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Abstract We analyze an example system of four coupled phase oscillators and dis-
cover a novel phenomenon that we call a “heteroclinic ratchet”; a particular type of
robust heteroclinic network on a torus where connections wind in only one direction.
The coupling structure has only one symmetry, but there are a number of invariant
subspaces and degenerate bifurcations forced by the coupling structure, and we in-
vestigate these. We show that the system can have a robust attracting heteroclinic
network that responds to a specific detuning � between certain pairs of oscillators by
a breaking of phase locking for arbitrary � > 0 but not for � ≤ 0. Similarly, arbitrary
small noise results in asymmetric desynchronization of certain pairs of oscillators,
where particular oscillators have always larger frequency after the loss of synchro-
nization. We call this heteroclinic network a heteroclinic ratchet because of its re-
semblance to a mechanical ratchet in terms of its dynamical consequences. We show
that the existence of heteroclinic ratchets does not depend on symmetry or number of
oscillators but depends on the specific connection structure of the coupled system.
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1 Introduction

Coupled phase oscillators arise as simplified models for coupled limit cycle oscilla-
tors in case of weak coupling (Strogatz 2000). They have been receiving an increas-
ing interest not only because of their various application areas such as electrochem-
ical oscillators (Zhai et al. 2005; Kiss et al. 2007) and neural systems (Rabinovich
et al. 2006b), but also because they present analytically tractable models to under-
stand various kinds of dynamical phenomena (Kuramoto 1984; Hansel et al. 1993;
Kori and Kuramoto 2001). These include complete phase synchronization, partial
synchronization due to the existence of stable synchronized clusters, and slow switch-
ing between unstable clusters. The last phenomenon takes place if there is an attractor
containing unstable cluster states which are connected to each other by heteroclinic
connections and thus form a heteroclinic network in state space.

Heteroclinic networks (or heteroclinic cycles in particular) are used to explain
slow switching behavior of physical systems where a system stays near a dynamically
unstable equilibrium or periodic orbit for a long period, then changes its state to
another stationary state relatively fast, and repeats this process for another or same
stationary state. Despite the fact that heteroclinic networks are not structurally stable,
they can be robust if the system considered is constrained by some conditions, such
as symmetry (Krupa 1997; Golubitsky and Stewart 2002). This is due to the existence
of invariant subspaces on which heteroclinic connections between saddle equilibria
can exist robustly.

This robust behavior was first observed in examples of rotating convection
and explained by the existence of robust heteroclinic cycle in Busse and Clever
(1979) and Guckenheimer and Holmes (1988). Heteroclinic networks are used to
explain slow switching phenomenon in different areas such as population dynam-
ics (Hofbauer and Sigmund 1998), electrochemical oscillators (Kiss et al. 2007;
Zhai et al. 2005), and neural systems (Rabinovich et al. 2006a, 2006b). They also may
have some applications in computational engineering as some recent works (Ashwin
and Borresen 2004, 2005; Ashwin et al. 2007) suggest. Especially in complex neural
systems, the use of heteroclinic networks is quite promising since this means that one
can model persistent transient behavior (Rabinovich et al. 2006b).

In case of full permutation symmetry (all-to-all coupling), a system of N coupled
oscillators can admit robust heteroclinic networks for N = 4 or greater (Ashwin et al.
2008; Ashwin and Borresen 2005). It is important to note that due to the symmetry
these heteroclinic networks cannot have arbitrary forms. On the other hand, symmetry
is not necessary for robust heteroclinic networks to exist. For example, in Aguiar
et al. (2009) it is shown that robust heteroclinic cycles can exist for coupled cell
systems with nonsymmetric coupling structure. In this work, we study a coupled
phase oscillator system for which robust heteroclinic networks appear as a result of
the coupling structure rather than the symmetry of the coupling. This gives rise to
heteroclinic networks with some properties that are not seen for symmetric system.

In this paper, we present a new type of heteroclinic network that we call a hetero-

clinic ratchet as it resembles a mechanical ratchet, a device that allows rotary motion
on applying a torque in one direction but not in the opposite direction. A heteroclinic

ratchet on an N -torus contains heteroclinic cycles winding in some directions but no
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other heteroclinic cycles winding in the opposite directions. We show that, for cou-
pled phase oscillators, this type of heteroclinic network can exist as an attractor in
phase space resulting in asymmetric desynchronization of certain pairs of oscillators.
In other words, oscillators with natural frequencies ω1 and ω2 break synchrony for
� = ω1 − ω2 > 0 but not for � < 0. Similarly, when ω1 = ω2, arbitrary small noise
results in a break of synchrony such that after the desynchronization the observed
frequencies Ω1 and Ω2 satisfy Ω1 > Ω2. To the best of our knowledge, this asym-

metric desynchronization (or ratcheting) phenomenon is observed and examined here
for the first time. We note that ratcheting cannot take place in all-to-all coupled sys-
tems, since the permutation symmetry enforces the system to have desynchronization
of a synchronized pair of oscillators in both ways. We will show that the existence
of heteroclinic ratchets for a coupled phase oscillator system is mainly related to the
coupling structure and does not depend on the symmetry of the system or the number
of oscillators.

The main model for coupled phase oscillators is the Kuramoto model of N os-
cillators where each oscillator is coupled to all the others by a specific 2π -periodic
coupling function (Kuramoto 1984). We consider the same model with a specific
connection structure and using a more general coupling function g(x). Each oscilla-
tor has dynamics given by

θ̇i = ωi +
K

N

N
∑

j=1

cijg(θi − θj ). (1)

Here θ̇i ∈ T = [0,2π), and ωi is the natural frequency of the oscillator i. The connec-
tion matrix {cij } represents the coupling between oscillators. cij = 1 if the oscillator
i receives an input from the oscillator j and cij = 0 otherwise. The coupling function
g is a 2π -periodic function. For weakly coupled oscillators, it is well know that (1)
will have a T

1 phase-shift symmetry, that is, the dynamics of (1) are invariant under
the phase shift

(θ1, θ2, . . . , θN ) �→ (θ1 + ǫ, θ2 + ǫ, . . . , θN + ǫ)

for any ǫ ∈ T. We will initially consider identical oscillators, that is,

ωi = ω, i = 1, . . . ,N, (2)

before discussing at a later stage the effect of detuning where the oscillators can have
different natural frequencies. Because the coupling function g is 2π -periodic, it is
natural to consider a Fourier series expansion

g(x) =
∞
∑

k=1

rk sin(kx + αk), (3)

where rk must converge to zero fast enough and αk’s are arbitrary. Several truncated
cases of the general case (3) have been considered in the literature:

• Setting rk = 0 for k = 2,3, . . . and α1 = 0 gives the Kuramoto model, which ex-
hibits frequency synchronization and clustering phenomena (Kuramoto 1984).
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• Setting rk = 0 for k = 2,3, . . . but leaving arbitrary α1 gives the Kuramoto–
Sakaguchi model (Sakaguchi and Kuramoto 1986) with essentially the same dy-
namics as the Kuramoto model.

