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Heterocellular gene signatures reveal luminal-A breast cancer

heterogeneity and differential therapeutic responses
Pawan Poudel1, Gift Nyamundanda1,2, Yatish Patil1,2, Maggie Chon U Cheang3 and Anguraj Sadanandam1,2

Breast cancer is a highly heterogeneous disease. Although differences between intrinsic breast cancer subtypes have been well

studied, heterogeneity within each subtype, especially luminal-A cancers, requires further interrogation to personalize disease

management. Here, we applied well-characterized and cancer-associated heterocellular signatures representing stem,

mesenchymal, stromal, immune, and epithelial cell types to breast cancer. This analysis stratified the luminal-A breast cancer

samples into five subtypes with a majority of them enriched for a subtype (stem-like) that has increased stem and stromal cell gene

signatures, representing potential luminal progenitor origin. The enrichment of immune checkpoint genes and other immune cell

types in two (including stem-like) of the five heterocellular subtypes of luminal-A tumors suggest their potential response to

immunotherapy. These immune-enriched subtypes of luminal-A tumors (containing only estrogen receptor positive samples)

showed good or intermediate prognosis along with the two other differentiated subtypes as assessed using recurrence-free and

distant metastasis-free patient survival outcomes. On the other hand, a partially differentiated subtype of luminal-A breast cancer

with transit-amplifying colon-crypt characteristics showed poor prognosis. Furthermore, published luminal-A subtypes associated

with specific somatic copy number alterations and mutations shared similar cellular and mutational characteristics to colorectal

cancer subtypes where the heterocellular signatures were derived. These heterocellular subtypes reveal transcriptome and cell-type

based heterogeneity of luminal-A and other breast cancer subtypes that may be useful for additional understanding of the cancer

type and potential patient stratification and personalized medicine.
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INTRODUCTION

Breast cancer is the most common female malignancy worldwide.
Breast cancers are clinically and molecularly heterogenous, with
five to ten “intrinsic” subtypes now recognized based on gene
expression or integrated molecular characteristics, respectively.1,2

Among the intrinsic gene expression breast cancer subtypes,
luminal-A breast cancers represent the majority of estrogen
receptor (ER) and progesterone receptor (PR) high/positive
tumors.1,3 Although many luminal-A tumors are highly responsive
to endocrine therapies like tamoxifen, a significant proportion
possess intrinsic and/or acquired resistance.4,5 Even this relatively
well-characterized breast cancer subtype possesses heterogeneity
at the levels of hormone receptor expression,6,7 treatment
response,5 and genetic variability2,3 that requires further
understanding.
Ciriello et al.3 defined at least four genetic subtypes of luminal-A

tumors involving mutations and somatic copy number alterations
(CNAs) potentially associated with tamoxifen resistance. However,
genetic changes alone do not explain the entire spectrum of
luminal-A heterogeneity. The factors leading to tumor hetero-
geneity, including in luminal-A tumors, are complex and include
interactions between different cell types and the tumor micro-
environment along with the genetic changes present within the
epithelial compartment.8 For instance, stroma containing cancer-
associated fibroblasts (CAFs) is most associated with basal/claudin-

low breast cancers.9 However, the exact role of stroma/CAFs in
luminal-A breast cancers is unclear.
Moreover, the role of the immune microenvironment in

luminal-A tumors requires further exploration. It is particularly
important to understand luminal-A heterogeneity and drug
resistance at the levels of the immune and stromal microenviron-
ment. Unlike in colorectal and pancreatic cancers,10–13 no
exclusive immune-enriched breast cancer subtype has been
reported (to our knowledge). Nevertheless, immune-related genes
are often expressed in different subtypes, including the luminal-A
subtype (Fig. 1a), with signatures similar to those seen in one of
the colorectal cancer (CRC) subtypes—consensus molecular
subtypes (CMS)1/inflammatory.11,13 This prompted us to further
interrogate molecular similarities between breast cancer and CRC.
We previously classified CRC into five CRCAssigner subtypes:

