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§ 0. Introduction and notation. In [7], the "curvature" of the Caratheodory
metric on a bounded domain in Cm is considered by using the generalized Hessian
of this metric; it may be called the Hessian-curvature. Referring to this, we
define Hessian quartic forms to an arbitrary hermitian metric. These Hessian
quartic forms enable us to provide another proof for the following result of Wu
[14 Lemmas 1 and 4] : The holomorphic sectional curvature coincides with the
maximum of the Gaussian curvatures to all local one-dimensional submani folds that
contact at the point in the direction under consideration (Corollary 1.8).

Modifying the construction of the n-th order Bergman metric introduced in
[6] (also see [5]), we define quantities μ0>n (neiV) as follows: We consider a
certain linear functional on a specified subspace of square-integrable holomorphic
m-forms on a ra-dimensional complex manifold and define the quantity μn by the
square of the operator norm of this functional (Proposition 3.7). We then set
μo,n''~μn/μ^ The quantity μ0>n is a [0, +oo)-valued function on the tangent
bundle, and is biholomorphic invariant (Theorem 4.2). Especially μ0, i is the usual
Bergman metric, and 2(μOtl)

2—μot2 is the quartic form defining the holomorphic
sectional curvature of the Bergman metric (Theorem 4.4).

Let λo,n be the n-th order Bergman metric on a complex manifold, relative
to a coordinate z, as introduced in [6]. Then the Hessian quartic form of the
Bergman metric coincides with 2(μ0tl)

2—λz

0t2 (Corollary 5.4). In general, λz

o>2^μOι2

with an explicit statement as to when equality holds (Proposition 5.5). Finally,
we note that the quantity λ\ί2 does depend on the coordinate z, by examining a
concrete example (Corollary 5.8). One should observe, however, that while the
quantity λz

0>n with n ^ 2 is biholomorphic invariant in the weak sense mentioned

Received March 31, 1983

133



134 KAZUO AZUKAWA AND JACOB BURBEA

in [5, 6], it is nevertheless dependent on the coordinate z, that is one cannot
regard it as a global function on the tangent bundle of the manifold.

NOTATION. The following notation will be used throughout the paper.

0.1. Matrices.

(0.1.1) For a positive integer n<=N, we put:

M(n, C): =the set of all (n, n)-matrices over C.
GL{n, C ) : = M £ M ( n , C ) ;
S(n, C): = {A<^M(n, C) A is symmetric}.
H(n, C):={A^M(n, C); A is hermitian}.
Ps(n, C): = {A^H(n, C); A is positive semi-definite}.
P(n, C): = {A<ΞH(n, C); A is positive definite}.

(0.1.2) For A^Ps(n, C), we denote by A1/2 the square-root of A in Ps(n, C).
If A<EP(Π, C) we put A~1/2: ^(A'1)112, where A~ι is the inverse matrix of A
(note that A'1/2^P(n, C)).

0.2. Manifolds.

(0.2.1) The letter "M" will always mean a paracompact connected complex
manifold, while the letter "ra" designates its complex dimension. The term
"coordinate z" stands for a local coordinate system z^={zx

} •••, zm) in M with
defining domain "£/2". We write dz

a:=d/dza (a = l, •••, m), for simplicity.

(0.2.2) For a point p(=M, we set:

TP(M): =the holomorphic tangent space at p.
T(M): —the holomorphic tangent bundle of M.
i4j,β>ί)(M): =the space of all (5, 0-forms at p.

(0.2.3) For a pair of coordinates z and w in M with UZΓ\UwΦφ, we denote
by /? the Jacobian of wz'1, i.e. Jf: =άet(dz

a.w
b)a,b.

(0.2.4) For a coordinate z=(z\ •••, 2771), we put dz : ^dz1 ί\- /\dzm. The pull-

back of the euclidian volume element on Cm by z is given by (V— l m 2 /2 m )dzΛdz .

0.3. Multi-indices.

Let m be the dimension of M as in (0.2.1).

(0.3.1) Let
0 = 1, •••, n-1)} (neiV), and M/(0): = M / / ( 0 ) = { ^ } . By a multi-index (resp. an
increasing multi-index) of length n we mean an element of MI(n) (resp. MΙI(n)).

(0.3.2) For a pair of increasing multi-indices A = (alf •••, fl J and 5 = ft, •••,
^n»), we write A<B if n<n' or if n = n' implies that a%—bi (i<i0) and alQ<bio

for some z 0 ^ {1, ••• , n}.
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(0.3.3) For a non-negative integer H G Z + , we denote by φ(n) the cardinality

of the set U?=oM//(;). Thus φ(n)=(m n\ while the cardinality of MΙI(n) is

with φ(—ϊ): =0.

(0.3.4) We denote by Φ the unique order-preserving bijection from N onto
U»=oM//(n). Thus, for an increasing multi-index A and for neiV we have
A^MII(n) if and only if Φ{φ(n~l))<A^Φ(φ(n)).

0.4. Local differential operators.

Let z = ^ 1 , •••, zm) be a coordinate in M.

(0.4.1) For a constant vector v—(v\ -,vm) in C"1 we put (see (0.2.1)):
a ^ : = Σ ^ α 3 L OS)0: = 1 % (9ξ)n : =dz

v(dz

v)
n~1 (w = l, 2, •••), where P stands for the

identity operator on functions on Uz.

