined as the set satisfying

Mcb(K, κ) := {x|B j0(x; K, κ) = 0}. (50)

Similarly to the equilibrium case, a parameter set (Kcb, κcb)
induces CB dynamics if the CB condition Mcb(Kcb, κcb) 
=
∅ holds.19 Then, for each initial condition x0, the CB
steady state xcb is uniquely determined by the intersection
of Mcb(Kcb, κcb) and the stoichiometric compatibility class
P (x0) as xcb = Mcb(Kcb, κcb) ∩ P (x0) [41,48].

The CB state inherits important properties of the equi-
librium state such as the uniqueness, global stability, and
the gradient-flow-like aspect [22,23,41,48]. By definition, an
EQ state is a CB state, but not vice versa. Additionally, the
steady states of MJP always satisfy the CB condition because
B j0(x; K, κ) = 0 is nothing but the steady state condition
for MJP [Eq. (2)]. Thus, MJP are unconditionally complex
balanced. In contrast, CRN are not always complex balanced
depending on the parameter value.

Using xcb, the force f 0(x) is represented as

f 0(x) = − 1
2 ST ∂xϕcb(x) + 1

2 ln
Kcb

K̃eq
, (51)

where K̃eq := ST ln xcb and ϕcb(x) := DKL[x‖xcb]. Let
f S (x) := − 1

2 ST ∂xϕcb(x) and f A := 1
2 ln Kcb

K̃eq
. Then, for all

x ∈ X , the generalized Hilbert orthogonality holds (Fig. 4):

�∗
x ( f S (x) + f A) = �∗

x ( f S (x) − f A), (52)

because of the CB condition B j0(xcb) = 0 [34,36–38] (see
Appendix D 2 for a proof). Thus, Eq. (35) admits a nonnega-
tive decomposition of the EPR,

�̇(x) = �̇GF
ex (x) + �̇GF

hk (x), (53)

where �̇GF
ex (x) := 2〈 j0(x), f S (x)〉 and �̇GF

hk (x) :=
2〈 j0(x), f A〉. Owing to this nonnegative decomposition,
ϕcb(x) works as a Lyapunov function (quasipotential),

−dϕcb(xt )

dt
= �̇GF

ex (xt ) = D[ j0(xt )‖ − f iso(xt )] � 0,

and �̇GF
ex (x) behaves like an excess EPR, i.e.,

limt→∞ �̇GF
ex (xt ) = 0. Thus, ϕcb(x) as a Lyapunov function

guarantees the stability of the CB state xcb and the
gradient-flow-like property of the CB dynamics.

This decomposition is equivalent to those proposed for
CRN in [22,23] as a generalization of the Hatano-Sasa decom-
position [49]. Therefore, this result is just a reinterpretation

19In contrast to the equilibrium case, the CB condition
Mcb(K, κ) 
= ∅ depends on both K and κ.

Legendre Transform0 0

ecaps ecroFecaps xulF

NEF
EF

FIG. 4. Schematic illustration of the Hilbert orthogonality be-
tween f S (xt ) (blue arrows) and f A(magenta arrows). The green-
solid curve represents the isodissipation hypersurface: { f |�∗

xt
( f ) =

�∗
xt

( f 0(xt )) = const.}. The black circle, red square, and green star
in F are f 0(xt ), f S (xt ), and f iso(xt ), respectively. The black circle,
red square, and green star in J are their Legendre transform, i.e.,
j0(xt ), jS (xt ), and jiso(xt ), respectively. The light blue lines in F
are the NEF subspaces, P f ( f A)(solid line) and P f (− f A) (dashed
line), and the EF subspace P f

eq (dotted line). In J , the corresponding
NEF manifolds, M f

xt
( f A) (the light-solid blue curve) and M f

xt
(− f A)

(the light-dashed-blue curve), and the EF manifold M f
xt ,eq (the light-

dotted-blue curve) are also depicted.

of the previous ones. However, owing to the geometric per-
spective endowed by Hessian geometry, the nonnegativity of
�̇GF

ex (x) and �̇GF
hk (x) becomes transparent, the proof of which

in previous papers required more technical and less transpar-
ent computations [22,23].

C. Information geometric orthogonality and
Maes-Netočnỳ decomposition

While the gradient flow aspect and associated EPR de-
composition by the quasipotential have been investigated in
CRN theory, large deviation theory, and applied mathemat-
ics [22,23,36,48], the decomposition may not capture other
important thermodynamic aspects such as minimum dissipa-
tion or minimum entropy production principles. In addition,
the Hilbert orthogonality for ϕcb(x) [Eq. (52)] holds only
when the CB condition is satisfied. In CRN, we can have
noncomplex-balanced steady states depending on the param-
eter values.

As another type of EPR decomposition, we have the Maes-
Netočnỳ decomposition, which generalizes the Komatsu-
Nakagawa-Sasa-Tasaki approach [50,51]. Moreover, its geo-
metric interpretation for overdamped diffusion processes was
recently provided in terms of the formal Riemannian geom-
etry of the flux-force space [28]. Its extension to MJP and
CRN has yet to be achieved because of their nonquadratic
dissipation functions. We show that the information geometric
orthogonality is central to this extension.