inflammatory, enterocyte, goblet-like, stem-like, and transit-
amplifying (TA).11,14 Later, we reconciled these five subtypes into
four CMS1 to 4 using additional data from independently
published CRC subtyping studies.11,13,15–19 CMS and CRCAssigner
subtypes are >90% concordant with certain differences including
that the enterocyte and TA subtypes were merged to form the
CMS2 subtype.13,20 Most importantly, the immune-enriched
groups (CMS1 and inflammatory) were similar. These CRCAssigner
subtypes represent signatures related to stem, mesenchymal, and
stromal cells forming the stem-like subtype, immune cells forming
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the inflammatory subtype, a partially differentiated state as the TA

subtype, and a differentiated/secretory state as goblet-like and

enterocyte subtypes.11 Therefore, we re-named the CRCAssigner

subtypes as “heterocellular” subtypes in this study. Similar to the

comparison of breast cancer subtypes to multiple cancer

types,21,22 we sought to use our CRC heterocellular signatures as

surrogates to re-characterize breast cancer subtypes, especially

luminal-A breast cancers, and understand their phenotypes

according to their differentiated, stem, fibroblast, and immune

characteristics. This type of supervised analysis identifies low-

frequent or rare intrinsic subtypes that are often difficult to

characterize by unsupervised analysis. In addition, interesting sub-
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Fig. 1 Association of breast cancer with heterocellular subtypes. a Heatmap showing the expression of the top highly variable genes
(standard deviation; SD > 2), specifically immune genes, and their association with breast cancer subtype samples (n= 817) from TCGA.23

Highlighted genes represent selected immune specific genes that show high expression in multiple subtypes. b Proportion of CMS subtypes
in multiple breast cancer data sets–TCGA23 (n= 671) and GSE4256824 (n= 69). c Proportion of heterocellular subtypes in multiple breast
cancer data sets–TCGA23 (n= 407) and GSE4256824 (n= 63). Although heterocellular signatures were derived from entirely different cancer
type (CRC), we observed that about half of the breast cancer samples were classified into all of the five heterocellular subtypes (stringent
cutoff was used for mixed/low-confidence sample selection as discussed;13 Supplementary Table 1c). d Heatmap showing sample enrichment
analysis using hypergeometric test-based FDR values comparing heterocellular subtypes (y axis) with intrinsic gene expression subtypes (x
axis) in the TCGA23 breast cancer data set (n= 407; Supplementary Table 1e–g). e Pie chart showing proportions of different heterocellular
subtypes in luminal-A breast cancer samples (total n= 202; enterocyte (n= 31), goblet-like (n= 34), inflammatory (n= 25), stem-like (n= 90),
TA (n= 22); TCGA breast cancer23). Only those samples classified into subtypes with high confidence by the CMS and heterocellular classifiers
were shown in b–e). Summary of low and high confidence samples for both subtype classifications are shown in Supplementary Tables 1a–d
and 2a–d and described in Methods section

P. Poudel et al.

2

npj Breast Cancer (2019)    21 Published in partnership with the Breast Cancer Research Foundation

1
2
3
4
5
6
7
8
9
0
()
:,;



subtypes can be identified that we are reporting in this study for
the luminal-A breast cancer subtype with potential personalized
treatment associations.

RESULTS

Association between breast cancer and heterocellular subtypes

To characterize the breast cancers using heterocellular subtypes,
we applied the CMS classifier13 to two independent breast cancer
data sets (The Cancer Genome Atlas; TCGA (n= 817)23 and
GSE42568 (n= 104);24 Fig. 1b and Supplementary Tables 1a, b and
2a, b). Unexpectedly, the CMS classifier was only enriched for the
CMS4 (mesenchymal; >75% of high confidence samples; see
Methods section) subtype in these data sets, suggesting that this
CMS classifier is specific to CRC and may not be applicable to
breast cancer. Since our heterocellular (CRCAssigner) signature
was derived earlier than and differently to the CMS and describes
the phenotypic characteristics of normal colon-crypt cells includ-
ing immune-enriched inflammatory cells,11 we applied this
signature to the same data sets and observed that all five
heterocellular subtypes were present in the TCGA breast cancer
data set and four subtypes (except the CRC specialized subtype—
enterocyte) in GSE42568 data set (Fig. 1c). There was a similar
distribution of the four major subtypes (except enterocyte) in
TCGA and GSE42568 data sets, with a variable proportion
(between 0% and 10%) of the enterocyte subtype between these
data sets. Correspondingly, enterocyte subtype was not present in
normal breast tissue (Supplementary Figures 1a–c and Supple-
mentary information). Here, only those samples with statistically
high confidence of classification were considered (see Methods
section; Fig. 1c; the dominant subtype distribution in mixed/low-
confidence samples is shown Supplementary Figures 1d–f and
Supplementary Tables 1c, d and 2c, d). This suggests that breast
cancer has heterocellular features of different cell types (with
variable proportions of enterocyte) that can be characterized with
high confidence using our heterocellular signatures and subtypes.
We next sought to understand the relationship between the