• Setting rk = 0 for k = 3,4, . . . and α2 = 0 gives the model of Hansel et al. (1993).
They showed that one can observe new phenomena not present in the above cases.
For example, taking

r1 = −1, r2 = 0.25, α1 = 1.25

and setting all other parameters to zero, they show that one can observe slow
switching phenomenon as a result of the presence of an asymptotically stable ro-
bust heteroclinic cycle connecting a pair of saddles.

We investigate a particular coupled 4-cell system that admits a robust heteroclinic
ratchet as an attractor only in the presence of a third harmonic in the coupling func-
tion, i.e., we will require r3 �= 0. Note that, without loss of generality, we also set
K = N and r1 = −1 by a scaling of time.

The main coupling structure considered in this work (see Fig. 1) arises as an in-
flation of the all-to-all coupled 3-cell network. An inflation of a network is obtained
by replacing one cell, say c, by two identical cells, say c1 and c2, in such a way
that the synchrony subspace {xc1 = xc2}, where xci

denotes the state of the cell ci ,
is invariant under the dynamics of the new, larger network, and the dynamics of the
smaller network are still present within this invariant subspace (see Aguiar et al. 2009
for a mathematical definition). Hence, the network in Fig. 1 admits an S3-symmetric
quotient network (a smaller network that governs the dynamics on an invariant syn-
chrony subspace), and there may exist symmetry-broken branches of solutions for
the coupled systems associated to this network (Aguiar et al. 2007). This is a direct
result of the Equivariant Branching Lemma (Golubitsky and Stewart 2002). We will
show that for a coupled oscillator system with the coupling structure in Fig. 1, such
a synchrony-breaking bifurcation includes two extra pitchfork branches as a result
of the T

1 phase-shift symmetry. These correspond to the saddle cluster states which
may form heteroclinic ratchets for some parameter regions.

This work consists of three parts. In Sect. 2, we will analyze the dynamics of
the coupled cell system of four phase oscillators and find the invariant subspaces
where robust heteroclinic networks can exist. Theorem 1 characterizes a synchrony-
breaking bifurcation in such systems. In Sect. 3, we consider a particular coupling
function and explain the emergence of a heteroclinic ratchet connecting two pitchfork

Fig. 1 A 4-cell network: this
gives coupled systems of the
form (4). Observe that the
network has a single symmetry
given by the permutation
(12)(34)
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branches given in Theorem 1. Finally, in Sect. 4, we discuss dynamical consequences
of the heteroclinic ratchet considering the influence of noise and detuning of natural
frequencies and explore the possible extensions of the 4-cell system to nonsymmetric
and higher-dimensional systems.

2 An Example of Four Coupled Oscillators

In this section, we consider four oscillators coupled by a connection structure shown
in Fig. 1. More specifically, the system we consider is

θ̇1 = ω1 + f (θ1; θ2, θ3),

θ̇2 = ω2 + f (θ2; θ1, θ4),

θ̇3 = ω3 + f (θ3; θ1, θ2),

θ̇4 = ω4 + f (θ4; θ1, θ2).

(4)

We first assume identical oscillators, that is,

ω = ω1 = · · · = ω4. (5)

Oscillators with different natural frequencies will be considered in Sect. 4. We assume
that the inputs to each cell are indistinguishable, i.e.,

f (x;y, z) = f (x; z, y) for all x, y, z ∈ T. (6)

We will also assume the presence of the phase-shift symmetry

f (x + ǫ;y + ǫ, z + ǫ) = f (x;y, z) for all x, y, z, ǫ ∈ T. (7)

This T
1 symmetry arises, for example, in weakly coupled limit cycle oscillators via

averaging (Ashwin and Swift 1992). Note that, for the present section, the form of
coupling we assume will be more general than (1).

In the following, we discuss the invariant subspaces of (4) and give a result about
the solution branches on invariant subspaces that emanate at bifurcation from a fully
synchronized solution.

2.1 Invariant Subspaces

The network in Fig. 1 has a symmetry that we characterize as follows. Let Γ be the
S2-action on T

4 generated by

σ : (θ1, θ2, θ3, θ4) → (θ2, θ1, θ4, θ3).

The symmetry of the network implies that the system (4) is Γ -equivariant and the
fixed point subspace of Γ , that is,

Fix(Γ ) =
{

x ∈ T
4 | σx = x for all σ ∈ Γ

}
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Table 1 Invariant subspaces
forced by the coupling structure
in Fig. 1 for the system (4)

Dimensions Invariant Subspaces

4 V4 = T
4

3 V s
3 = {θ ∈ T

4 | θ3 = θ4}
3 V 1

3 = {θ ∈ T
4 | θ2 = θ4}

3 V 2
3 = {θ ∈ T

4 | θ1 = θ3}
2 V2 = {θ ∈ T

4 | θ1 = θ3, θ2 = θ4}
2 V s1

2 = {θ ∈ T
4 | θ2 = θ3 = θ4}

2 V s2
2 = {θ ∈ T

4 | θ1 = θ3 = θ4}
2 V s3

2 = {θ ∈ T
4 | θ1 = θ2, θ3 = θ4}

1 V1 = {θ ∈ T
4 | θ1 = θ2 = θ3 = θ4}

is invariant under the dynamics of (4). On the other hand, there are many other in-
variant subspaces of which not all appear because of the symmetries of the network
but because of the groupoid structure of the input sets of cells (see Golubitsky and
Stewart 2006 for groupoid formalism).

These invariant subspaces can be obtained using the balanced coloring method. A
coloring of cells, that is, a partition of the set of all cells into a number of groups or
colors is called balanced if each pair of cells with the same color receive the same
number of inputs from the cells with any given color. Each balanced coloring gives
rise to an invariant subspace where the states of cells with the same color are equal.
Moreover, each balanced coloring corresponds to a quotient network which gives the
dynamics reduced to the corresponding invariant subspace.

For the system (4), the invariant subspaces obtained by the balanced coloring
method are listed in Table 1. The subscripts indicate the dimensions of the invari-
ant subspaces, and the superscript s labels the fixed point subspaces related to the
S3 symmetry of the quotient network for θ3 = θ4 (see Table 2). There exists a partial
ordering for the set of these subspaces given by containment, that is,

Vx ≺ Vy ⇔ Vx ⊂ Vy .