In the Maes-Netočnỳ decomposition, for a given x = xt ,20

the nonequilibrium flux j0(x) is decomposed into the quasis-
teady flux jst (x) and the remaining part as j0(x) = jst (x) +

20xt is not necessarily a steady state here.
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( j0(x) − jst (x)). The quasisteady flux jst (x) is the flux that
makes a given state x steady obtained by modulating the con-
served force, i.e., being generated by the gradient of potential
force in the case of overdamped diffusion. This means that
jst (x) ∈ Ker[div] and f 0(x) − f st (x) ∈ Im[grad] hold where
Ker[div] and Im[grad] formally mean the kernel and image
of the divergence and gradient operators. Furthermore, jst (x)
is also characterized as the minimum EPR flux under the con-
straint of f 0(x) − f st (x) ∈ Im[grad] [50]. From the viewpoint
of vector calculus, the decomposition is a special case of the
Helmholtz-Hodge decomposition [52]. With the Riemannian
inner product structure between J and F for overdamped dif-
fusion, we can also regard jst (x) as the orthogonal projection
of j0(x) onto Ker[div] along Im[grad]. Because the Maes-
Netočnỳ decomposition is tightly linked to the orthogonality
in the inner product space, it is not trivial how to extend the
decomposition to other systems such as CRN and MJP, if they
are characterized by nonquadratic dissipation functions. We
show how information-geometric orthogonality can resolve
this problem.

First, we define a linear affine subspace Pv ( j) as

Pv ( j) = { j′| j′ − j ∈ KerS} ⊂ J . (54)

Because j′ ∈ Pv ( j) satisfies S j = S j′, Pv ( j) is the set of the
fluxes that induces the same instantaneous velocity ẋ = S j as
j does. Thus, we call Pv ( j) an isovelocity subspace in J .
Because ẋ = 0 for the steady state flux, we also denote Pv

st :=
Pv (0) as the steady state (zero-velocity) subspace.

As the complementary subspace of Pv ( j), we define a
linear affine subspace P f ( f ) ⊂ F as

P f ( f ) := { f ′| f ′ − f ∈ ImST }. (55)

Because ST is the gradient of a CRN, i.e., grad = −ST , P f ( f )
is the subspace obtained by shifting Im[grad] = Im[ST ] by
f . We call P f ( f ) an nonequilibrium force (NEF) subspace
in F if f /∈ ImST and the equilibrium force (EF) subspace if
f ∈ ImST because, if the equilibrium condition [Eq. (42)] is
satisfied, f 0(x) is always in Im[ST ] as in Eq. (45). We denote
the EF subspace by P f

eq := P f (0).
To obtain the generalized version of jst (x), we transform

P f ( f ) and P f
eq to J via the Legendre transformation

M f
x ( f ) := ∂�∗

x [P f ( f )] ⊂ J , (56)

M f
x,eq := ∂�∗

x [P f
eq] ⊂ J . (57)

It should be noted that M f
x ( f ) depends on the current state

x of the system even though P f ( f ) does not because the
Legendre transformation is dependent on x via the activity
ω0(x). From the definition, M f

x ( f ) and M f
x,eq are the set of

nonequilibrium and equilibrium fluxes obtained by modulat-
ing the gradient force.

Then the generalized quasisteady flux jst (x) is obtained by
the intersection of Pv

st and M f
x ( f 0(x)),

jst (x) := Pv
st ∩ M f

x ( f 0(x)). (58)

For the case of overdamped diffusion processes, the Legen-
dre transformation of the corresponding quadratic dissipation
function is linear and, therefore, M f

x ( f 0(x)) becomes a flat

Legendre Transform

Iso-velocity

NEF
NEF

EF
EF

Zero-velocity

Zero-velocity

0 0

ecaps ecroFecaps xulF

0

Iso-velocity

FIG. 5. Schematic illustration of the information geometric or-
thogonalities. (Left) The orthogonality between jst (xt ) and j0(xt ) −
jst (xt ) (blue arrows) and the dual orthogonality between jeq(xt )
and j0(xt ) − jeq(xt ) (red arrows) in J . The blue planes are the
isovelocity subspace Pv ( j0(xt )) (the upper plane) and the zero-
velocity subspace Pv

st (the lower plane). The grey curves are the
NEF manifold M f

x ( f 0(xt )) and the EF manifold M f
x,eq. (Right) The

same orthogonalities shown in F space. The orthogonality between
f st (xt ) and f 0(xt ) − f st (xt ) (blue arrows) and the dual orthogonality
between f eq(xt ) and f 0(xt ) − f eq(xt ) (red arrows) in F . The blue
surfaces are the isovelocity manifold Mv

xt
( j0(xt )) (the upper surface)

and the zero-velocity manifold Mv
xt ,st

(the lower surface). The grey
lines are the NEF subspaces P f ( f 0(xt )) and the EF subspace P f

x,eq.

subspace. Then, the existence and uniqueness of jst (x) follow
from the linear algebra. However, for the generalized jst (x),
the existence and uniqueness of jst (x) are not guaranteed a
priori, because M f

x ( f 0(x)) is a curved manifold as shown in
Fig. 5. Nonetheless, jst (x) in Eq. (58) exists uniquely. More
generally, for any j′ and f ′′, the following intersection is
unique and transversal (see Appendix D 3 for proof):

jint ( j′, f ′′) = Pv ( j′) ∩ M f
x ( f ′′). (59)

This result generalizes the uniqueness of the intersection of
complementary subspaces under an inner product structure.
This is one of the notable properties of Hessian geometry.
In information geometry and Hessian geometry, Pv ( j) and
M f

x ( f ) are called dually flat subspaces [17–19].
By virtue of the uniqueness, we obtain a unique decompo-

sition of the flux j0(x),

j0(x) = jst (x) + ( j0(x) − jst (x)). (60)