(0.4.2) For a multi-index 4̂ = (αi, ••• , an) we p u t : d\:=dz

ai ~dz

an (when
?2=0 we have dφ = lz).

% 1. Hessian quartic form of a hermitian metric. Let g be an arbitrary
hermitian metric on M, and let R be the hermitian curvature tensor to the metric
in the sense of Kobayashi and Nomizu [12 pp. 155-159] (cf. also [11 pp. 37-39]).

For a coordinate z in M, we put: gz>aι: =g(d'a, 3j), (gz

Ba): =(^2.αδ)"1, Rz.aScd =

95)3g, 9α) (α, b, c, d^ {1, •••, m}). Thus,

Rz,abcd=dZ

cS
Z

d, gz,ab — Σls,tg'zS(dZ

c, gz,aϊ)(dZ

d, gz,sl)

DEFINITION 1.1. For p^M, we define a quartic form Sec(/> •) on TP(M) by

where z is a coordinate around p and z;eCm (see (0.4.1)). Since Sec(p X)
/g(X, Xf is the holomorphic sectional curvature of g in the direction X^TP{M)
— {0}, we call Sec(p •) the curvature quartic form of g at £.

Remark 1.2. Since Rz,abcd are components of a tensor, the definition of
Sec{p; •) does not depend on the coordinate z around p.

DEFINITION 1.3. For a coordinate z and v^Cm— {0}, we set g ε,υ: =g(dz

v, d%)
>0. For j&ef/z we define a quartic form Hess2(£ •) on ΓP(M) as follows:

dffll>Λoggz,r.ϋ(P), v-
Hessz(p;(dz

v)p):=\
0, v=0.

Since 3j3j is a complex Hessian, we call Hess2(£ •) the Hessian quartic form of
g, at p, relative to z.
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LEMMA 1.4. Let g be a hermitian metric on M, z a fixed coordinate around
p and v a constant vector in Cm— {0}. We consider the complex line L : =z(p)+Cv
in the space Cm and the connected component Mx of z~\L), containing p, which is
a one-dimensional complex submamfold in Uz. We denote by Gauss(p, v •) the
curvature quartic form, at p, of the metric induced from g on ML. Then, viewing
TpiMJ as a subspace of TV{M),

Hess*(/> (3j)1,)=Gauss(ί, v (3{)p).

Proof. The mapping Mι^z~ι{z{p)Jrζv)^ξ<^C, denoted by ί, is a coordinate
in Mi around p, while the inclusion mapping c: M1-^M may be represented,
under the coordinates t and z, as ξ^z{p)Jrξv. The induced metric c*g is given by

c*g=2 Σ gz,a-b°cvaϋb dt-dt=2g,,rtoc dt It,

and the hermitian curvature tensor to c*g is

Since (3j)p=^(3 ί) : p=(3£) ί, by the identification of Tp(Mi) with c*Tp(ML), we have
Gauss(£, v) (3j)ί,)=Gauss(p, v\ (aί)p) = -1^ ί >iϊiτ(ί)=Hess2(/) (3j)p), and the result
follows.

Let (, )m (resp. [| ||m) be the canonical hermitian inner product (resp. the
induced norm) on Cm. Then, for every p^.Uz we have gz,υϋ(p)—vGz(p)v*
= \vGz{pY'ψm, where G 4 :=(g, . α S ) (see (0.1.2)).

PROPOSITION 1.5. Let g be a hermitian metric on M, αwrf z be a coordinate
with Gz=(gz>aΈ). Then, for every (p, v)^UzX(Cm- {0}), we have

= (||vA1/2 | |i ι | |ι;5A-1/a | |5 ι-|(i;5, υ)m\*)/\\vA"Tm

where Λ:=Gz(p) and B :—dz

υ.G2{p). In particular, we have

with equality if and only if

(1.1) vσl.Gt(p)=ξvGt(p)

for some scalar J G C .

Proof. By Definitions 1.1 and 1.3 we have

Sec(/> (3ί) p )-
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The last term is zero if and only if vBA~1J2—ξvA1/2 for some ? e C . This is
equivalent to (1.1) and the proof is complete.

LEMMA 1.6. Let g be a hermitian metric on M, and let a point p^M and
a tangent vector X<ΞTP(M)~ {0} be given. Then, there exists a coordinate z
around p so that condition (1.1) holds for v^Cm with X—{dξ)p.

Proof. We arbitrarily fix a coordinate w — (w\ •••, wm) around p with w(p)
= 0 . For every ( f ? ) 6 G L ( m , C) and ( & 6 ) α , β e S ( m , C) (c=l, •••, m) (see (0.1.1)),
the equations

(1.2) WC=ΣaξCaZa + Σa,bξ
Ca?>ZaZb (C = l , ' ~ , m )

define a new coordinate z~{zλ, •••, zm) around p with z{p)—^) by the inverse
mapping theorem. We shall select the numbers ξc

a, ξc

ab so that z satisfies (1.1)
for vtΞCm with X=(dz

v)p.
First, we can find a matrix (ξc

a) so that

(1-3) va=0 (α=2, •••, m), Gz(p)=lm ,

where Gz: — (gz>aι) and l m is the identity matrix. Indeed, we set X1:
=X/g{X,X)112 and select X2, ••>, Xm^Tp(M) so that g (Zα, X δ)=^α δ. If we
write Σcf α(3?)p: =A"α, then (ξc

a) is the desired matrix.
By virtue of (1.3), condition (1.1) is equivalent to

(1.4) dl.gz,ld(p)=0 (d=2, . ~ , m ) .