This ordering of invariant subspaces is illustrated in Fig. 2.
Consider the balanced coloring {3,4}, where only third and forth cells have the

same color. The corresponding invariant subspace is V s
3 , and the quotient network is

the S3-symmetric all-to-all coupled 3-cell network (see Table 2). Necessarily all the
fixed point subspaces of this 3-cell quotient lift to some invariant subspaces of the
4-cell system, and these are labeled by the superscript s. Note that V s3

2 is the only

one of these that arises from the symmetry of the system (4) (V s3
2 = Fix(Γ )), but

there are some pairs of subspaces for which one subspace is related to the other by
the symmetry of the system, namely σ(V s2

2 ) = V s1
2 and σ(V 2

3 ) = V 1
3 . As a result, the

quotient networks corresponding the subspaces V 1
3 and V 2

3 are also symmetrically
related (see Table 2).

Exploiting the phase-shift symmetry (7), the four-dimensional system (4) and (5)
can be reduced to a three-dimensional one by defining new variables

(φ1, φ2, φ3) := (θ1 − θ3, θ2 − θ4, θ3 − θ4)
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Table 2 Quotient networks for
the three-dimensional invariant
subspaces V s

3 , V 1
3 , and V 2

3 of
the 4-cell system (4)

Balanced Invariant Quotient

Colorings Subspaces Networks

{3,4} V s
3 N1 :

{2,4} V 1
3 N2 :

{1,3} V 2
3 N3 :

Fig. 2 Containment of the
invariant subspaces given in
Table 1. Vx → Vy means
Vx ⊂ Vy . The subscripts
indicate the dimensions of the
invariant subspaces, and the
superscript s labels the fixed
point subspaces related to the S3
symmetry of the quotient
network for θ3 = θ4

so that

φ̇1 = f (φ1;φ2 − φ3,0) − f (0;φ1, φ2 − φ3),

φ̇2 = f (φ2;φ1 + φ3,0) − f (0;φ1 + φ3, φ2), (8)

φ̇3 = f (φ3;φ1 + φ3, φ2) − f (0;φ1 + φ3, φ2).
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Fig. 3 Invariant subspaces
given in Table 1 projected onto
T

3 (represented by a 2π -cube in
R

3) and the synchrony-broken
branches given in Theorem 1.
Subscripts indicate the subspace
dimensions on T

4. The
bifurcating branches of
equilibria given in Theorem 1
are represented by disks filled by
black and gray colors for
pitchfork and transcritical
branches, respectively

The symmetry of the system (4) has implications for this system. Let Γ̃ be the S2-
action on T

3 generated by

ρ : (φ1, φ2, φ3) → (φ2, φ1,−φ3)mod 2π . (9)

Then the system (8) is Γ̃ equivariant. In this case the fixed point subspaces are the
lines {φ ∈ T

3 | φ1 = φ2, φ3 = 0} and {φ ∈ T
3 | φ1 = φ2, φ3 = π}. Other invari-

ant subspaces can be obtained projecting the previously found invariant subspaces
onto T

3. These are illustrated in Fig. 3, where the previous notation for subspaces is
used. That is, subscripts indicate dimensions of the subspaces in T

4.

2.2 Synchrony-breaking bifurcations

For this section, we assume that f depends on a parameter α. Hence, we can rewrite
(8) as

φ̇1 = f (φ1;φ2 − φ3,0;α) − f (0;φ1, φ2 − φ3;α),

φ̇2 = f (φ2;φ1 + φ3,0;α) − f (0;φ1 + φ3, φ2;α), (10)

φ̇3 = f (φ3;φ1 + φ3, φ2;α) − f (0;φ1 + φ3, φ2;α).

We denote the zero vector by 0 and use f (0, α) = f (0;0,0;α).
In Aguiar et al. (2007), it is shown that any coupled cell system that has a connec-

tion structure as in Fig. 1 admits an S3-transcritical bifurcation on V s
3 at the origin.

More concretely, there exist three transcritical branches of unstable solutions on V s1
2 ,

V s2
2 , and V s3

2 simultaneously emanating from the origin if fx(0,0) − fy(0,0) = 0
and some transversality inequalities are satisfied. However, for the coupled phase os-
cillators of type (4), apart from the connection structure, dynamical properties affect
the bifurcation scheme. Now we will show in Theorem 1 how the T

1 symmetry of
f gives rise to a pitchfork bifurcation on V2 that takes place simultaneously with the
transcritical bifurcations mentioned above. The occurrence of simultaneous branches
on invariant lines is not only a consequence of the Equivariant Branching Lemma
(Golubitsky and Stewart 2002) but also a result of the connection structure and the
property of the individual dynamics, that is, the T

1 symmetry of f .
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Table 3 Adjacency matrix of
the network in Fig. 1 with
eigenvalues and eigenvectors

Adjacency matrix Eigenvalues and eigenvectors

A =

⎛

⎜

⎜

⎜

⎜

⎝

0 1 1 0

1 0 0 1

1 1 0 0

1 1 0 0

⎞

⎟

⎟

⎟

⎟

⎠

μ1 = −1, ν1 = (1,−1,0,0)T

μ2 = −1, ν2 = (0,−1,1,1)T

μ3 = 0, ν3 = (1,−1,1,−1)T

μ4 = 2, ν4 = (1,1,1,1)T

Theorem 1 Assume that f satisfies fx(0, α∗) = 0, fxα(0, α∗) �= 0, fxx(0, α∗) �=
fyy(0, α∗), and fxxx(0, α∗) − 6fxyy(0, α∗) �= 0. Then there exists a pitchfork bi-

furcation of the origin of (10) on V2 at α = α∗ appearing simultaneously with the

transcritical bifurcations on V s1
2 , V s2

2 and V s3
2 .

Remark 1 A direct consequence of Theorem 1 is that a generic bifurcation of the
fully synchronized periodic solution (x, x, x, x) of (4) will give rise to three branches
of periodic solutions of the form

(x, y, x, x),

(y, x, x, x),

(x, x, y, y),

and two other branches of the form (x, y, x, y), where the first three appear by trans-
critical bifurcations and the final two via a pitchfork bifurcation.