Because jst (x) ∈ KerS and jst (x) ∈ M f
x ( f 0(x)) where

M f
x ( f 0(x)) = ∂ j�

∗
x [ f 0(x) + Im[ST ]], jst (x) is the steady

flux that is obtained by modulating the nonequilibrium force
f 0(x) by adding the gradient equilibrium force. We also have
f 0(x) − f st (x) ∈ ImST . Thus, Eq. (60) is a generalization of
the Maes-Netočnỳ decomposition and also of the Helmholtz
decomposition. Moreover, from 〈 jst (x), f 0(x) − f st (x)〉 = 0,
we have the generalized Pythagorean relation

D∗
x[ f 0(x)‖0] = D∗

x[ f 0(x)‖ f st (x)] + D∗
x[ f st (x)‖0], (61)

which is further reduced to a decomposition of the dual dissi-
pation function

�∗
x ( f 0(x)) = D∗

x[ f 0(x)‖ f st (x)] + �∗
x ( f st (x)). (62)
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Then, f st is characterized variationally as (see Appendix D 4)

f st (x) = arg min
f∈P f ( f 0(x))

�∗
x ( f ). (63)

This variational formula indicates that f st (x) is the minimum
dissipation force that can be obtained by tilting the nonequi-
librium force f 0(x) with the equilibrium gradient force. Thus,
jst (x) is the minimum dissipation (MD) steady state flux.
For quadratic cases where the equivalence of the dissipation
functions and the EPR holds [Eq. (26)], the result formally
reduces to the minimum entropy production principle of Maes
and Netočný.

However, for nonquadratic cases, Eq. (62) alone does not
provide a relevant EPR decomposition because EPR is not
determined only by �∗

x ( f 0(x)). To resolve the problem, we
consider the dual decomposition of j0(x) as shown in Fig. 5,

j0(x) = jeq(x) + ( j0(x) − jeq(x)), (64)

where we define jeq(x) as

jeq(x) := Pv ( j0(x)) ∩ M f
x,eq. (65)

Because jeq(x) ∈ Pv ( j0(x)), the flux jeq(x) induces the same
instantaneous velocity ẋ as j0(x) does. Moreover, because
jeq(x) ∈ M f

x,eq, it is the flux induced by an equilibrium force,
i.e., a pure gradient force. Thus, jeq(x) is the equilibrium flux
that induces the same dynamics as j0(x). It should be noted
that j0(x) is generally induced by a nonequilibrium force. In
addition, we have f eq(x) ∈ ImST and j(x) − jeq(x) ∈ KerS

from jeq(x) ∈ M f
x,eq and jeq(x) ∈ Pv ( j0(x)), respectively.

Thus, Eq. (64) is another generalization of Helmholtz-Hodge
decomposition of the flux j0(x). Moreover, owing to 〈 j0(x) −
jeq(x), f eq(x)〉 = 0, we have the Pythagorean relation

Dx[ j0(x)‖0] = Dx[ j0(x)‖ jeq(x)] + Dx[ jeq(x)‖0], (66)

which is reduced to a decomposition of the primal dissipation
function

�x( j0(x)) = Dx[ j0(x)‖ jeq(x)] + �x( jeq(x)). (67)

From this, jeq can be characterized variationally (see Ap-
pendix D 4 for proof)

jeq(x) = arg min
j∈Pv ( j0(x))

�x( j). (68)

This variational formula means that, among all fluxes that
induce the same velocity as j0(x), the equilibrium flux jeq(x)
is the flux that minimizes the primal dissipation function.
Thus, jeq(x) is the MD flux.

By combining Eq. (67) and Eq. (62), we have an EPR
decomposition (see Appendix D 5 for proof)

�̇(x) = �̇MD
hk (x) + �̇MD

ex (x) (69)

where we define housekeeping and excess EPR as

�̇MD
hk (x) := 2[Dx[ j0(x)‖ jeq(x)] + �∗

x ( f st (x))] � 0,

�̇MD
ex (x) := 2[D∗

x[ f 0(x)‖ f st (x)] + �x( jeq(x))] � 0.

TABLE I. The parameter values used for simulations.

Type k+
1 k−

1 k+
2 k−

2 k+
3 k−

3

Equilibrium 4 1 3√
2

3
√

2 2
√

2 4
√

2

Complex balanced 1
2 2 4 47

4

√
2 15

2 + 2
√

2

Noncomplex balanced 1
2 2 1

17
85
8

273
68

137
68

If the state xt converges to a steady state xst,21 then

lim
t→∞ �̇hk(xt ) = �̇hk(xst ) = 2〈 j0(xst ), f 0(xst )〉, (70)

lim
t→∞ �̇ex(xt ) = �̇ex(xst ) = 0, (71)

where we used j0(xst ) = jst (xst ) and jeq(xst ) = 0. Thus,
this EPR decomposition geometrically generalizes the Maes-
Netočný one to MJP and CRN and clarifies its dualistic
minimum dissipation principles. If the state xt converges to
a CB state xcb, then limt→∞ �̇hk(xt ) = 2〈 jA, f A〉 holds.

VI. NUMERICAL DEMONSTRATION

We numerically demonstrate the two decompositions in
Eq. (53) and Eq. (69) and the geometric relations among
j0(x), jiso(x), jS (x), and jA and those among j0(x), jst (x),
and jeq(x) by using the CRN in Fig. 1(a) [53,54].

The CRN depicted in Fig. 1(a) is defined by the following
set of chemical reaction equations:

2X1

k+
1−⇀↽−

k−
1

2X2, 2X2

k+
2−⇀↽−

k−
2

X1 + X2, X1 + X2

k+
3−⇀↽−

k−
3

2X1.