Making use of (1.2), condition (1.4) can be rewritten as

(1.5) Σα.^«,,(ί)fδeα

S i n c e Gw(p)(ξξ)(=GL(m, C), e q u a t i o n s (1.5) w i t h u n k n o w n s ξn (a = l, -•-, m)
possess a solution. This concludes the proof.

Combining the last lemma with Proposition 1.5, we obtain the following
assertion :

PROPOSITION 1.7. For X^TP(M), Sec(p X) coincides with max{Hessz(£ X)
z is a coordinate around p].

By virtue of Lemma 1.4, this proposition yields the following result which
was alluded to in the introduction of this paper.

COROLLARY 1.8. (Wu [14; Lemmas 1 and 4]). For a tangent^ vector
XeiTp(M)—{0}, the holomorphic sectional curvature Sec(£ X)/g(X, Xf to a
hermitian metric g on M coincides with max {GCs(p) 5 is a local one-dimensional
submanifold such that S^p and cs*Tp(S)=CX], where cs ^ the inclusion mapping
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of S into M, and GCs(p) is the Gaussian curvature at p to the induced metric

Remark 1.9. In [7], a generalized definition of the "Hessian curvature"
: X)/g(X, X)2 is used for the square of the Caratheodory metric on a

bounded domain in Cm.

§ 2. The Bergman form. We recall the notion of the Bergman form of M.
For this we follow the description given in [5, 6]. The set of all holomorphic

m-forms a on M satisfying | |α | | 2 : ^{VτΣΛm2/2Ίϊl)\ α Λ ά < + o o is denoted by H{M).
J M

The space H{M) becomes a pre-Hilbert space over C with an inner product (,)
inherited from the norm || ||.

DEFINITION 2.1. Let a be a (m, 0)-form on M, and let z be a coordinate in
M. We denote by a2 the function on Uz such that a\Ug=agdz (see (0.2.4)).

Applying the Cauchy integral formula to ag, a^H(M), we find that H{M)
is in fact a separable Hubert space, and, moreover, for a coordinate z around a
point |)GM and for a holomorphic differential operator Dz on Uzy the linear
functional H{M)^a^Dz .az{p)^C is bounded (see also Kobayashi [10] and
Lichnerowicz [13]). By the Riesz-representation theorem there exists a unique
element γ{Dz, p)^H(M) such that

(2.1) Dz .az{p) = {a, γ{Dz, p)), a^H{M).

Especially, when Dz — Ϊz (see (0.4.1)), we set

(2.2) κ z > p : = r a z , p ) .

For another coordinate w around p we have

since az=Jfaw on UZΓ\UW for every a^H(M) (see (0.2.3)).

LEMMA 2.2. Lei r=ϊ(D\ P) {resp. tcZtP) be as in (2.1) {resp. (2.2)). Then,

Proof. By definition Dz .(/cz>p)z(p)=(/cz>p> γ)-={γ> κZtP)=γz(p)t and the result
follows.

Let M be the conjugate complex manifold of M, and denote by
the conjugation. For a coordinate z in M, we denote by z the conjugate coordi-

nate of z with defining domain Uz, i.e. z(p):=z{p)f

DEFINITION 2.3,. For p, q^M we set K(q, p): =/cz>p(q)Λdzp, where z is a
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coordinate around p. By property__(2.3) the quantity K is a well-defined (2m, 0)-
form on the product manifold M x M of dimension 2m, and is called the Bergman
form of M (cf. [5, 6]).

Applying Definition 2.1 for the manifold MxM, we find that K\uwγΰl—
Kwx'zdwί\dz. On the other hand, by Definition 2.3

(2.4) Kwxz{', p)={fcZtP)w

on Uw, for every p^Uz. It follows from Lemma 2.2 that

(2.5) Kwxi{q, p)=K^Jp^q), (ί

By virtue of (2.4) and (2.5), the function Kwx-Z is holomorphic on UwxUz by
Hartogs' theorem of holomorphy. Thus, the Bergman form is a holomorphic
2ra-form on MxM.

DEFINITION 2.4. Let D be a holomorphic differential operator on a coordinate
neighborhood Uz, and let ω—YiA&FωAdzA be a holomorphic differential form on
Uz, where F is a finite subset of U?=oM//(n) (see (0.3.1)). Let dzA: =
dzaiΛ-'Λdzan for ^4=(α1, •••, an)^F. We denote by .D.α> the action of Z) on
ω coefficient-wise, i.e. D ,ω\ = Σ ^ G F ( ^ .ωA)dzA. Viewing D as a holomorphic
differential operator on MxUz, we have D.K{q, p)=D.Kwxi(q, p)dwq/\dzp,

(q, p)^UwxίΓz. We denote by D.K( , q)/dzp the well-defined holomorphic m-
form β on M such that β\Uw—D.Kwx-z{',p)dw for every coordinate w, i.e.
D.K( , p)=(D.K(; p)/dzp)Λdzp.

PROPOSITION 2.5. ([5; Lemma 1], [6; Lemma 1]). Let Dz (resp. Ew) be a
holomorphic differential operator on a coordinate neighborhood Uz {resp. Uw) of p
{resp. q). Let γ{D\ p) and γ{Ew, q) be as in (2.1). Then:

(i) &.!({', $)/dzp=r(D', p)eH(M);

(ii) {γ{D\ p), γ{Ew, q))=E™D~z.Kwxz{q, p).