intrinsic breast cancer subtypes and heterocellular subtypes using
hypergeometric sample enrichment analysis of the TCGA data
set.23 The luminal-B intrinsic breast cancer subtype was signifi-
cantly (FDR < 0.05) associated with the TA heterocellular subtype,
suggesting that luminal-B cancers might have a transitional
phenotype between stem and differentiated cells, like TA in the
colon-crypt. Interestingly, the basal-like and human epidermal
growth factor receptor 2 (HER2)-enriched intrinsic breast cancer
subtypes were significantly associated with the inflammatory
heterocellular subtype (Fig. 1d and Supplementary Table 1e–g),
suggesting increased immune phenotype in these subtypes. We
further validated these results using the GSE42568 data set, with
similar results (Supplementary Figure 1g and Supplementary Table
1h–j; the dominant subtype distribution in mixed/low-confidence
samples is shown in Supplementary Figure 1h–j). This suggests
that breast cancer subtypes are significantly (p < 0.05; Chi-squared
test) associated with heterocellular signatures and explains
additional characteristics of the intrinsic breast cancer subtypes.

Luminal-A heterogeneity described by heterocellular subtypes

Surprisingly, the heterocellular signatures revealed the most
heterogeneity in the relatively well-characterized luminal-A breast
cancer subtype (Fig. 1d). This subtype was not only significantly
associated with the differentiated goblet-like/enterocyte subtypes
but, unexpectedly and interestingly, was also highly enriched for
the poorly differentiated stem-like heterocellular subtype: 45% of
luminal-A tumors were classified as stem-like tumors followed by
17% goblet-like, 15% enterocyte, 12% inflammatory, and 11% TA
subtypes (Fig. 1e; n= 202). We further validated our results using
an additional data set enriched for ER positive tumors (luminal-A;

GSE653225–27) observing similar high heterogeneity (Supplemen-
tary Figure 1k, l and Supplementary Table 1w–ab: tamoxifen-
treated and -untreated samples; >39% stem-like, >24% inflam-
matory, >16% goblet-like, >8% TA, and >0.8% enterocyte subtype;
the distribution of the dominant subtypes in mixed/low con-
fidence and treated samples is shown in Supplementary Figure
1n). The proportions of inflammatory and enterocyte subtypes
varied in the validation cohort, with the variable overall enterocyte
subtype in luminal-A cancers from different data sets again
representing that specialized colonic cells do not exist in breast
cancers. Overall, we observed transcriptomic heterogeneity
associated with heterocellular signatures in luminal-A breast
cancer.
To further characterize these heterocellular subtypes in luminal-

A breast cancers, we next performed heatmap analysis of
heterocellular gene expression signatures using luminal-A and
compared it to non-luminal-A (other subtypes) samples (Fig. 2a, b,
Supplementary Figure 1m and Supplementary Table 2e). Here, our
goal is to elucidate the heterogeneity in luminal-A using
heterocellular subtypes. As expected, the goblet-like subtype
contained increased expression of differentiated gene markers
compared to the other heterocellular subtypes in luminal-A
subtype (Fig. 2a). Although the TA subtype shared some of the
differentiated gene markers, they showed increased heterogeneity
similar to that of the CRC subtype,11 with 11% (n= 202; Fig. 1e) of
the samples representing this subtype in luminal-A subtype.
Nevertheless, there was a consistent enrichment of the stem-