(72)

The corresponding structural quantities are

S =
(−2 +1 +1

+2 −1 −1

)
, B =

⎛
⎝+1 0 −1

−1 +1 0
0 −1 +1

⎞
⎠, (73)

� =
(

2 0 1
0 2 1

)
. (74)

One can show that this simple nonlinear CRN has any of
the equilibrium, CB, and non-CB steady states depending on
the kinetic parameter values [53,54]. In addition, the flux and
force spaces are three dimensional, and, thereby, the relevant
geometric objects and quantities can be visualized compu-
tationally. We used the parameter values in Table I for the
simulations in Fig. 6 and in Fig. 7. Because the state space is
two-dimensional and the stoichiometric compatibility class is
one-dimensional, i.e., P (x0) := {x|x − x0 ∈ Im[S]} = {x|x =
x0 + ξ (1,−1)T , ξ ∈ R}, the trajectory is restricted in the one-
dimensional P (x0) independently of the parameter values. We
also selected the parameter values in Table I so that all the sets
of equilibrium, CB and non-CB steady states become identical
to the set, {x|x2 = 2x1}. Thus, the topological properties of the
state space are the same for the three sets of parameters.

Figure 6 shows the values of the EPR and the associated
dissipation functions in the state space. For the equilibrium

21xst is not necessarily a CB state but can be a general steady state.
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FIG. 6. Heatmap plots of EPR �̇ (left panels) and the two dis-
sipation functions, �x( j0(x)) (center panels) and �∗

x ( f 0(x)) (right
panels) as functions of x for the equilibrium parameter set (a), the
complex balanced parameter set (b), and the noncomplex balanced
parameter set (c) shown in Table I. In each panel, gray and black
points are the initial and the steady states, respectively. The white
arrow is the trajectory of xt . The black line in each panel is the set of
equilibrium states (a), complex-balanced states (b), and noncomplex
balanced steady states (c), respectively.

parameter [Fig. 6(a)], the EPR and dissipation functions attain
their global minimum value of zero on the equilibrium states
(black line). For the CB parameter [Fig. 6(b)], the global min-
imum is not necessarily attained, which results in the nonzero
EPR at the CB steady state xcb [Fig. 7(a)]. For the non-CB pa-
rameter [Fig. 6(c)], the landscapes of the EPR and dissipation
functions become more complicated, and their values along
the trajectory xt are not monotonous as shown in Fig. 7(c).

For the CB and non-CB cases, the two decompositions,
Eq. (53) and Eq. (69), are computed [Figs. 7(b) and 7(d)].
For the CB case, we verify that both decompositions provide
the expected behaviors: both housekeeping and excess com-
ponents stay nonnegative; the excess ones converge to 0; the
housekeeping ones do to a finite nonnegative value [Fig. 7(b)].

For the non-CB case, the expected behaviors are also
produced [Fig. 7(d)] for the information-geometric de-
composition, Eq. (69) (a generalization of Maes-Netočný
decomposition). On the contrary, the housekeeping compo-
nent of the Hilbert decomposition, Eq. (53), becomes negative
within a certain time window because the Hilbert orthogonal-
ity, Eq. (52), does not hold in this case. It should be noted
that this result does not necessarily mean that the Hilbert
decomposition is not applicable to the non-CB case. The re-
sult only indicates that the force decomposition by f S (x) :=
− 1

2 ST ∂xϕcb(x) and f A := 1
2 ln Kcb

K̃eq
with the specific form of

ϕcb(x) := DKL[x‖xcb] no longer satisfies the Hilbert orthogo-
nality. We may be able to recover the orthogonality and the
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FIG. 7. The EPR and its decompositions along the trajectory xt

for complex balanced [(a),(b)] and noncomplex balanced [(c),(d)]
parameter sets. The decomposition of EPR into two dissipation
functions [(a),(c)]. The decompositions of EPR by Hilbert (�̇GF

ex (x),
�̇GF

hk (x)) and information geometric (�̇MD
ex (x), �̇MD

hk (x)) orthogonali-
ties [(b),(d)].

associated decomposition [38] by choosing other functional
form of ϕcb(x). Finding such ϕcb(x) is linked to the computa-
tion of quasipotential, but this problem is still challenging for
generic non-CB cases.

NEF

NEF
EF

Zero-velocity Zero-velocity

ecaps ecroFecaps xulF

FIG. 8. Computational visualization of the Hilbert orthogonal-
ity between f S (xt ) and f A for the CRN in Fig 1(a). The green
surface in F represents the isodissipation hypersurface: �∗

xt
( f ) =

�∗
xt

( f 0(xt )) = const.. The black circle with yellow border, red
square with black border, green star, and magenta circle with yellow
border in F are respectively f 0(xt ), f S (xt ), f iso(xt ), and f A evaluated
at xt = (5/2, 1/2)T . The black circle, red square, green star, and
magenta circle with border in J are their Legendre transform, i.e.,
j0(xt ), jS (xt ), jiso(xt ), and jA(xt ), respectively. The black, red, and
green circles without border in F are the trajectories of { f 0(xt ′ )},
{ f S (xt ′ )}, and { f iso(xt ′ )}. The black, red, green, and magenta cir-
cles without border in J are the trajectories of { j0(xt ′ )}, { jS (xt ′ )},
{ jiso(xt ′ )}, and { jA(xt ′ )}, respectively. The light blue lines in F are
the NEF subspaces, P f ( f A)(solid line) and P f (− f A) (dashed line),
and the EF subspace P f

eq (dotted line). In J , the corresponding NEF
manifolds, M f

x ( f A) (the light blue curve with dots), is also depicted.
The blue plane in J is the zero-velocity subspace Pv