Proof, (i) Let x be a coordinate, and let D:=DZ. Using Lemma 2.2,
(2.4) and (2.5) we have for every

γ{D,

= D.Kzxx{p, r)

=D.K^(p, f)

= D.Kxxz{r, p).

Therefore, γ{D, p)\Uχ—D. Kxxz{ , p)dx, as desired.
(ii) By definition a n d p a r t ( i ) , w e h a v e



140 KAZUO AZUKAWA AND JACOB BURBEA

(γ(Dz, p\ γ(Ew, q))=Ew.γ(Dz, p)w(q)

= EwD*.Kwxz(q, p),

as desired. This concludes the proof.

COROLLARY 2.6. (Characterization of the Bergman form). The Bergman form
K is a unique (2m, 0)-form on the product manifold_MxM with the reproducing
property, in the sense that K(-, p)^H(M) /\ Λψ'Q) (M) for every p^M, and

(2.6) at{p) = (a, K(; p)/dzp)

for every a^H(M), and every pair of p and z with p<^Uz.

Proof. The Bergman form K possesses the reproducing property by Defini-
tion 2.3 and Proposition 2.5 (i). The uniqueness of K follows from Aronszajn
[1 item (2), p. 343].

PROPOSITION 2.7. Let (βo)^i (7VeZ+W{+co}) be a complete orthonormal
system of H(M). If z (resp. w) is a coordinate around a point p^M (resp. q<EM),

then the series yΣ?=i(βj)w(q)(βj)z(p) converges absolutely to Kwx-Z(q, p), where K is
the Bergman form of M.

Proof. It follows from (2.6) that the Fourier coefficients ξj of K(-} p)/dzp

with respect to (βj) are given by £ , : = ( # ( - , p)/dzp, βj)=(βMp). By the com-
pleteness of (βj) we have HΣJUf«?&—#(•> p)/dzp\\->0 as n->N. Another application
of (2.6) gives \\mn^N

yΣ1}=ιξj(βj)w(q) =Kwxι(q, p), and the result follows.

Remark 2.8. By virtue of Proposition 2.7, the Bergman form introduced in
Definition 2.3 coincides, up to a multiplicative constant, with the Bergman kernel
form given in Kobayashi [10 p. 269] (see also [13]).

§3. Extremal quantities of the space H(M). We shall first establish a
chain rule for the differential operators d\ (see (0.4.2)). For n e Z + , we denote
by Π(n) the family of all partitions of the set {1, •••, n) (77(0)= {φ}). Given a
multi-index Λ = (alf •••, an)^MI(n) and a subset F c { l , •••, n), we set dz

A]P: =
TJiεpdϊt (when n=0, we have dz

φιφ = lz).

LEMMA 3.1. Let z and w be coordinates in M with UZΓ\UwΦφ, and let
A<=MI(n). Then, for every holomorphic function f on UZΓ\UW, we have dz

A. f
— Έιri>eΠ(n)fA,cp, where fAίQ with ^—{P1, •••, Pu) is the function given by

Proof. The proof is carried by induction on n^Z+, using the formula
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Here A=(A', α n + 1 )eM/(n + l), 5>= {Pi, •••, Pu} ^Π{n), &(v): = {Plf •••, PVU{n
•••, Pu), and £P': = {PU •••, Pω, {w+1}}. The proof is now complete.

DEFINITION 3.2. For every nGZ+ and p^M, we define a subspace Hn{ρ)
of //(M) and a condition (Cn)p as follows:

Hn(p): = {a^H(M) dz

A. a(p)=0 {A^\J^MI{j))} (H0(p)=H(M)),

/ For every vector (ξA)AξΞMii(n)^CN—{0}, there exists a form a&Hn(p)
{ n)p'' \ such that Σκf A 3i .α( ί )^0.

Here, z is an arbitrary fixed coordinate around p and TV: —φ{n)—φ{n — 1) (see
(0.3.3)). Condition (Cn) stands for the collection of all {Cn)p (p<=M).

By Lemma 3.1, we see that the definitions of Hn(p) and (Cn)p do not depend
on the choice of the coordinate z.

Remark 3.3. Condition (Co) (resp. (Cα)) coincides with condition (A.I) (resp.
(A. 2)) of Kobayashi [10].

LEMMA 3.4. Let K be the Bergman form of M, z be a coordinate around a

point p£ΞM and let n<=Z+. Set S(p, z): = {¥A.K(-, p)/dzp; A^\Jf=QMH{j)} C

H(M). Then:

(i) The space Hn+1(M) coincides with S(p, z)1, the orthogonal subspace of
the subset S(p, z) in H(M).

(ii) Conditions (Cj)p 0 = 0 , •••, n) hold true if and only if the system S(p, z)
is linearly independent in H{M).

Proof. By Proposition 2.5 ( i) ,

Thus, assertion ( i ) follows immediately from (3.1). To prove part (ii), suppose
that (Cj)p O = 0 , •••, n) hold true, and let

Σ"=θΣ-4eΛί//(;)? θA K('f p)/dZp = 0

for a vector (ξA). It follows from (3.1) that

(3.2) Σ j U Σ ^ Ξ j f / j o ) ^ . az(p) = 0 , a^H(M).