Proof Consider the adjacency matrix A of the network (see Table 3). The eigenvalues
of A and partial derivatives of f (fx , fy , and fz) at the origin determine the stability
of the origin (see Proposition 2 in Aguiar et al. 2007). The eigenvalues of (10) at the
origin are

λi = fx(0, α) + μify(0, α), (11)

where μi is an eigenvalue of A, and i = 1,2,3. The eigenvectors of (10) are the same
as the eigenvectors of A that correspond to its nonzero eigenvalues. It is important
to note that the T

1 phase-shift symmetry of (4) induce a relation between partial
derivatives:

fx(u, v,w,α) + fy(u, v,w,α) + fz(u, v,w,α) = 0 ∀u,v,w,α ∈ R. (12)

This can be obtained taking the derivative of (7) with respect to ǫ, and (6) implies

fy(u, v,w,α) = fz(u,w,v,α) ∀u,v,w,α ∈ R. (13)

Thus, by (12) and (13), there exists a linear relationship between partial derivatives:

fx(0, α) = −2fy(0, α) = −2fz(0, α) ∀α ∈ R. (14)

Similarly, derivatives of (12) and (13) with respect to α give

fxα(0, α) = −2fyα(0, α) = −2fzα(0, α) ∀α ∈ R, (15)
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and derivative of (13) with respect to v gives

fyy(0, α) = fzz(0, α) ∀α ∈ R. (16)

Finally, from the multiple derivatives of (12) and (13) with respect to u, v and w, one
can estimate

fzzz(0, α) = fyyy(0, α) = (fxxx(0, α) − 6fxyy(0, α))/4 ∀α ∈ R. (17)

Equations (11) and (14) imply that the eigenvalues λi become zero simultaneously
when fx(0, α) = 0. To see that there exists a pitchfork branch on V2, we con-
sider the solutions of type (x, x + u,x, x + u). Substituting this into (10) and us-
ing (7), one gets u̇ = F(u) := f (0;0,−u,α) − f (0;u,0, α). Thus the assumptions
fx(0, α∗) = 0, fxα(0, α∗) �= 0, and fxxx(0, α∗)−6fxyy(0, α∗) �= 0 and (14)–(17) im-
ply the pitchfork bifurcation conditions (∂F/∂u)(0, α∗) = 0, (∂2F/∂u2)(0, α∗) = 0,
(∂2F/∂α∂u)(0, α∗) �= 0, and (∂3F/∂u3)(0, α∗) �= 0. Since these and the condition
fxx(0, α∗) �= fyy(0, α∗) also imply the assumptions of Theorem 1 in Aguiar et al.
(2007), there exist simultaneous transcritical bifurcations on V s1

2 , V s2
2 , and V s3

2 . �

Remark 2 The existence of pitchfork branches can also be explained by consider-
ing the S2 interior symmetry of the set of cells {3,4} in Fig. 1 (see Golubitsky et
al. 2004 for the concept of interior symmetry and the interior symmetry branching

lemma). However, this does not imply the simultaneous occurrence of transcritical
and pitchfork branches for the system (10).

3 Robust Heteroclinic Ratchets for the System of Four Coupled Oscillators

For a vector field F : R
N → R

N (or T
N → T

N ), a heteroclinic cycle consists of a set
of saddle equilibria ξ0, . . . , ξm−1 and trajectories (connections) x0(t), . . . , xm−1(t)

such that limt→−∞ xi(t) = ξi and limt→∞ xi(t) = ξi+1 (mod m) for i = 0, . . . ,m − 1.
We call a connected invariant set a heteroclinic network if it is a union of heteroclinic
cycles.

In the previous section, it is shown that the connection structure of the system
(4) induces the existence of invariant subspaces. These subspaces persist under the
perturbations that preserve the connection structure. For this reason, as in symmetric
systems, one can find robust heteroclinic networks lying on the invariant subspaces
of the system (4). By “robust” we mean the persistence under small perturbations that
preserve the coupling structure. We will see that for the phase-difference system (8)
some unusual heteroclinic networks exist, which are not seen for symmetric systems.
We distinguish one type of these heteroclinic networks, which we call a heteroclinic
ratchet because it includes connections that wind around the torus in one direction
only.

Definition 1 For a system on T
N , a heteroclinic network is a heteroclinic ratchet

if it includes a heteroclinic cycle with nontrivial winding in one direction but no
heteroclinic cycles winding in the opposite direction. More precisely, we say that a
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heteroclinic cycle C ⊂ T
N parameterized by x(s) (x : [0,1) → T

N ) has nontrivial

winding in some direction if there is a projection map P : R
N → R such that the

parameterization x̄(s) (x̄ : [0,1) → R
N ) of the lifted heteroclinic cycle C̄ ⊂ R

N sat-
isfies lims→1 P(x̄(s)) − P(x̄(0)) = 2kπ for some positive integer k. A heteroclinic
cycle winding in the opposite direction would satisfy the same condition for a nega-
tive integer k.

In this section, we will first explain how a heteroclinic ratchet emerges for the
system (8) after a synchrony-breaking bifurcation. Then, we will discuss the stability
of the heteroclinic ratchet and exhibit a coupling function g for which the heteroclinic
ratchet is an attractor. Finally, different routes that lead to heteroclinic cycles will be
discussed.

3.1 Heteroclinic Ratchets for the Four Coupled Oscillators

We consider a particular case of (4), with coupling having the same form as (1):

f (x;y, z) = g(x − y) + g(x − z). (18)

Using (18), we can write the phase-difference system with identical natural fre-
quencies given in (8) in the form

φ̇1 = g(φ1 + φ3 − φ2) + g(φ1) − g(−φ1) − g(φ3 − φ2),

φ̇2 = g(φ2 − φ3 − φ1) + g(φ2) − g(−φ3 − φ1) − g(−φ2), (19)

φ̇3 = g(−φ1) + g(φ3 − φ2) − g(−φ3 − φ1) − g(−φ2).

We consider the coupling function g with up to three harmonics:

g(x) = − sin(x + α1) + r2 sin(2x) + r3 sin(3x). (20)

For this coupling function, there may exist different types of robust heteroclinic net-
works for different parameter values. We first demonstrate a heteroclinic ratchet that
exists for an open set of parameters.

Heteroclinic networks are usually exceptional phenomena, but they can be robust
if the associated heteroclinic connections are contained within invariant subspaces
(Krupa 1997). For (19) and (20), there are invariant subspaces that are found in the
previous section for a more general system (8) (see Fig. 3). For the parameter set

(α1, r2, r3) = (1.4,0.3,−0.1), (21)

we identify robust heteroclinic connections between two equilibria on the invari-
ant subspaces V 1

3 and V 2
3 , using the simulation tool XPPAUT (Ermentrout 2002).

Note that the symmetry (9) of (8) acts on V2 = V 1
3 ∩ V 2

3 (φ3 axis) as (0,0, x) →
(0,0,−x) mod 2π . Therefore, an equilibrium p = (0,0,p3) on V2 has its symmetric
counterpart on V2 as q = σ(p) = (0,0,2π − p3). These equilibria p and q with the
connections between them on the invariant planes V 1

3 and V 2
3 form the heteroclinic

network in Fig. 4.
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Fig. 4 Heteroclinic ratchet for the system (19), (20) with the parameter set (21). Sources, saddles, and
sinks are indicated by small disks filled with white, gray, or black color, respectively. (a) Phase portrait on
V 1

3 (projected onto T
2). (b) The heteroclinic ratchet on T

3 (represented by a 2π -cube in R
3)

Recall that the subspaces V 1
3 and V 2

3 are mapped to each other by the symmetry

(9). Thus, the presence of a connection from p to q on V 1
3 implies the presence

of another connection on V 2
3 that connects q to p. Therefore, in order to verify the

existence of a heteroclinic network in T
3, it suffices to identify connections from p to

q on V 1
3 , as done in Fig. 4a for the parameter set (21). Note that this is a heteroclinic

ratchet since it includes phase slips in the directions +φ1 and +φ2 only (see the
winding trajectories in Fig. 4b).