st , and the blue
surface in F is its Legendre transformation: Mv

xt ,st
.
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Iso-velocity

NEF

NEF

EF

Zero-velocity
Zero-velocity

ecaps ecroFecaps xulF

Iso-velocity

FIG. 9. Computational visualization of the information geomet-
ric orthogonality for the CRN in Fig 1(a). (Left) The orthogonality
between jst (xt ) (cyan-dashed arrow) and j0(xt ) − jst (xt ) (cyan-solid
arrow) and the dual orthogonality between jeq(xt ) and j0(xt ) −
jeq(xt ) (purple-solid arrow) in J evaluated at xt = (5/2, 1/2)T .
The blue planes are the isovelocity subspace Pv ( j0(xt )) (the up-
per plane) and the zero-velocity subspace Pv

st (the lower plane).
The grey curve with dots is the NEF manifold M f

x ( f 0(xt )). Black,
red, and blue circles are the trajectories of { j0(xt ′ )}, { jeq(xt ′ )}, and
{ jst (xt ′ )}, respectively. (Right) The same orthogonalities shown in
F space. The orthogonality between f st (xt ) (cyan-curved arrow)
and f 0(xt ) − f st (xt ) (cyan-solid arrow) and the dual orthogonality
between f eq(xt ) (purple-dashed arrow) and f 0(xt ) − f eq(xt ) (purple-
solid arrow) in F . Black, red circles are the trajectories of { f 0(xt ′ )},
{ f eq(xt ′ )}, respectively. The blue surfaces are the isovelocity mani-
fold Mv

xt
( j0(xt )) (the upper surface) and the zero-velocity manifold

Mv
xt ,st

(the lower surface). The grey lines are the NEF subspaces
P f ( f 0(xt )) and the EF subspace P f

x,eq.

Finally, we computationally visualized the various geomet-
ric objects introduced in Figs. 8 and 9 for the CB parameter
set in Table I.

First, we show the behaviors of the forces, f 0(xt ),
f iso(xt ), f S (xt ), and f A, which satisfy the Hilbert orthogo-
nality, and the corresponding fluxes. In the force space F
(the right panel of Fig. 8), we observe that the trajecto-
ries of f 0(xt ), f iso(xt ), and f S (xt ) are actually restricted
on one-dimensional subspaces (lines), P f ( f A), P f (− f A),
and P f

eq = P f (0), respectively. f 0(xt ) and f iso(xt ) are also
on the isodissipation hypersurface (the green surface) sat-
isfying �∗

xt
( f 0(xt )) = �∗

xt
( f iso(xt )). In the flux space J

(the left panel of Fig. 8), P f ( f A) is transformed to the
one-dimensional curve, M f

xt ( f A). The trajectories of j0(xt ),
jiso(xt ), and jS (xt ) are also curved in J . All the trajectories
converge onto the zero-velocity subspace Pv

st.
Next, we verify the information-geometric orthogonality in

Fig. 9. In the flux space J (the left panel in Fig. 9), we observe
that j0(xt ) and the corresponding equilibrium flux jeq(xt ) are
on the isovelocity subspace Pv ( j0(xt )). The steady state flux
jst (xt ) are on the intersection of the zero-velocity subspace
Pv

st and the NEF manifold M f
xt ( f 0(xt )). By mapping these

objects into F by the Legendre transform, we observe that
f 0(xt ) is on the intersection of the NEF subspace P f ( f 0(xt ))
and the isovelocity manifold Mv

xt
( j0(xt )). Similarly, f eq(xt )

is on the intersection of the EF subspace P f
eq and the

isovelocity manifold Mv
xt

( j0(xt )). By the Legendre trans-
formation, the isovelocity manifold Mv

xt
( j0(xt )), and the

zero-velocity manifold Mv
xt ,st are curved in F . These graph-

ical representations demonstrate how the nonlinear Legendre
transform relates the subspaces and manifolds in J and F and
also how the generalized notions of orthogonality of Hessian
geometry are realized in these spaces.

VII. SUMMARY AND DISCUSSION

We have clarified that Hessian geometry is a natural geo-
metric structure of nonequilibrium and nonlinear CRN as well
as MJP. More generally, it can capture the geometry induced
by nonquadratic convex dissipation functions. By employ-
ing generalized notions of orthogonality, various aspects of
nonequilibrium dynamics are dissected as decompositions of
EPR, which generalize the well-established ones [28,50,51] to
CRN and MJP.

A. Thermodynamic uncertainty relation and Fisher information

The nonquadratic property of the dissipation functions of
CRN and MJP also appears implicitly in different problems
of thermodynamics. One such example is the thermodynamic
uncertainty relation (TUR) and its extension to MJP. TUR is a
relation that bounds the fluctuation of a generalized current in
a nonequilibrium steady state by the entropy production [55],

E[J ss
d ]2

Var[J ss
d ]

� 1

2

∫ τ

0
�̇(t ′)dt ′ (75)

where J ss
d is a time-integrated generalized current at the

steady state, and E[J ss
d ] and Var[J ss

d ] are the mean and
variance of J ss

d . Since the proposal of the TUR conjecture
and its first proof [56,57], the TUR has been extended to
various models and situations, including MJP [55] and CRN
[58]. However, even though Eq. (75) is tight for overdamped
diffusion processes, it is not tight for MJP. Instead, for MJP,
the fluctuation of the current is bounded tightly by the pseu-
doentropy production rate (pEPR) [58],

E[J ss
d ]2

Var[J ss
d ]

� 1

2

∫ τ

0
�̇(t ′)dt ′ (76)

where the pEPR is defined as

�̇(t ) := 2
∑

e

( j+e (xt ) − j−e (xt ))2

j+e (xt ) + j+e (xt )
. (77)

and �̇(t ) � �̇(t ) holds [55]. We here mention that this gap
between the EPR and pEPR is linked to the Fisher information
of the dissipation function. The Fisher information matrix (or
metric) for a strictly convex function φ∗( f ) is defined by its
Hessian as