Applying formula (3.2) on a^Hn(p) and using assumption {Cn)p, we find that
ξA=0 for every A^MII(n). Similarly and inductively, we conclude that ^ = 0
for every A. Conversely, suppose that

(3.3) S(p, z) is linearly independent in H(M),

and let
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(3.4)

where ;e{0, •••, n} and ξA^C. Substituting (3.1) into formula (3.4), we see

that HAeMii(j)£AdA.K(-,p)/dzp^Hj(p)x. From part ( i ) with / instead of n,

assumption (3.3) implies that ξΛ=0 for every A. This concludes the proof.

LEMMA 3.5. Let X^TP{M) and a^Hn{p). If we express X=(dz

υ)p=(d$)p

(y, I ' G C " 1 ) with respect to coordinates z and w around p, then {dz

Ό)n.a{p) —
(d™)n. a(p) therefore, this form at p may be denoted by Xn.a(p).

Proof. We first note that

(3.5) v/a=dz

v.w
a(p) (α = l, - , m),

(3.6) @S)*. α,(/>) = Σ?-o( n ) θ ϊ ) n " J JΐipMY. aw(p),

since az=Jfaw (see (0.2.3)). Since a^Hn(p), it follows from Lemma 3.1 as well
as (3.5) that

fθ,
(dl)J.aw(p) = \

Substituting these values into formula (3.6), we obtain

(dϊ)n.at(p)=Jΐ(p)(d9)n.aw(p), or @ί)\ α(/>)=@S')n. a(p),

as desired.

DEFINITION 3.6. (Kobayashi [10 p. 269]). We define an order relation on
the subset {ωΛώ; ω^Λp

m'0)(M)}c:Λp

m'm)(M) as follows (see (0.2.2)): We let
ωΛω^ω'/\ω'', for ω, ω'<BΛp

m'0)(M), if l α U ^ I ^ I for some coordinate z around
p, where ω—ωzdzp, ωf—ω'zdzp (ωz, ω'z^C).

PROPOSITION 3.7. For every X<aTp{M) and every n^Z+f the maximum

μn(P',X):=max{X\a(p)ΛXn.a(p);

under the order in Definition 3.6 exists and coincides with

max{|(/3(z), a)\2; a^S(z)1, \\a\\ = l}(dzΛdz)p

for every coordinate z around p, where

S(z) : = {frA.K{., p)/dzp Ae{J^MIKj)}dH(M)
and

β(z):=(di)n K(-,

Proof. Since Xn,a(p)ΛXn.a(p)=\(dz

v)
n.az(p)\\dzΛdz)p for every
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the assertion follows from Proposition 2.5 ( i) and Lemma 3.4 ( i) .

Let p^M. From the definition we deduce the following:

( W h e n n=° 0Γ lf μ^P; X)Φ° f θ Γ e v e r y X-Tp(M^-W{ } l V if and only if (CJ P holds true;

When n>2, μn(p;X)Φθ for every Xt=Tp(M)-{Q}
(3>7)o- v if (Cn)p holds true.

To study the μn more precisely, we record a lemma which is valid for any
pre-Hilbert space H. We denote by G(xlf •••, xn) the Gramian of a system
(xi, ~ , xn) in H (especially, G(φ)=l), and denote by GtJ{xu •••, xn) the (/, 7)-
cofactor of the Gram-matrix of (xu ••• , xn) (especially, Gn(x1) = l).

L E M M A 3.8. Let (xlf ••• , xn) (n^Z+) be a linearly independent system in a
pre-Hilbert space H, and let xn+1^H. Then

max{|(;y, xn+1)\2; y<={xlf •••, xn}\ \\y\\ = i\

= G ( x u •••, x n + i ) / G ( x l f -•• , x n ) t

and the latter coincides with |[;y(7l)||2, where

Furthermore, when yin)φ§, the above maximum is attained by y if and only if
y=e^θy{n)/\\yin)\\ for some real θ.

DEFINITION 3.9. Let K be the Bergman form of M, and let z be a coordinate.
Then K\UzXϊτz=KzxzdzΛdz. We consider the function kz on Uz given by

which we call the Bergman function of M relative to z.

DEFINITION 3.10. Let ψ and Φ be as in (0.3.3) and (0.3.4), respectively, For
a coordinate z in M, we set:

k z , ι ] ' . =d(p(i)dφ(j) , k z ,

-^zKJlf y J n) Lκs, ιjJj=Jι, , Jn »

It follows from Proposition 2.5 (ii) that kz,ιj=(KZtj, KZιι) on Uz, This means
that the matrix Lz(j1} -•-, jn)(p) is the transpose of the Gram-matrix of the
system (KZtj-v •••, KZίj^) in //(M) for every p^Uz. Combining this with Lemma
3.4 (ii) and Lemma 3.8, we obtain the following two results,.
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PROPOSITION 3.11. Let z be a coordinate around p&M, and let n<=Z+. Then
Lz(l, ••• , φ(n))(p)^Ps(φ(n), C) {see (0.1.1)), and the following four conditions are
mutually equivalent:

(a) Conditions (Cj)p ( / = 0 , •••, n) hold true.
(b) The system (Kz>ϊ(p), •••, Kz>^r)(p)) in H{M) is linearly independent.
(c) L,(l, - , φW)(p)t=P(φ(n), C).
(d) detL,(l, •••, φ(n))(p)>0.

THEOREM 3.12. Let z be a coordinate in M and let fn>z be the function on
U2xCm, defined by

μn(P'Λdl)p) = fn.t(p, v)(dzΛdz)p, {p, v)£ΞUzxCm.