The winding connections of the heteroclinic ratchet are contained in symmetri-
cally related subspaces V 1

3 and V 2
3 (Fig. 3), where the dynamics are governed by the

quotient networks N2 and N3 illustrated in Table 2. However, neither N2 nor N3 has a
network symmetry, and this can be related to the existence of the heteroclinic ratchet,
since a symmetry in these networks may leave out the possibility for a winding orbit
or may result in symmetric connections winding in opposite directions.

3.2 Stability of the Heteroclinic Ratchet

A necessary and sufficient condition for stability of a heteroclinic cycle in R
3 whose

connections are included in two-dimensional invariant regions is given in terms of the
eigenvalues of equilibria by Melbourne (1989) (for more results on stability of hetero-
clinic cycles, see Feng and Hu 2003; Krupa and Melbourne 1995). Melbourne proves
that eigenvalues λ0(ξi) < 0 corresponding to the eigenvectors tangent to the intersec-
tion of the invariant regions are irrelevant for the stability of heteroclinic cycles and
only the saddle quantities σi = |λ+(ξi)/λ

−(ξi)| determine the stability, where ξi is a
saddle in the heteroclinic cycle, and λ−(ξi) < 0 (λ+(ξi) > 0) is the eigenvalue at ξi

corresponding to the eigenvector on the stable (unstable) manifold of ξi that is not
contained in the intersection of the invariant regions. Note that the eigenvalues λ0(ξi)

that correspond to the eigenvectors in the intersection of the invariant regions are
necessarily negative for robustness (saddle-to-sink connections on invariant regions).
Under some generic assumptions, a heteroclinic cycle in R

3 whose connections are
contained in two-dimensional invariant regions is asymptotically stable if

∏

i σi < 1
and is unstable if

∏

i σi > 1 (see Appendix in Melbourne 1989).
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We denote by λ+(p) the eigenvalue of p corresponding to the eigenvector tan-
gent to the unstable manifold of p in V 1

3 and by λ−(p) the eigenvalue of p corre-

sponding to the eigenvector contained in V 2
3 \ V2. A heteroclinic cycle in Melbourne

(1989) is defined as a set of saddle equilibria and their one-dimensional unstable
manifolds, and it is assumed that each of these unstable manifolds is contained in a
stable manifold of some equilibrium inside the heteroclinic cycle. Therefore, the het-
eroclinic ratchet in Fig. 4 satisfies this definition. Since in our example the equilibria
p and q are symmetrically related, it follows from Melbourne (1989) that the hete-
roclinic ratchet in Fig. 4 is asymptotically stable if |λ+(p)/λ−(p)| < 1 and unstable
if |λ+(p)/λ−(p)| > 1. For the parameter set (21), the equilibrium is at p = 1.4432.
Then, λ+(p) and λ−(p) are 0.74 and −1.2 by linearizing (19) at p (see (29)). This
implies the asymptotic stability of the heteroclinic ratchet.

Since the condition for the asymptotic stability is open and the heteroclinic con-
nections are robust, one can find an open set in the parameter space {(α1, r2, r3) |
0 ≤ r2, r3,0 ≤ α1 < 2π}, for which the system (19) admits an asymptotically stable
robust heteroclinic ratchet. On the other hand, for the system (19), the robust hetero-
clinic ratchet connecting a pair of saddles p and q on V 1

3 cannot be asymptotically
stable if r3 = 0 (see Appendix). Therefore, the heteroclinic ratchets for the system
(19) cannot be asymptotically stable unless the third or higher harmonics of the cou-
pling function g are taken into account.

3.3 Routes to Heteroclinic Ratchets

The equilibria p and q in V2 = V 1
3 ∩ V 2

3 bifurcate from the origin via a pitchfork

bifurcation simultaneously with other transcritical branches of solutions on V s1
2 , V s2

2 ,

and V s3
2 . This synchrony-breaking bifurcation is discussed in Theorem 1. Although

we cannot rule out the possibility of the presence of more complex behaviors near
this bifurcation, we numerically find the heteroclinic ratchet for the parameter values
close to the bifurcation point. This suggests that the bifurcation given in Theorem 1
may be associated with a global bifurcation to a heteroclinic ratchet.

Although the subspace V s
3 does not include any part of the heteroclinic networks,

the dynamics restricted to this subspace, that is, the dynamics of the network N1 (see
Table 2) give rise to another bifurcation to a heteroclinic ratchet as seen in Fig. 5. The
detailed bifurcation analysis of the 3-cell all-to-all coupled oscillators with a coupling
function having the first two harmonics is given in Ashwin et al. (2008). There, it is
stated that apart from the transcritical bifurcation of the origin, there exists a saddle-
node bifurcation on invariant lines. This bifurcation should also exist for nonzero r3

values. In Fig. 5a–c, phase portraits on V 1
3 are illustrated for α1 = 1.2, α1

∼= 1.327,
and α1 = 1.4, respectively, while r2 = 0.3 and r3 = −0.1 are fixed. As α1 increases,
a sink and a saddle equilibrium on V s1

2 (see Fig. 5a) collide (Fig. 5b) and disappear
by a reverse saddle-node bifurcation giving rise to a winding connection from p to q

(see Fig. 5c). With this disappearance of the sink on V s1
2 (and on V s2

2 by symmetry),
a heteroclinic cycle (see Fig. 5d) that exists for the parameter set

(α1, r2, r3) = (1.2,0.3,−0.1) (22)



J Nonlinear Sci

Fig. 5 Phase portraits for the system (19), (20) on V 1
3 for r2 = 0.3, r3 = −0.1, and for different α para-

meters demonstrating a bifurcation from a heteroclinic cycle to a heteroclinic ratchet shown in (d) and (e),
respectively. As α1 increases, the reverse saddle-node bifurcation indicated in (a)–(c) takes place resulting
in disappearance of the sink s and therefore changes the structure of the unstable manifold of p. This
gives rise in a global bifurcation from a heteroclinic cycle (d) to a heteroclinic ratchet (e). (For each graph,
sources, saddles, and sinks are indicated by small disks filled with white, gray, or black color, respectively.
The unstable manifolds of p are shown by thick lines)

bifurcates to the heteroclinic ratchet which is observed in the previous section for
the parameter set (21) (see Fig. 5e). Therefore, this bifurcation describes another
route to heteroclinic ratchets where T

1 symmetry is not necessary (see Sect. 4.4 for a
heteroclinic ratchet in a system without symmetry).