G∗
e,e′ ( f ) := ∂2φ∗( f )

∂ fe∂ fe′
. (78)

For φ∗( f ) = �∗
ω( f ) defined by Eq. (12), we have

G∗(ω, f ) = diag[ω ◦ cosh( f )] = diag[ j+ + j−], (79)

where we used Eq. (9) and Eq. (11). The diagonal part,
j+ + j−, is often called dynamical activity. Similarly, for
φ( j) = �ω( j), we have the Fisher information matrix

G(ω, j) = G∗(ω, f )−1 = diag

[
1

j+ + j−

]
. (80)
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Then, the pEPR is represented as

�̇( j) = 2〈 j, G(ω, j) j〉 = 2〈 j, f p〉, (81)

which allows us to regard �̇(t ) as an approximation of the
EPR by replacing the actual force f associated with j with
a pseudoforce f p := G(ω, j) j. If the dissipation function is
quadratic, the actual force f and the pseudoforce f p coincide.
Thus, the nontightness of the TUR for MJP is a manifestation
of the nonquadratic nature of the dissipation functions.

B. Network thermodynamics

The information geometric decomposition that we in-
troduced is also related to the network thermodynamics
[20,21,59–61]. The network thermodynamics is an attempt to
extend the methodology of network theory developed mainly
for linear electric circuits to other physical systems [62,63].
While the linear network theory successfully works for linear
electric circuits, which have a linear force and flux relation
(Ohm’s law) and resulting quadratic dissipation functions, its
application to MJP and CRN has encountered difficulties due
to the nonlinear relation between force and flux, especially
when we evaluate the EPR decomposition for a transient
and far from equilibrium state. The Hessian geometric struc-
ture and the generalized decompositions in this work are
extensions of those investigated in network thermodynamics.
Specifically, the information geometric decomposition is a
nonlinear generalization of the cycle-cocycle decomposition
[64]. However, network thermodynamics and network theory
accommodate a wide variety of methods that are not exploited
in this work [64,65]. For example, the algebraic structure
underlying the network is explored using the integral basis
defined by cycles, cords, and spanning trees in the network
[21,66]. As an application, the steady EPR is related to cycle
fluxes and affinities in the network. We may incorporate and
exploit the algebraic structure of MJP and CRN more explic-
itly into our framework.

C. Relevance of nonquadratic dissipation functions

As mentioned in Introduction, CRN and MJP can also be
characterized by other quadratic dissipation functions, i.e.,
the force-flux relation [Eq. (9)] for CRN and MJP can be
obtained by a quadratic function. Specifically, we can choose
�̂∗

x ( f ) := 1
2 〈M∗

x f , f 〉 where M∗
x := diag[ j+(x)− j−(x)

ln j+(x)−ln j−(x) ]. This
type of dissipation function was proposed in [67–70] ahead
of the nonquadratic ones we used. In addition, this quadratic
dissipation function as well as the associated formal Rieman-
nian geometry have been used in stochastic thermodynamics
[71–73]. From the different choice of the dissipation function,
different results, e.g., different EPR decompositions, are de-
rived mathematically. It would be the next primary mission
to resolve the issue about how to choose physically relevant
dissipation functions.

D. Duality and variational characterizations in thermodynamics

The notion of duality is the core of thermodynamics. In
equilibrium thermodynamics, the duality of extensive and
intensive variables induced by thermodynamic potential func-

tions characterizes the energetic aspect of physical systems.
The roles and differences of dual pairs of thermodynamic
potential functions are well recognized. In addition, Hessian
geometry is central to comprehend the geometric properties
of equilibrium thermodynamics [2,41]. For the duality be-
tween the force and flux explored in this paper, the dual
dissipation functions have been recognized for a while in
macroscopic fluctuation theory [7] and metric gradient flow
theory [16]. Nevertheless, nonquadratic dissipation functions
have been investigated only very recently even in large de-
viation theory [10,11,27,33–38] and also in other physics
communities [74]. As in the case of equilibrium thermody-
namics, grasping the roles played by the dual functions should
be essential for understanding nonequilibrium and kinetic as-
pects of thermodynamics. Hence, Hessian geometry works as
an indispensable tool for investigating the geometry induced
by the duality and also the variational aspects of nonequilib-
rium phenomena. In thermodynamics, there exist continued
attempts to characterize nonequilibrium states and relations
variationally, which go by the names of minimum entropy
production principle [75–77], maximum entropy production
principle [78,79], the least dissipation principle [5,80], and
others. However, all of these principles still have limitations
in their applicability for nonlinear and far from equilibrium
situations [81]. Hessian geometry and also information geom-
etry, which have an ability to handle nonlinearity induced by
convex functions, may contribute to resolving a part of prob-
lems in such principles. Moreover, they can serve as a natural
language to integrate the equilibrium (energetic) and nonequi-
librium (kinetic) descriptions, and thereby provide us with a
more universal understanding of thermodynamic systems and
extend the applicability of nonequilibrium thermodynamics.
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APPENDIX A: NOTATION

We clarify the notation used in the main text. The bold
letters represent vectors, and we define operations for and
between them as follows:

〈 j, f 〉 :=
Ne∑

e=1

je fe, (A1)

j ◦ j′ := ( j1 j′1, · · · , jNe j′Ne
)T , (A2)

j
j′

:=
(

j1
j′1

, · · · ,
jNe

j′Ne

)T

, (A3)

e f := (e f1 , · · · , e fNe )T , (A4)√
j := (

√
j1, · · · ,

√
jNe )T , (A5)

xα :=
NX∏
i=1

xαi
i ∈ R, (A6)

xAT
:= (xα1 , · · · , xαNv )T , (A7)
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where A = (α1, · · · ,αNv ) is a matrix. NX, Ne, and Nv are
the numbers of molecular species, reactions, and complexes.
The last notation is consistent with the application of the
component-wise logarithmic function as ln(xAT

) = AT ln x.