like heterocellular subtype in luminal-A breast cancers, suggesting
potentially interesting luminal-A characteristics. Of note, the stem-
like subtype was enriched for potential luminal progenitor
genes,28 with the presence of stem cell/epithelial-to-mesenchymal
transition (EMT), myoepithelial, and basal cancer markers (Fig. 2a).
We further confirmed this by geneset enrichment analysis (GSEA),
which showed that the stem-like subtype of luminal-A cancers was
enriched for stem and stromal fibroblast cells (Fig. 2c, d, and
Supplementary Table 1k). Hence, luminal-A tumors represent
heterogeneity at the heterocellular level.

Immune heterogeneity in luminal-A tumors

Although characterizing the immune gene expression hetero-
geneity in luminal-A tumors, we observed increased expression of
immune pathways including chemokine signaling,
cytokine–cytokine receptor interaction, immune system, and
natural killer cell differentiation in inflammatory luminal-A subtype
(Fig. 2e, f, and Supplementary Table 1l). Based on this pathway
enrichment analysis, we hypothesized that the inflammatory
subtype luminal-A cancers are enriched for the expression of
immune checkpoint genes, potentially marking responses to
immune checkpoint blockade. As expected, immune checkpoint
genes and other immune markers were overrepresented in the
inflammatory luminal-A cancers compared to the other subtypes
(Fig. 3a). In addition, we observed increased enrichment of certain
immune cell types in inflammatory luminal-A subtype (Fig. 3b). In
order to predict if these inflammatory luminal-A tumors poten-
tially may respond to anti-immune checkpoint therapy, we used a
published ‘expanded immune gene’ signature, which potentially
predicts anti-PD1 immune-checkpoint responses in melanoma
and other cancers.29 All 18 expanded immune signature genes
were highly expressed in the inflammatory subtype with increased
average gene expression for the signature (Fig. 3c, d). Similarly, a
proportion of the stem-like subtype showed increased expression
of the immune genesets and expanded immune gene signature
(Fig. 3d). These results suggest that luminal-A breast cancer
subtype is heterogeneous with inflammatory heterocellular
subtype showing exclusive immune infiltration.
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Additional characteristics of heterocellular subtypes

Next, we sought to understand if phenotypic changes that were
measured as scores by TCGA23 show difference between our
heterocellular subtypes in luminal-A tumors (Fig. 3e–l; scores in
Fig. 3f–l are from reverse-phase protein microarray; RPPA as
published by TCGA.23) Our analysis showed that tumor purity,
hormone_a (represents signatures associated hormone recep-
tors,30) proliferation and DNA damage response scores were
significantly high in goblet-like and TA subtypes compared with
the other subtypes (Fig. 3e–g and i). The inflammatory subtype
showed high proliferation score similar to goblet-like and TA
subtypes (Fig. 3g). On the other hand, the EMT and apoptosis
scores were low in goblet-like and TA, but high in stem-like

subtype (this subtype in CRC is known to have high EMT genes;11

Fig. 3h and j). We observed increased receptor tyrosine kinase
score in enterocyte and stem-like subtypes and significantly
increased cell cycle score in TA subtype (Fig. 3k and l). There were
other phenotypes from the TCGA that were not significantly
associated with the subtypes (Supplementary Table m). These
results suggest that these heterocellular subtypes from luminal-A
show differences in multiple breast cancer associated phenotypes.