Although the heteroclinic cycle seen for the parameter set (22) satisfies
|λ+(p)/λ−(p)| = |0.68/ − 0.7| < 1, it is not stable because p has an unstable man-
ifold which approaches to a sink s outside the heteroclinic ratchet (see Figs. 5a
and 5d). This type of heteroclinic cycle is also unusual for symmetric systems. It
attracts nearby trajectories with initial states φ(0) close to p and with φ1(0), φ2(0)

on the left of 0 ∈ T
1, whereas other nearby trajectories with initial states φ(0) close

to p and with φ1(0) or φ2(0) on the right of 0 ∈ T
1 converge to the sink s because of

the connection from p to s (see Fig. 5d). Therefore, this heteroclinic cycle has a basin
with positive measure, so it is a Milnor attractor (Milnor 1985), though not stable.
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4 Discussion and Dynamical Consequences of the Heteroclinic Ratchet

This paper has so far demonstrated that the system of four coupled oscillators in
Fig. 1 with identical natural frequencies ωi can support a robust heteroclinic attractor
analogous to a mechanical ratchet. In this section, we consider the response of such
an attractor to imperfections in the system. In particular, we consider the effect of
setting the detunings

�ij = ωi − ωj

to be nonzero, and the effect of adding noise to the system. The frequency locking
response to detuning and/or noise is an indicator of the heteroclinic ratchet.

For typical trajectories in terms of the original phases θi(t) ∈ R, one can define
the average frequency of the ith oscillator Ωi = limt→∞

θi (t)
t

and the frequency dif-
ference

Ωij = lim
t→∞

θi(t) − θj (t)

t
.

Definition 2 We say the ith and j th oscillators are frequency synchronized on an
attractor of the system if all trajectories approaching the attractor satisfy Ωij = 0.

Note that a stronger notion of synchrony is phase synchronization; we say the ith
and j th oscillators are phase synchronized if all trajectories approaching the attractor
have θi(t) − θj (t) bounded in t . Phase synchronization is a sufficient condition for
frequency synchronization, but the converse is not always true as we see below.

4.1 Response of the System to Detuning

Note that in the case of identical natural frequencies, the oscillators of the original
system are frequency synchronized for all trajectories; this follows because trajecto-
ries of the reduced phase-difference system are trapped inside a bounded invariant
region, namely the boundary of the 2π -cube in Fig. 3, and so they are phase synchro-
nized. As soon as �ij �= 0 for some i, j , this may no longer be the case. Here, we
choose three independent detuning variables as �13, �24, and �34 so that the natural
frequencies can be written as

ω1 = ω + �13 + �34,

ω2 = ω + �24,

ω3 = ω + �34,

ω4 = ω.

(23)

Using (23) instead of (5), phase-difference system (8) can be rewritten as

φ̇1 = �13 + f (φ1;φ2 − φ3,0) − f (0;φ1, φ2 − φ3),

φ̇2 = �24 + f (φ2;φ1 + φ3,0) − f (0;φ1 + φ3, φ2), (24)

φ̇3 = �34 + f (φ3;φ1 + φ3, φ2) − f (0;φ1 + φ3, φ2).
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Fig. 6 The main graph shows the frequency difference Ω13 for (4) with parameters (21) as a function
of detuning �13 between the first and third oscillator for �24 = �34 = 0. Note that oscillators remain
frequency synchronized for �13 ≤ 0 but quickly break synchrony for �13 > 0; this is evidence of the
attractor being a heteroclinic ratchet. The insets show time evolution of the phase differences φi for a
positive and a negative value of �13; observe that oscillators 1 and 3 are phase and frequency synchronized
for �13 < 0 but neither phase nor frequency synchronized for �13 > 0

An interesting property of heteroclinic ratchets (such as that illustrated in Fig. 4)
is that the qualitative response to detuning depends on the sign of the detuning. An
example showing Ω13, the difference between the observed average frequencies of
the oscillators 1 and 3, as a function of �13 is given in Fig. 6. Considering (24), one
can observe that since the heteroclinic ratchet includes winding connections in the
+φ1 direction but no connections winding in the −φ1 direction, the oscillator system
responds to �13 > 0 by breaking frequency synchronization of the oscillator pair
(1,3), whereas �13 ≤ 0 leaves the frequency synchronization unchanged, Ω13 = 0.
There is a similar response for the difference between oscillators 2 and 4 as can
be seen by the symmetry of the original system (4). Small positive and/or negative
detunings �34 do not have any qualitative effect on the dynamics of (24) near the
heteroclinic ratchet considered, since it does not include winding connections in the
+φ3 or −φ3 directions.

4.2 Response of the System to Noise and Detuning

Here, we consider the effect of additive white noise with amplitude ε for the system
(24) with �34 = 0 and �13 = �24 = �. Recall that the heteroclinic cycle shown in
Fig. 4b contains two nonwinding and two winding trajectories, and in the ideal case
(no noise and no detuning) a solution converging to the heteroclinic ratchet oscillates
near the nonwinding trajectories. However, addition of noise to the system without
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Fig. 7 A solution of the system (19) with no detuning and additive white noise (amplitude = 10−6) for
the parameter set (21). Noise causes the system to have repeated phase slips in the +φ1 and +φ2 directions

detuning will cause phase slips in +φ1 and +φ2 directions such that winding will be
present even for arbitrary low amplitude ε (see Fig. 7).

We define the winding frequency of the system (4) as Ω = (Ω13 +Ω24)/(2π) and
the corresponding winding period as T = Ω−1. For a given noise amplitude ε and
detuning �, the winding frequency Ω (ε,�) can be obtained numerically as in Fig. 9.
Even in the presence of negative detuning � < 0, arbitrarily low amplitude noise
will eventually cause fluctuations such that the winding trajectories in the ratchet are
visited. This can be seen from Fig. 9a, where Ω is plotted as a function of � < 0 for
different noise amplitudes ε.

The effect of noise on the dynamics near the heteroclinic ratchet is different when
� > 0 is considered. In this case noise can cause fluctuations such that nonwinding
trajectories are visited more frequently than in the case of positive detuning without
noise. This happens only when 0 < � ≪ ε and diminishes the observed winding
frequency Ω .