APPENDIX B: DUALITY IN THE FLUX-FORCE
DUAL SPACE

The relations among j±, j, f , and ω in Eq. (9) and Eq. (11)
are immediately derived by noting that j± = ω

2 ◦ e± f holds.
The Legendre identity in Eq. (15) is verified as

�ω( j) + �∗
ω( f ) = jT sinh−1(

j
ω

) − ωT

⎡
⎣

√
1 +

(
j
ω

)2

− 1

⎤
⎦

+ωT [cosh( f ) − 1], (B1)

= 〈 j, f 〉 − ωT

[
cosh

(
sinh−1

(
j
ω

))
− 1

]

+ωT [cosh( f ) − 1] = 〈 j, f 〉, (B2)

where we used f = ∂ j�ω( j) = sinh−1( j
ω

) and

cosh(sinh−1(x)) = √
1 + x2. These relations were obtained

mainly via large deviation rate functions [10,11,27,33–38]:

APPENDIX C: BREGMAN DIVERGENCE

We show that Eq. (29) and Eq. (30) hold [18,19]. From the
definition,

D[ j‖ j′] := �( j) − �( j′) − 〈 j − j′, ∂�[ j′]〉
= �( j) − �( j′) − 〈 j − j′, f ′〉
= �( j) − (�( j′) − 〈 j′, f ′〉) − 〈 j, f ′〉
= �( j) + �∗( f ′) − 〈 j, f ′〉 = D[ j; f ′], (C1)

holds where we used Eq. (14) and Eq. (15), namely,

f ′ = ∂�[ j′], �( j′) + �∗( f ′) = 〈 j′, f ′〉. (C2)

Similarly,

D∗[ f ′‖ f ] := �∗( f ′) − �∗( f ) − 〈∂ f �
∗( f ), f ′ − f 〉

= �∗( f ′) − �∗( f ) − 〈 j, f ′ − f 〉
= �∗( f ′) − (�∗( f ) − 〈 j, f 〉) − 〈 j, f ′〉
= �( j) + �∗( f ′) − 〈 j, f ′〉 = D[ j; f ′]. (C3)

The two orthogonalities for a quadratic dissipation function

If the dissipation functions are quadratic, the Hilbert or-
thogonality condition in Eq. (31) can be represented as

�̂∗( f S + f A) = �̂∗( f S − f A)

⇐⇒ 〈M−1( f S + f A), ( f S + f A)〉
= 〈M−1( f S − f A), ( f S − f A)〉

⇐⇒ 〈M−1 f S, f A〉 + 〈M−1 f A, f S〉 = 0

⇐⇒ 〈 jS, f A〉 + 〈 jA, f S〉 = 0. (C4)

Thus, 〈 jS, f A〉 = 〈 jA, f S〉 = 0.

The information geometric orthogonality does not require
modification because it is already defined by the bilinear form
〈 j′, f ′′〉 = 0. If the dissipation functions are quadratic, the
Bregman divergence leads to

D[ j; f ′] = 1
2 〈 j, M j〉 + 1

2 〈M−1 f ′, f ′〉 − 〈 j, f ′〉
= 1

2‖ j‖2
M + 1

2‖ j′‖2
M − 〈 j, f ′〉 = 1

2‖ j − j′‖2
M .

(C5)

Taking into account the fact that D[ j‖ j′] = D[ j; f ′], the
above result illustrates that D[ j‖ j′] is the square norm be-
tween j and j′ if � is quadratic. For j = j′ + j′′, the GPT
reduces to the usual form of Pythagorean theorem,

D[ j‖0] = D[ j‖ f ′′] + D[ j′′‖0].

⇐⇒ ‖ j − 0‖2
M = ‖ j − j′′‖2

M + ‖ j′′ − 0‖2
M . (C6)

These computations illustrate that the generalized orthogo-
nalities are actually generalized versions of the conventional
ones.

APPENDIX D: PROOF OF MAIN RESULTS

We provide the proof of the main results.

1. Proof of positivity of decomposition by Hilbert orthogonality

We prove Eq. (33) for f S and f A satisfying the Hilbert
orthogonality: �∗( f S + f A) = �∗( f S − f A). For f = f S +
f A, f iso = jS − jA, and their Legendre transforms j and jiso,
we have

D[ j‖ jiso] = D[ j; f iso] = �( j) + �∗( f iso) − 〈 j, f iso〉
= �( j) + �∗( f ) − 〈 j, f iso〉
= 〈 j, f 〉 − 〈 j, f iso〉
= 〈 j, f − f iso〉 = 2〈 j, f A〉, (D1)

where we used �∗( f iso) = �∗( f ) and the Legendre identity
[Eq. (15)]. Similarly,

D[ j‖ − jiso] = D[ j; − f iso]

= �( j) + �∗(− f iso) − 〈 j,− f iso〉
= �( j) + �∗( f ) + 〈 j, f iso〉
= 〈 j, f 〉 + 〈 j, f iso〉
= 〈 j, f + f iso〉 = 2〈 j, f S〉, (D2)

where we used �∗(− f iso) = �∗( f iso) = �∗( f ).