Association of heterocellular subtypes with other published
luminal-A subtypes

To understand potential mutational and CNA changes in
heterocellular subtypes of luminal-A, we next compared our
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mesenchymal transition

P. Poudel et al.

4

npj Breast Cancer (2019)    21 Published in partnership with the Breast Cancer Research Foundation



heterocellular luminal-A subtype classification with four Ciriello
CNA-based luminal-A subtypes3 (Fig. 4a, b, and Supplementary
Table 1n–p). Regarding the association of the heterocellular
subtypes with Ciriello’s subtypes, the well-differentiated goblet-
like and enterocyte subtype samples were primarily associated the
Ciriello subtypes—1q/16q (characterized by 1q gain and 16q loss
chromosomal regions) and CN quite (characterized by quite CNA
spectrum). TA heterocellular subtype samples were primarily

associated with Ciriello’s Chr8-associated (characterized by loss of
8p and gain of 8q chromosomal regions) subtype cancers,
however, a certain proportion of them also represented CN high
(CNH; characterized by multiple focal CNAs) Ciriello subtypes. The
stem-like and inflammatory luminal-A subtype samples were
heterogeneous and represented all the four Ciriello subtypes, and
these subtypes had a scrambled genome such that 12.5%
belonged to the Ciriello CNH subtype (Fig. 4b). Though there

Fig. 3 Enrichment of immune checkpoint genes, immune cells, expanded immune (18-gene) signature and other phenotypes in luminal-A
heterocellular subtypes. a Box plots showing differences in the expression of immune checkpoint genes CD274 (PDL1), CTLA4, LAG3, and PDCD1
between heterocellular subtypes (n= 202; enterocyte (n= 31), goblet-like (n= 34), inflammatory (n= 25), stem-like (n= 90), TA (n= 22);
TCGA23 breast cancer). Kruskal–Wallis test was performed to calculate p and their corresponding FDR values. Those associations with FDR <
0.05 was considered significant. b Gene set enrichment analysis (GSEA) showing immune cell types enriched in inflammatory heterocellular
subtype samples compared to the other subtypes using the Rooney et al.60 gene sets (n= 202; inflammatory (n= 25) and other subtypes (n=
177); TCGA breast cancer23). Those associations with FDR < 0.1 was considered significant. c Boxplot showing differences in sample-wise
average gene expression of 18 published expanded immune (18-gene) signature29 in heterocellular subtypes. Kruskal–Wallis test was
performed to calculate p values. p < 0.05 was considered significant (n= 202; enterocyte (n= 31), goblet-like (n= 34), inflammatory (n= 25),
stem-like (n= 90), TA (n= 22); TCGA23 breast cancer). d Heatmap showing the expression of eighteen published expanded immune (18-gene)
signature29 genes between heterocellular subtypes from luminal-A breast cancers (n= 202; enterocyte (n= 31), goblet-like (n= 34),
inflammatory (n= 25), stem-like (n= 90), TA (n= 22); TCGA breast cancer23). e–l Boxplots showing differences in e tumor purity, f hormone_a,
g proliferation, h EMT, i DNA damage response, j apoptosis, k RTK, and l cell cycle scores from TCGA23 between heterocellular subtypes. The
data from f–l were from RPPA data-based scores published by TCGA.23 Kruskal–Wallis test was performed to calculate p and their
corresponding FDR values. Those associations with FDR < 0.05 was considered significant. pDCs—plasmocytoid dentric cells; NES—
normalized enrichment score; FDR—false discovery rate; EMT—epithelial–mesenchymal transition; RTK—receptor tyrosine kinase
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were associations between Ciriello and our heterocellular sub-
types, these two represent different classification systems
representing genetic and transcriptomic heterogeneity of the
luminal-A subtype.
Similarly, we assessed Aure et al.31 and Netanely et al.32 luminal-

A gene expression subtype classifications. Aure et al.31 subtype did
not show any similarity to our heterocellular subtypes represent-
ing that these classification are quite different from each other
(Supplementary Figure 2 and Supplementary Table 1t–v). This
attributes to the fact that Aure subtypes were not exclusively
based on luminal-A cancer samples. They show the enrichment of
luminal-A cancer samples in two of their multi-level clusters.31 On
the other hand, our heterocellular subtypes divided two of the
Netanely et al.32 subtypes into sub-subtypes (Fig. 4c and d and
Supplementary Table 1q–s). Netanely LumA-R1 was mainly
divided into goblet-like and TA, whereas LumA-R2 was divided
into inflammatory and enterocyte subtypes. Our stem-like subtype
was not significantly associated with any of their two subtypes
and substantially present in both the Natanely subtypes. This
suggests that our heterocellular subtypes explain additional
transcriptomic heterogeneity that these two previous subtype
classifications did not reveal.