Then, for every p^Uz and any maximal linearly independent subset {KZtj[(p), ••• ,
KZ:Tι(p)} of {KzΛ{p), -Kz>^^(p)},

fn>z{p, v)=det L,(jlf "•, jiXpY1

X Σ y ) ( n - l ) < s , ί ^ ζ ί ) ( n ) ^ ( ί ( s ) ^ Φ ( ί ) y ^ L z ( J ι , ••• f J l ) s , t \ p ) '

Here, CA=n \ / n λ ! ••• n m ! , vΛ=vai ••• van for A = (au •••, an) and v = (v\ •••, v m ) ,
where n v is the cardinarity of the set {] aj—v\.

COROLLARY 3.13. (Kobayashi [10; Theorem 2.2]). For

K(p, p)=max{a(p)Λa(p);

If K(p, p)Φθ, the above maximum is attained by a if and only if α =
e^-^k^pY1^', p)/dzp for some real θ.

Proof. The first assertion follows from Theorem 3.12 with n—0, and the
Jatter from Lemma 3.8 with n=0.

§4. The biholomorphic invariant μ0>n. In this section we suppose that
M satisfies condition (Co), i. e. M satisfies condition (A. 1) of Kobayashi [10] (see
Remark 3.3). For every n^Z+ and every XGTP(M), the (n, n)-form

(4.1) μn(p]X)=max{Xn.a(p)ΛXn.a(p);

at p has been defined in Proposition 3.7. When n=0, by Corollary 3.13 together
v^ith (3.7)], we have

μo(P X)=kz(p)(dzAd~z)p , kz(p)>0 .

DEFINITION 4.1. For every n^N, we let μo,n'>=μn/μo. Thus it follows
that μ0>n is a well-defined [0, +oo)-valued function on the tangent bundle T(M),
for which, by (4.1), it possesses the property that for every X^TV{M) and every
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THEOREM 4.2. The function μ0ι7l on T{M) is a biholomorphic invariant, i.e»
μo,n(P X)=zμo,n(f(p)',.f*X) ((p; X)^T(M)) for every biholomorphic mapping f
from M onto the complex manifold f{M).

Proof. Let M ' : =f(M) and let q: —f(p). The mapping / induces an
isometry /* of the Hubert space H(M') onto H(M) so that f*Hn(q)=Hn(p). Let
(w, Uw) be a chart of M' around q. Then, the function z\ —w°f\Uz with Uz:
—f~\Uw) is a coordinate around p such that

(4.2) za = wa«f on Uz (α = l, .. , m ) .

Let X=(dz

v)p£ΞTp(M). Thus, by (4.2), /*Z=(3?%. Furthermore, by induction on
n and by virtue of (4.2), we obtain, for every a^Hn{q)y

Oί)n.(/*α), = 0ί) n .(α 1 0 o/)=((a?) n .α w )o/ on £/,.

Evaluating the above formula at the point p, we obtain that (dz

υ)
n.{f*a)z{p)

=(d%)n.aw(q) for every a^Hn(q). It follows from (4.1) that

μn{p X)/(dzΛdz)p=μn(q f*X)/{dw Adw\ .

The desired assertion follows now from Definition 4.1.

Remark 4.3. Let C(p X) be the Caratheodory metric on M. Suppose that
(C0)p holds and C(/> X)>0 for some (ί Jf)6T(M). Then the same argument
as in the proof in [6; Theorem 1] implies that C(p X)2n<(n \)-2μ0,n(P', X) ίor
every neiV.

Now, making use of Theorem 3.13, we have

μUP X)=d$ί. log kn{p), X=(dί)ptΞTp(M).

With the aid of the above formula, one can extend μQtl to a unique hermitian
pseudo-metric g on M such that g(X, X)=μo,i(p; X), X^TV{M). This pseudo-
metric is given by

2 Σa,Λdί. log k2dza-dzb,

and is called the Bergman pseudo-metric on M. We note that the Bergman
pseudo-metric g becomes an ordinary metric if and only if M satisfies condition
(Cx) (see (3.7)i), i.e. M satisfies condition (A.2) of Kobayashi [10] (see Remark
3.3).

Assume now that M satisfies condition (d). It follows from Theorem 3.12
that

(4.3) μUP (di)p) = ka(p)-1Pa(p)-1Q.(p, v),

where
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P , : = d e t L g ( l , •-,
and

The following theorem was stated in Fuks [8 p. 525]. For the sake of com-
pleteness we give another proof which may have its own interest.

THEOREM 4.4. Suppose M satisfies conditions (Co) and (Cλ). Let Sec(£ •) be
the curvature quartic form, at p^M, of the Bergman metric g on M (see Defini-
tion 1.1). Then,

μ0 2(P X)=2g(X, Xy-Sedp X),

Proof. Set gz,ab: =d*adi. log kz, Gz:=(gg,ah), (gb

z

a)'. =Gj\ We compute
iP't (3?)JD) with the aid of formula (4.3). We first note that

Qz( , v)=kT+1ά

where xZtΌ and σz>v are Cm~valued and C-valued functions on Uz, respectively,

given by

σz>v:={kz{dmd^ kt-\{d%)\
It follows that

The desired formula is now obtained from Definition 1.1 (see also [10; p. 275]),
and the proof is complete.