2. Proof of Hilbert orthogonality for complex-balanced state

For the CB state, we prove the orthogonality: �∗
x ( f S (x) +

f A) = �∗
x ( f S (x) − f A) for all x ∈ X . It should be noted that

this orthogonality was proven to hold for the CB condition
in the context of large deviation theory [36]. We describe its
details with our notation here for clarity.

The orthogonality condition is equivalent to

�∗
x ( f 0(x)) = �∗

x ( f 0(x) − 2 f S (x)) (D3)
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where we used f 0(x) = f S (x) + f A and the symmetry
�∗

x ( f ) = �∗
x (− f ). This can be converted to

〈 j+0 (x), e−2 f S (x) − 1〉 + 〈 j−0 (x), e2 f S (x) − 1〉 = 0. (D4)

Inserting 2 f S (x) = −ST ln x
xcb

, we have〈
j+(x),

( x
xcb

)ST

− 1
〉
+

〈
j−(x),

( x
xcb

)−ST

− 1
〉

= 0 (D5)

By computing the left-hand side in a componentwise manner,
we have

Ne∑
e=1

j+e (x)

[( x
xcb

)−(�be )T

− 1

]

=
Ne∑

e=1

k+
e xγ +

e
cb

[( x
xcb

)γ −
e −

( x
xcb

)γ +
e

]
, (D6)

Ne∑
e=1

j−e (x)

[( x
xcb

)(�be )T

− 1

]

=
Ne∑

e=1

k−
e xγ −

e
cb

[( x
xcb

)γ +
e −

( x
xcb

)γ −
e

]
. (D7)

Using these expressions, we can evaluate the left-hand side as〈
j+(x),

( x
xcb

)ST

− 1
〉
+

〈
j−(x),

( x
xcb

)−ST

− 1
〉

=
Ne∑

e=1

(
k+

e xγ +
e

cb − k−
e xγ −

e
cb

)[( x
xcb

)γ −
e −

( x
xcb

)γ +
e

]

=
〈
( j+(xcb) − j−(xcb)),

[( x
xcb

)(�B− )T

−
( x

xcb

)(�B+ )T ]〉

=
〈

j(xcb), BT
−
( x

xcb

)�T

− BT
+
( x

xcb

)�T 〉

=
〈
B j(xcb),

( x
xcb

)�T 〉
. (D8)

Thus, if xcb satisfies the CB condition B j(xcb) = 0, then
�∗

x ( f S (x) + f A) = �∗
x ( f S (x) − f A) holds for all x.

3. Uniqueness of intersections

Here we outline the proof of the uniqueness of jint in
Eq. (59) as the intersection of Pv ( j′) and M f

x ( f ′′). To this
end, we first define jint variationally, and then show that jint
defined in this way is exactly the intersection.

Bregman divergence Dx[ j‖ j′′] as a function of j is strictly
convex and lower bounded by the minimum 0. We define jint
by the following variational problem with a linear constraint:

jint := arg min
j∈Pv ( j′ )

Dx[ j‖ j′′]. (D9)

The minimizer jint is unique from the property of convex
optimization. By definition, jint ∈ Pv ( j′). Because jint min-
imizes Dx[ j‖ j′′] under the constraint Pv ( j′) = j′ + KerS, the
normal vector of the level hypersurface of the divergence
Sint := { j|Dx[ jint‖ j′′] = Dx[ j‖ j′′]} evaluated at jint is

∂ jDx[ j‖ j′′]| j= jint
= ∂ j[�x( j) + �∗

x ( f ′′) − 〈 j, f ′′〉]| j= jint

= f int − f ′′. (D10)

The normal vector should be orthogonal to KerS. This means
that f int − f ′′ ∈ ImST = P f (0). Therefore, f int ∈ P f ( f ′′).
By the Legendre transform, we have jint ∈ M f

x ( j′′). Now, we
obtain jint ∈ Pv ( j′) ∩ M f

x ( j′′).
To show the uniqueness, suppose that there exists another

vector j†
int such that j†

int ∈ Pv ( j′) ∩ M f
x ( j′′). Using the same

argument as jint, j†
int satisfies the same variational characteri-

zation as Eq. (D9). Because of the uniqueness of the solution
of the variational problem, j†

int = jint.

4. Proof of variational characterizations

From Eq. (62) and Eq. (67), the variational characteriza-
tions of f st and jeq are obtained as

arg min
f∈P f ( f 0(x))

�∗
x ( f )

= arg min
f∈P f ( f 0(x))

[Dx[ jst (x); f ] + �∗
x ( f st (x))]

= arg min
f∈P f ( f 0(x))

Dx[ jst (x); f ] = f st (x), (D11)

arg min
j∈Pv ( j0(x))

�x( j)

= arg min
j∈Pv ( j0(x))

[
Dx[ j; f eq(x)] + �x( jeq(x))

]
= arg min

j∈Pv ( j0(x))
Dx[ j; f eq(x)] = jeq(x). (D12)

5. Proof of EPR decomposition

From Eq. (62) and Eq. (67), the EPR decomposition is
obtained as

�̇(x)/2 = �x( j0(x)) + �∗
x ( f 0(x))

= [Dx[ j0(x); f eq(x)] + �x( jeq(x))]

+ [Dx[ jst (x); f 0(x)] + �∗
x ( f st (x))],

= [Dx[ j0(x); f eq(x)] + �∗
x ( f st (x))]

+ [Dx[ jst (x); f 0(x)] + �x( jeq(x))]

= �̇MD
hk (x)/2 + �̇MD

ex (x)/2, (D13)

where the positions of �x( jeq(x)) and �∗
x ( f st (x)) are swapped

from the second to the third line.
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