Heterocellular luminal-A subtypes are associated with tamoxifen
treatment-based clinical outcomes

To assess the association of tamoxifen treatment response with
heterocellular subtypes, we evaluated the association between

our heterocellular luminal-A subtypes and clinical outcomes
in patient samples treated with tamoxifen using GSE6532 data
set25–27 (Fig. 5 and Supplementary Figure 3a; the distribution of
the mixed/low confidence subtypes is shown in Supplementary
Figure 1n). Heterocellular luminal-A subtypes showed significant
(p < 0.01) differences in recurrence-free (RFS) and border-line
significance (p= 0.07) differences in distant metastasis-free
survival (DMFS) in patients treated with tamoxifen (Fig. 5a,
Supplementary Figure 3b and Supplementary Tables 1w–y and
2f). We considered mixed subtype samples along with high
confidence samples only in this case, and for mixed subtype
samples only the dominant subtypes were considered. The
consideration of mixed subtype was based on our previous report
that mixed subtype tumors have a mixture of more than one
subtype, and the presence of certain dominant subtype (for
example TA) may attribute to prognostic and therapeutic response
differences between subtypes/samples in CRC.33) Unlike in CRC,11

there was relatively good RFS and DMFS for luminal-A cancer
patients with the stem-like subtype, similar to other subtypes
including goblet-like and inflammatory subtypes. This may be
attributed to the enrichment of expanded immune gene
signature29 in a subset of stem-like subtype samples, similar to
the immune-rich inflammatory luminal-A subtype with similar
prognosis (Fig. 5a). Conversely, the TA subtype luminal-A tumors
showed worse RFS and DMFS with tamoxifen treatment (Fig. 5a).
Although there was a significant overall difference between
subtypes for RFS/DMFS in tamoxifen-treated patients, there was
no significant (p ≥ 0.5) difference in untreated patient samples
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(Supplementary Figures 3c, d, and Supplementary Tables 1z–ab
and 2g). The lack of prognostic difference in the untreated
patients but poor prognosis in treated patients with the TA
subtype suggests that TA subtype luminal-A patients may respond
less well to tamoxifen.
We next compared these results with RFS from risk of

recurrence (ROR34) and OncotypeDX.35 Among the three classifi-
cations, there was not much difference in RFS between ROR and
our heterocellular subtypes, with similar concordance index (Fig.
5a, b, and d). However, the poor performance of OncotypeDX
compared to our heterocellular subtypes could be attributed to
the fact that the method was applied to microarray data (Fig. 5a, c,
and d), which was not originally intended to be used. Never-
theless, these results warrant further validation using larger

cohorts in the future. Overall, these results confirm the hetero-
geneity of luminal-A cancers and provide insights into the
pathophysiology dictated by different cell types for potential
personalized treatment (Fig. 6).

DISCUSSION

That breast cancers are heterogeneous is well known.1,2 Clinically,
hormone receptor-positive breast cancer patients are treated
differently to triple hormone receptor-negative (TNBC) and HER2-
positive breast cancer patients.36 At the molecular level, breast
cancer was one of the initial cancer types to be subtyped into
intrinsic gene expression subtypes.1 Similar to clinical breast
cancer subtypes, the molecular subtypes have distinct prognostic
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differences.1,2 In this study, we further investigated breast cancer
heterogeneity, especially in the luminal-A subtype, using hetero-
cellular subtype signatures defined in CRCs. This was done similar
to the application of breast cancer subtype signatures to other
cancers21,22,37 and with an intention to identify low frequency and
unreported subtypes that are not apparent based on unsuper-
vised approaches.
The basal subtype, which represents the majority of TNBCs, is

already known to be highly heterogeneous, with the majority of
these patients responding to chemotherapy.38 However, basal
breast tumors often recur with aggressive disease.39 Similar to
other studies,40,41 our results showed enrichment of immune
genes characteristic in the basal/inflammatory breast cancer
subtype (Fig. 1d). While no immunotherapy is yet approved, but
with immune checkpoint inhibitors being tested clinically in
patients with breast cancer,42 our association of a subset of basal
breast cancers with the CRC inflammatory subtype suggests a
means to identify patients who might respond to immunotherapy.
This potentially aligns with responses to atezolizumab and
pembrolizumab immunotherapy in metastatic TNBC patients.43