COROLLARY 4.5. (Fuks [8; Theorem 1], Kobayashi [10; Theorem 4.4]).
Suppose M satisfies conditions (Co) and (CΊ). Then the holomorphic sectional
curvature of the Bergman metric on M is at most 2. Let p^M be fixed. The
holomorphic sectional curvature is less than 2 for every direction at p if condition
(C2)p holds.

Remark 4.6. Concerning the last corollary, the following facts are shown
in [2] by means of examples:

(i) There exists a simply connected domain M in C2 such that conditions
(Co) and (Cj) hold true, and such that the holomorphic sectional curvature of the
Bergman metric on M is identically 2.

(ii) For every real number ξ with ξ <2, there exists a pseudo-convex bounded
Reinhardt domain M in C2 such that the holomorphic sectional curvature of the
Bergman metric on M is greater than ξ for some direction.
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§ 5. Hessian quartic form of the Bergman metric. We first recall the
ft-th order Bergman metric introduced in [6]. Let a coordinate z in M be fixed.
For n^Z+ and (p, v)^UzxCm, we set

H*n(p, v): = {a^H(M) 0*)'. a(p)=0 (j=l, - , n-1)}
and

pp p, v),

(see Definition 3.6). Referring to Definition 3.2, we have

=Hn(p), n = 0 , l
(5.1) HUP, v)\

•DHn(p), n^2.
In particular,

Ά(P\ ') = μo(p; )=kz(p)(dzΛdz)p
(5.2)

on TP(M). When M satisfies condition (Co), we may consider the [0, +°°)-valued
function λz

Q>n on \Jp^uzTp(M) for every n^N, given by λltn~λz

n/λz

Q. The function
λl>n is called in [β] the n-th order Bergman metric of M. It follows from (5.1)
and (5.2) that

(5 3) 7Z —it λz >ίi (?iΞ>2)

Given a vec tor υ^Cm, cons ider t h e funct ions Rn {n — — l, 0, 1, •••) on Uz

g i v e n by

the Wronskian of functions'^)-7. kz 0 = 0 , 1, •••, n) with respect to dz

v (especially,

#-i=l).
We now recall the Jacobi's formula concerning determinants.

LEMMA 5.1. Let Λ=(ξιJ)^M(n, C), and let AtJ be its {i, j)-cofactor. Then

det A det(ςιj))Zi'ι...'in-2=AnnAn-lιn-ι Anι7l-ιAn-.ltn .

This lemma leads to the following recursive formula for the Wronskians Rn

in (5.4).

LEMMA 5.2. Let z be a coordinate in M, and let v^Cm. Then, for every

on Uz.

Proof. Let {Rn)%j be the (z, /)-cofactor of the H(n + 1, C)-valued function
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l(dϊY(dϊ)J. &2]J=o;'.";£. It follows from Lemma 5.1, since Rn is hermitian, that

ttn-Kn-2 — {-Kn)n?ι\Kn)n + l, n + ί I \Rn)n, n+1

Moreover, from the derivation properties of the Wronskians we also have

(Rn)nn = Rn-i, (Rn)n, n+i=—dl. Rn-u and (Rn)n+1. n+i=3ί3ί- /?Λ-i The proof is now
complete.

From Lemma 3.8 together with (5.2) it follows that

(5.5) ^.n(ί;Oί)p)=^.(ί)-1i?n-l(β)-1Λn(/>).

provided that Rn-λ{p)Φθ (cf. [6; p. 51]).

THEOREM 5.3. Assume, in addition to the assumptions of Lemma 5.2, that M
satisfies condition (Cf) 0—0, ••• , n —1). Set

λ0. j(p): =λi. j{p ( 3 ^ ) , p^U2 0 = 1, . ., n ) .

(9?-/. LΓ

e. where ,?OfO = l.

Proof. By assumption and Lemma 5.2 we have

RnRn-2 = (Rn-lYd$ϊ. lOg Rn-l

It follows from (5.5) that

^o, 7i = /o, «-i353ί. log i^Ti-i
and that

R n - l — KKzjλQ^ '•' Λ o . n - 1

The desired result now follows by observing that λOΛ=dz

υd
z

v. log &2.

As a consequence of this theorem we find an intimate relationship between
the quantity 1\>2 and the Hessian quartic form of the Bergman metric.

COROLLARY 5.4. Suppose that M satisfies conditions (Co) and {Cλ). Let z be
a coordinate in M, and let Hess2( •) be the Hessian quartic form of the Bergman
metric g on M, relative to z {see Definition 1.3). Then, for (p, v)^U2xCm,

Combining Theorem 4.3 with Corollary 5.4, we obtain, for (p, v)<=UzxCm,

The latter inequality follows from Proposition 1.5 or (5.3).

PROPOSITION 5.5. Suppose that M satisfies conditions (Co) and (Cx). Let z be
a coordinate in M and let Sec( •) (resp. Hess2( •)) be the curvature quartic
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form (resp. Hessian quartic form relative to z) of the Bergman metric g on M.
Let (p, v)^UzxCm be fixed. Then, the left hand side of (5.6) vanishes if and
only if

(5.7) W&k,, 3 * . ft,, 3 1 kz)(p) = O ( α , b ^ {1, - , m \ ) ,

where Wi(f0, •••, fn) is the Wronskian of functions f0, •••, fn on Uz with respect

to dl. Condition (5.7) is equivalent to

(5.8) rankl __ __
L(32α. ft,, dZ

adl kz, d*a(di)\ ft,)α = l,..