Note that the winding period T in the absence of noise varies linearly with log(�)

for 0 < � ≪ 1 (see Fig. 9c). It is because T can be expressed in terms of � as

T (0,�) = Ω (0,�) ∼= −
1

λ
ln (�) = −

ln (10)

λ
log (�) ,

as expected from the residence time near an equilibrium of a perturbed homoclinic
cycle (Stone and Holmes 1990), where λ is the most positive eigenvalue at the saddle
and log = log10. In our case, λ = 0.74 as found in Sect. 3, and the corresponding
slope of line representing the relation between T and log(�) is − ln(10)/λ = −3.11,
consistent with simulations (see Fig. 9c).
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Fig. 8 Schematic diagrams demonstrating trajectories switching between saddles of the heteroclinic
ratchet in Fig. 4b under small additive noise. (a) A trajectory switching randomly between saddles p and
q is shown on the lift of T

3 to R
3 . (b) All possible switchings between saddles p and q with probabilities

under homogeneous noise are plotted as projected onto φ1–φ2 plane

In the absence of detuning, the winding period depends on the noise amplitude in
a similar way but with a multiplier 2, that is, T (ε,0) = 2 T (0, ε). In order to see this,
recall that the heteroclinic ratchet contains one winding trajectory and one nonwind-
ing trajectory from p to q (or from q to p) (see Fig. 4b). Since a solution converging
to a heteroclinic network spends most of its time near equilibria, we can consider the
effect of weak noise as perturbations near the equilibria. Considering the lower (up-
per) equilibrium p (q), nonwinding and winding trajectories are chosen with equal
probabilities in the case of the unbiased homogeneous noise as a result of the presence
of invariant subspace V 2

3 (V 1
3 ). A typical trajectory switching randomly between the

saddles of the heteroclinic ratchet under weak noise is illustrated in Fig. 8a on the lift
of T

3 to R
3, and all possible winding and nonwinding switchings for trajectories are

shown in Fig. 8b where each switching has the same probability 0.5. Therefore, on
average, a trajectory in one winding period visits both equilibria p and q . Thus, the
winding period is twice as large as the winding period for ε = 0 and � > 0 where the
trajectories passes one equilibria in each winding period as only the winding trajec-
tories of the ratchet are visited. The consequence of this can also be seen in Fig. 9b,
where Ω (ε,�) ∼= Ω (0, ε) /2 for 0 < � ≪ ε.

4.3 Frequency Synchronization Without Phase Synchronization

Adding unbiased homogeneous noise (without detuning) can lead to frequency syn-
chronization without phase synchronization; one can have a situation where φ1 and
φ2 are frequency synchronized but φ1 − φ2 is unbounded. This occurs because the
presence of unbiased noise means that the average frequency of the phase slips in the
+φ1 and +φ2 directions should be equal, that is, limt→∞

φ1−φ2
t

= 0.
Using the usual phase variables, we can write this as

lim
t→∞

θ1 − θ3 − θ2 + θ4

t
= 0. (25)
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Fig. 9 Winding frequency Ω plotted against log(�) for (a) � < 0, (b) � > 0 and additive noise of am-
plitude ε. The corresponding winding period T = Ω−1 is plotted in (c) for � > 0. Note that for |�| ≪ ε,
noise dominates causing a �-independent winding, while � > ε implies winding and � < −ε gives no
winding. The winding period T varies linearly with log(�) until noise effects dominate

Due to the symmetry of the system when the detunings are zero, we have Ω34 =
limt→∞

φ3
t

= limt→∞
θ3−θ4

t
= 0. Thus, (25) implies Ω12 = limt→∞

θ1−θ2
t

= 0. As a
result, the oscillator pairs (1,2) and (3,4) are frequency synchronized.

On the other hand, arbitrary small homogeneous noise will cause all oscillator
pairs to lose phase synchronization. Moreover, the oscillator pairs (1,3) and (2,4)

lose their frequency synchronization since noise results in repeated forward phase
slips of the oscillators 1 and 2 due to the winding connections of the ratchet, whereas
the pairs (1,2) and (3,4) maintain their frequency synchronization without phase
synchronization.

4.4 Heteroclinic Ratchets in a System Without Symmetry

Although the system (4) has S2 permutation and T
1 phase-shift symmetries, we show

in this section that these symmetries are not necessary for the existence of a het-
eroclinic ratchet. In fact, for the system (4), the S2 symmetry merely simplifies the
existence and stability discussions in Sects. 3.1 and 3.2 and gives rise to a clear expla-
nation for the emergence of the heteroclinic ratchet via the synchrony-breaking bifur-
cation in Theorem 1. On the other hand, T

1 symmetry makes it possible to describe



J Nonlinear Sci

Fig. 10 Two coupled cell networks that allow heteroclinic ratchets. (a) A 4-cell network with the same
coupling structure as in Fig. 1 but with two different cell types. This network has no permutation symmetry.
(b) A 6-cell network with identical cells

heteroclinic connections between periodic orbits of (4) by heteroclinic connections
between saddle equilibria of (8) with the help of the phase-difference reduction.

In order to see that S2 and T
1 symmetries are not necessary for the existence of

heteroclinic ratchets, we consider a perturbed system of (4) on T
4:

θ̇1 = ω + f (θ1; θ2, θ3) + α1 cos(θ1),

θ̇2 = ω + f (θ2; θ1, θ4) + α2 cos(θ2),

θ̇3 = ω + f (θ3; θ1, θ2) + α1 cos(θ3),

θ̇4 = ω + f (θ4; θ1, θ2) + α2 cos(θ4).

(26)

Note that the above system has the same coupling structure as in Fig. 1, but with
two different cell types, namely the cells 1 and 3 are of one type, and the cells 2 and
4 are of another type as illustrated in Fig. 10a. This is due to the αj cos(θk) terms
in (26). The balanced coloring method from Sect. 2.1 only gives three nontrivial in-
variant subspaces V2, V 1

3 , and V 2
3 , since in the case of different cell types, only cells

of the same type can have the same color. Note that these invariant subspaces are the
ones that contain the saddles and the connections of the heteroclinic ratchet for the
symmetric system (4). Therefore, we expect robustness of the heteroclinic ratchet for
(26) that exists when α1 = α2 = 0. Here, by robustness we mean persistence under
small enough perturbations that preserve the connection structure and cell types, in-
cluding perturbations of the parameters α1 and α2. We denote by p̄(0) and q̄(0) the
saddle periodic orbits of (26) in V2 for α1 = α2 = 0 corresponding to the saddle equi-
libria p and q in Fig. 4 for the phase-difference system (8). In T

4, the heteroclinic
ratchet is between the saddle periodic orbits p̄(0) and q̄(0), whereas the connections
between these are the two-dimensional unstable manifolds of p̄(0) and q̄(0), which
are contained in V 1

3 and V 2
3 , respectively. Similar to the case in the phase-difference

system, p̄(0) (q̄(0)) is a sink in V 2
3 (V 1

3 ) and a saddle in V 1
3 (V 2

3 ). By robustness, we

expect the heteroclinic ratchet in T
4 between the perturbed periodic orbits p̄(α) and

q̄(α) to persist for small enough α1 and α2. In Fig. 11, a solution of the perturbed
system with additive white noise is shown for α1 = 0.01 and α2 = 0.02. Repeated
forward phase slips of the oscillators 1 and 2 are indicators of the presence of a hete-
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Fig. 11 A solution of the system (26) with additive white noise (amplitude = 10−6) for α1 = 0.01 and
α2 = 0.02. Repeated phase slips in specific directions indicate the presence of an attracting heteroclinic
ratchet. The inset shows the oscillations in detail when the first oscillator undergoes a forward phase slip
relative to the others

roclinic ratchet. The inset in this figure shows clearly the transition from one periodic
orbit to another as discussed above, accompanied by a forward phase slip of oscillator
1 relative to the other oscillators.