Our similar observation of an association between HER2 breast
cancers and the inflammatory heterocellular subtype suggests
that some HER2-positive patients may similarly be eligible for
immunotherapy.
Moreover, we observed an enrichment of inflammatory

heterocellular subtype samples in the luminal-A subtype harbor-
ing high expression of immune checkpoint genes. Next to the
inflammatory subtype, there was a subset of the stem-like subtype
with increased expression of immune genes (Fig. 3a and d). Both
of these subtypes showed increased expression of expanded
immune gene signature,29 suggesting potential response to
immune checkpoint inhibition. Hence, our heterocellular gene
signature may be useful for selecting patients within luminal-A
breast cancers for immunotherapy, which warrants further
exploration in the future. Although there are few indicators of
how immunotherapy might work in relatively good prognostic
luminal-A subtype cancers,44 tamoxifen-resistant TA luminal-A
tumors do not seem to express many immune genes, suggesting
that a combination of tamoxifen plus immunotherapy may not be
the treatment of choice for resistant patients. Immune checkpoint
inhibitors have now been approved for microsatellite instable
CRCs, which are associated with the inflammatory CRC subtype.45

TA CRC tumors are enriched for microsatellite stable disease,11

suggesting potential resistance to immunotherapy. However, it
may be interesting to find a way to induce this immune dormant
TA luminal-A subtype to immune enriched subtype for potential
immunotherapy.
Although the epithelial compartment of the breast and colon

vary, we observed a significant association between luminal-A
tumors and the goblet-like subtype, suggesting an overlap in
common gene signatures representing a secretory function.

Specifically, trefoil factor genes were highly expressed in both
the luminal-A and goblet-like subtypes.11,46 Of note, the goblet-
like luminal-A subtype enriched for the 1q/16q Ciriello subtype is
associated with increased KRAS and PIK3CA mutations.3 We have
previously shown that the CMS3 (goblet-like) subtype is enriched
for KRAS mutations.13 In addition, a subset of TA and stem-like
subtype luminal-A cancers was associated with the Ciriello CNH
subtype, which is enriched for TP53 mutations.3 Enriched TP53
mutations also exist in TA and stem-like CRCs,11,13 suggesting that
the subtype association between these cancer types is not
random and they are associated with similar molecular events
both at the transcriptomic and genetic levels. Again, this suggests
that different cellular compartments share the same molecular
features and perhaps functions. Nevertheless, the lower enrich-
ment of the enterocyte heterocellular subtype in luminal-A
cancers suggests the presence of this specialized cell type only
in the intestine and not in the breast.
To our surprise, the stem-like subtype of luminal-A breast

cancers showed good RFS (Fig. 5a), indicating that the presence of
stem cells and fibroblasts (enriched in the stem-like subtype) does
not indicate poor survival in differentiated luminal-A breast cancer
patients, in contrast to CRC patients.11,13 On the other hand, the
TA luminal-A subtype breast cancer patients showed poor RFS
when treated with tamoxifen. However, none of these subtypes
showed significantly different prognoses in the untreated patient
samples. We recently developed a biomarker assay for CRC
subtypes (both CRCAssigner and CMS) that stratify patients into
subtypes20,33 and that potentially may select breast cancer
patients for different therapies including immunotherapy. Overall,
our current study sheds further light on luminal-A breast cancer
heterogeneity that is useful for the personalized diagnosis and
treatment of patients with luminal-A and other breast cancer
subtypes.