Proof. We suppress the dependence on z. Set gaι'- —dadb. log k and G : =
(gab)- From Proposition 1.5 it follows that equality in (5.6) holds if and only if
vdv.G(p)—ξG(p) for some scalar f e C . The latter is equivalent to

(5.9) Wυ(b\dυ. log ft, 9Λ. log k)(p)=O (a, b^ {1, - , m}).

But, using Lemma 5.1 with n=3 and standard properties of Wronskians, we
arrive at the following identity:

Wυ(k, Ja. k, Jb. k)=kWυ(o\dυ. log ft, 3A. log ft).

It follows that condition (5.9) is equivalent to (5.7).
It remains to show the equivalence of conditions (5.7) and (5.8). Clearly,

(5.8) implies (5.7). Assume now that (5.7) holds and vφQ. Consider the vectors

x : =(ft, dυ. k, a ) 2 . k)(p), y : =3^. (ft, dv. k, (dv)\ k)(p), ya : =b\. (k, dΌ. k, @,)8. ft)(^)
(α = l, •••, m) in C3. Because of condition (d)p which guarantees that

Wv(k, dυ. k)(p)Φθ, the set {x, y) is linearly independent. It follows, since y =
*ΣiVaya, that there exists an α o e{l, •••, m} such that {x, yao} is linearly inde-
pendent. Therefore, (5.7) implies that every ya is spanned by x and yaQ, and
hence condition (5.8) holds. The proof is now complete.

We note that condition (5.7) holds true trivially when m—\.

EXAMPLE 5.6. Suppose that M={(f1, | 2 ) e C 2 ; | f T + | £ 2 | 2 / s < l } for some
positive real number s, and that the coordinate z is the inclusion mapping of
M into C2. The Bergman function k — kz of M is given by

where c : =(l+s)/ττ2=vol(M)-1 and

(5.10) r=r(s) :=(l-s)/( l + s) ( - K r < I )

(cf. Bergman [4 p. 21]). Assume that the point p under consideration is (0, ς
with |£ 2 |<1 . As in [3] (not Definition 3.10), we use the convenient variable
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(5.11)
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,o 1 - ί
or

and the notation ka : =3α &> &αδ =3a3"&- £> etc. Then, we have

(5.12)

and their corresponding conjugated formulas, where

= (l-rf)(3-rί)/(l-r)f

=6(l-rt)2(2-rt)/(l-r)2t2

x3: = (3+rt2)/(l+r)t

:=2(l-rt)(6-3rt+rt2)/ajrr)(l-r)t2

: =12(l-rt)2(5-(3+5r)tM2Jrr)rϊ2)/(l-r)Ψ.

Using (5.12), we find that condition (5.7) is equivalent to

1 XifV

0 xtf1
(5.13) =0.

If Λ 2 £ 2 = 0 , condition (5.13) holds true trivially. Suppose that v'vψφO. Then
(5.13) is equivalent to

(5.14)

Xi

2x5 = 0 .

Using the values of x3 together with (5.11), and noting that 1—rΐ>0 and ί>0,
we find that (5.14) is equivalent to

(5.15) = 0 .

Making use of Sturm's method, we can see that the factor in the brace of (5.15)
is positive for every (r, t)^(—l, l]X(0, 1] (for Sturm's method, cf., e.g., Isaacson
and Keller [9; pp. 126-129]); therefore, (5.15) holds if and only if r=0, or by
(5.10), if and only if s = l. Note that the domain M with s = l is the unit ball
in C2.
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Summing up the above arguments, we obtain the following assertion.

PROPOSITION 5.7. Suppose that M and z are as in Example 5.6 with
Let Sec and Hess2 be as in Proposition 5.5, and let X—{dz

v)p with v—{v\ v2

and p={0, P ) G M . Then, Sec(£ X)-Hessz(p X)=λ*0ι2(p X)-μo,2(p X) is posi-
tive if and only if v1v2ξ2φ0.

It was shown in [6] (see also [5]) that the quantity λ*Oι n possesses a certain
biholomorphic invariance. This invariance, however, is not an invariance in the
ordinary sense and it does not guarantee that for n^2, λl>n can be regarded as
a global function on the tangent bundle T(M) of M. In fact, as the following
corollary of Proposition 5.7 shows, λz

0ί2 does depend, in general, on the coordinate z.

COROLLARY 5.8. Let M, z, Hess2 be as in Proposition 5.5 with m—
The quantities λli2 and Hess2, in general, depend on z, i.e. they cannot be con-
sidered as global functions on the tangent bundle T(M).

Proof. It is sufficient to find a manifold M that satisfies (Co) and (C2), and
in which there exist two coordinates z and w with UzΓ\UwΦφ such that
λU{p\X)ΦXίt2{p]X) for some p^UzΓ\Uw and X=(dz

υ)p={d$)ptΞTp(M).
For this, we take as M the domain considered in Example 5.6, and as z the

inclusion mapping of M into C2. We also take p = (0, f ) G M and v — (v\ v'z)^C2

so that v1v2ξ2φ0. Lemma 1.6 guarantees the existence of a coordinate w around
p, for which Hessw(£ (dV)p)=Sec(p Oi?)p) with (d$)p=(dl)p. Then, by (5.6)
and Proposition 5.7 we have

(dl)p)<Hessw(p (d%)J ,

as desired.
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