4.5 Heteroclinic Ratchets in Larger Coupled Oscillator Network

One may expect to observe heteroclinic ratchets in larger oscillator networks. How-
ever, due to the growth in phase space dimension, analysis of heteroclinic ratchets can
be quite complex as these may include unstable manifolds of saddles with dimension
greater than one. Here, we consider the 6-cell network illustrated in Fig. 10b and sim-
ulate the same coupled oscillator dynamics in (1) where N = 6, cij ’s are determined
by the given network structure, and the coupling function g is the same as in (20).
Similar to the example in Sect. 3, ratcheting solutions are found when small additive
noise is applied. The phase differences are illustrated in Fig. 12, which suggests the
existence of an attracting heteroclinic ratchet in T

6.
The network structure given in Fig. 10b can be generalized to 2N -cell networks

to give heteroclinic ratchets in larger-dimensional tori. To analyze the structure of
heteroclinic ratchets in T

N and to find conditions for networks that allow heteroclinic
ratchets are interesting topics motivated by this work.
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Fig. 12 A solution of the coupled oscillator network in Fig. 10b under small additive white noise
(amplitude = 10−4) with zero initial states. The equations for the dynamics are as in (1), (20), and the
parameters are α1 = 1.15, r2 = 0.3, and r3 = −0.1. The phase differences between certain pairs of oscil-
lators increase monotonically which suggest the existence of an attracting heteroclinic ratchet including
connections winding in θ1–θ4, θ2–θ5, and θ3–θ6 directions

4.6 Other Comments

As the existence and robustness of heteroclinic ratchets rely only on the presence of
invariant subspaces and the existence of winding heteroclinic connections, we believe
that heteroclinic ratchets will be present in a variety of coupled dynamical systems.
Moreover, they will not occur in purely symmetry-forced heteroclinic networks be-
cause these will have unstable manifold branches that are symmetrically related.

The four-cell example we have discussed here is interesting in that we believe that
it is in some sense the simplest; for example, robust heteroclinic attractors cannot oc-
cur in fewer than four globally coupled oscillators. In applications, one can think of
the network as a possible dynamical motif (Zhigulin 2004), i.e., a dynamical building
block for a network with a more complex function. Motifs in networks have been in-
vestigated in different areas since the work of Milo et al. (2002), and asymmetrically
coupled small networks are found to exist in neural networks as functional motifs
(Sporns and Kötter 2004).

The analysis of the present system in the presence of detuning shows that extreme

sensitivity to detuning (Ashwin et al. 2006) may be a subtle phenomenon with, for
example, rectification properties, and we conjecture that such dynamical functions
may be of use for information processing, for example, in neural systems.

There remain a number of questions and details to be investigated for the example
presented here; for instance, understanding the detailed dynamics on adding nonzero
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detuning will be quite a challenge, as will be obtaining a full understanding of the
bifurcation structure.
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Appendix: Instability of the Heteroclinic Ratchet for rk = 0, k = 3,4, . . .

In Sect. 3, it is shown that for the system (19), an asymptotically stable heteroclinic
ratchet exists that connects the equilibria p and q . Here, we show that this heteroclinic
ratchet cannot be asymptotically stable if only the first two harmonics of the coupling
function are considered. That is,

g(x) = − sin(x + α1) + r2 sin(2x + α2). (27)

The equilibria p = (0,0,p3) and q = (0,0,2π − p3) in V2 are given by

p3 = cos−1
(

cosα1

2r2 cosα2

)

. (28)

This can be obtained from (19) by setting φ1 = φ2 = φ̇3 = 0. Let us calculate the
eigenvalues at p. Linearizing (19) at p gives

λ∓(p) = g′(∓p) + 2g′(0), λ0 = g′(p) + g′(−p), (29)

where λ+(p) and λ−(p) correspond to the eigenvectors in V 1
3 \ V2 and V 2

3 \ V2,

respectively, and λ0(p) is the eigenvalue corresponding to the eigenvector in V2 =
V 1

3 ∩ V 2
3 .

Without loss of generality, we assume that the heteroclinic network connects the
equilibrium p to its symmetric image q = ρ(p) on V 1

3 and q to p on V 2
3 . Then,

for the asymptotic stability of the heteroclinic network, the following conditions are
necessary:

Existence of saddles p and q (from (28)):

∣

∣

∣

∣

cosα1

2r2 cosα2

∣

∣

∣

∣

< 1. (30)

Existence of connections on V 1
3 : λ0(p) = g′(p) + g′(−p) < 0, (31)

λ+(p) > 0, λ−(p) < 0. (32)

Asymptotic stability condition (Melbourne 1989):

∣

∣

∣

∣

λ+(p)

λ−(p)

∣

∣

∣

∣

< 1. (33)

Equations (32) and (33) imply

λ+(p) + λ−(p) = g′(p) + g′(−p) + 4g′(0) < 0. (34)



J Nonlinear Sci

We first assume that r2 cosα2 < 0. From (31) we have

− 2 cosp cosα1 + 4r2 cos 2p cosα2 < 0, (35)

− 2 cosp cosα1 + 8r2 cos2 p cosα2 − 4r2 cosα2 < 0. (36)

Substituting (28), we get

cos2 α1

r2 cosα2
− 4r2 cosα2 < 0.

Our assumption then implies that

cos2 α1

4r2
2 cos2 α2

> 1,

which contradicts (30). On the other hand, if we assume that r2 cosα2 > 0, the con-
dition (34) cannot be satisfied since

λ+(p) + λ−(p) = g′(p) + g′(−p) + 4g′(0)

= −2 cosp cosα1 + 8r2 cos2 p cosα2 − 4r2 cosα2

− 4 cosα1 + 8r2 cosα2,

and substituting (28), one gets

λ+(p) + λ−(p) = −
cos2 α1

r2 cosα2
+

2 cos2 α1

r2 cosα2
+ 4r2 cosα2 − 4 cosα1

=
(

cosα1√
r2 cosα2

− 2
√

r2 cosα2

)2

≥ 0.

Thus, (34) is not satisfied.
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