METHODS

Gene expression and patient survival data

The raw CEL files containing gene expression data and the corresponding
survival data for patient tumors were downloaded from gene expression
omnibus (GEO)47—GSE4256824 and GSE6532 (combined Affymetrix
Human Genome U133A and U133B Arrays was used).25–27 Prognostic
information for GSE6532 were from the original publications.25–27 The
gene expression profiles for the TCGA breast cancer data (Ciriello et al.23)
was downloaded from cBioPortal repository48,49 and other information of
the corresponding samples were obtained from the original publication.23

Those genes with missing values (a value of zero from logarithmically
transformed RSEM50 data) in >30% of the samples were removed, as
described.51 Owing to the retrospective nature of this study using only
publically available data, ethics approval for the study was not required.

Affymetrix GeneChip® microarray data processing and quality
control

The raw gene expression data (CEL files) were processed and normalized
using robust multi-array normalization (RMA) from R-based Bioconductor52

package—affy.53 Only the samples having Normalized Unscaled Standard
Error (NUSE;54 from R-based bioconductor52 affyPLM55 package) with a
median score of 1 ± 0.05 was considered high-quality arrays and selected
for further analysis GSE42568.24 For GSE653225–27 (all samples were
considered), data from two different arrays—Affymetrix GeneChip Human
Genome U133A and U133B—done for the same set of samples were
normalized using RMA52 and merged by samples. The technical/batch
effect in GSE653225–27 was corrected using ComBat.56 Supplementary
Figure 3a shows a flow chart of the data processing and analysis for treated
samples from GSE6532,25–27 which also applies for untreated samples.

CMS and CRCAssigner classifications

For classifying the samples into CMS subtypes, classifyCMS function from
our published R package CMSClassifier13 was used. We applied single
sample prediction method from the package, and those samples that were
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classified as mixed or undetermined by CMSClassifier were considered
mixed or low confidence samples, respectively (Supplementary Table 1a,
b). For classifying the samples into heterocellular subtypes, the correlation
of gene centroids for five subtypes and gene expression data using
Pearson method from CRCAssigner subtypes and signatures was applied,
as described previously.11,13 Before Pearson correlation analyses, we used
our probe to gene mapping file from our original paper12 to map to the
CRCAssigner PAM centroid genes. After correlation, those samples with
maximum correlation coefficient among five of them <0.15 were
considered low confidence samples and those with difference in
correlation coefficients between first and second subtypes <0.06 were
considered mixed samples as described previously.13 Only those samples
qualified otherwise as high confidence samples were mainly considered
for further analyses (Supplementary Table 1c, d). Only for GSE653225–27

data analysis, high confidence, and mixed samples were considered. In this
case of mixed samples, the dominant or the subtype with maximum
correlation coefficient was considered for further analysis.

Breast cancer intrinsic classification

The intrinsic breast cancer classification for GSE42568 data set was
performed using an R-based Bioconductor52 package—genefu.57

Reconciliation of subtypes

The association between the heterocellular and published intrinsic
subtypes were performed using the hypergeometric test as described by
us previously.14

GSEA

This analysis was performed using standalone GSEA package from
GenePattern58 using the c2 geneset from mSigDB59 and published
immune cell specific gene markers from Rooney et al.60

Visualization of gene expression data

For the heatmap, genes were clustered (hierarchical clustering) by Cluster
3.061 using the default settings, followed by visualization of the clusters
using GENEE from GenePattern.58

Association between heterocellular subtypes and breast cancer
phenotypes

Breast cancer phenotypes such as proliferation, apoptosis and other
features as RPPA scores were from Ciriello et al.23 Association between
these features and heterocellular subtypes were performed using
Kruskal–Wallis statistical test and plotted as boxplots.

Prediction of ROR/Oncotype DX risk groups

Prediction of tumor samples into ROR groups was performed as
described.34 The OncotypeDX Recurrence Score were predicted as
described.35,62,63 For microarray data, most variable probes were selected
to represent the 21 OncotypeDX genes.35 CD68 gene, which was not
annotated in our data set, was replaced with its corresponding probe
(203507_at). Five of the 21 OncotypeDX35 genes were housekeeping
genes, whose average expression was subtracted from the other 16
OncotypeDX genes.63

Survival analysis

Kaplan–Meier survival analysis was performed and concordance index was
calculated using R package—survival64 and plotted using R package—
survminer.65 For statistical test, log-rank test was used.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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