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Abstract

The identification of somatic activating mutations in JAK21–4 and in the thrombopoietin receptor

(MPL)5 in the majority of myeloproliferative neoplasm (MPN) patients led to the clinical

development of JAK2 kinase inhibitors6,7. JAK2 inhibitor therapy improves MPN-associated

splenomegaly and systemic symptoms, but does not significantly reduce or eliminate the MPN

clone in most MPN patients. We therefore sought to characterize mechanisms by which MPN cells

persist despite chronic JAK2 inhibition. Here we show that JAK2 inhibitor persistence is
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associated with reactivation of JAK-STAT signaling and with heterodimerization between

activated JAK2 and JAK1/TYK2, consistent with activation of JAK2 in trans by other JAK

kinases. Further, this phenomenon is reversible, such that JAK2 inhibitor withdrawal is associated

with resensitization to JAK2 kinase inhibitors and with reversible changes in JAK2 expression.

We saw increased JAK2 heterodimerization and sustained JAK2 activation in cell lines, murine

models, and patients treated with JAK2 inhibitors. RNA interference and pharmacologic studies

demonstrate that JAK2 inhibitor persistent cells remain dependent on JAK2 protein expression.

Consequently, therapies that result in JAK2 degradation retain efficacy in persistent cells and may

provide additional benefit to patients with JAK2-dependent malignancies treated with JAK2

inhibitors.
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The development of targeted therapies has improved outcomes for patients with kinase-

mutant malignancies8–11 however acquired resistance due to mutations in the target

kinase12–14 or in other pathways that render cancer cells insensitive to kinase inhibitor

therapy15–18 remain important clinical concerns. Although JAK inhibitors are now being

used to treat MPN patients, to date JAK inhibitor treatment has not been associated with

significant reductions in disease burden in most MPN patients6,7. To understand

mechanisms by which MPN cells survive despite chronic JAK kinase inhibition, we

performed saturation mutagenesis19 and next-generation sequencing in cells exposed to two

structurally different JAK2 inhibitors, INCB18424 and JAK Inhibitor I. We identified

second-site mutations in <30–50% of cells exposed to JAK2 inhibitors (Supplementary

Table 1). Full length resequencing of clones proliferating in the presence of INCB18424 or

JAK Inhibitor I confirmed the absence of second-site JAK2 mutations in the majority of

surviving clones, and we did not identify second-site JAK2 mutations in granulocytes from 5

MPN patients treated with INCB18424. By contrast, control experiments with mutagenized

BCR-Abl cells exposed to imatinib identified >20 known, clinically relevant imatinib

resistance alleles19,20 (data not shown).

These data and clinical experiences to date suggest that the failure of JAK2 inhibitors to

reduce disease burden is not due to acquired drug resistance but rather due to persistent

growth and signaling in the setting of chronic JAK2 kinase inhibition. We therefore

investigated the basis by which JAK2-dependent cells persist despite chronic JAK2 kinase

inhibition. We cultured SET-2/UKE-1 (JAK2V617F positive leukemia) cells and Ba/F3 cells

expressing JAK2V617F (EporVF) or MPLW515L (WL) cells with INCB18424 or JAK

inhibitor I for 4–6 weeks. In each case, we found that JAK2/MPL-mutant cells could survive

and proliferate at inhibitor concentrations sufficient to prevent growth of parental cells

(Figure 1a and Supplementary Figures 1a and 2a). JAK2 inhibitor persistent (JAK2Per)

JAK2Per cells were resistant to INCB18424-induced apoptosis (Supplementary Figure 3).

JAK2 resequencing confirmed the absence of second-site mutations in all JAK2Per cell lines.

JAK2Per cells were also insensitive to structurally divergent JAK inhibitors, including

TG101348, a JAK2-selective inhibitor in late-stage clinical trials (Figure 1b and
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Supplementary Figures 1b, 1c, 2b and 4). These data indicate that JAK2Per cells are

insensitive to different JAK inhibitors regardless of prior exposure to that inhibitor.

These data are consistent either with selection of a subpopulation of pre-existing, persistent

cells, as previously posited for EGFR inhibitor-insensitive “drug-tolerant persisters”

(DTPs)21, or with acquisition of persistence by naïve, inhibitor-sensitive cells. To

distinguish between these possibilities, we derived single cell clones of inhibitor naïve

JAK2/MPL mutant cell lines. Each clonally derived naïve cell line was sensitive to JAK

inhibitors and retained the capacity to become persistent over time to different JAK

inhibitors (Supplementary Figure 5 and data not shown). These data depict a general

capacity for persistence in the absence of clonal selection.

Next, we assessed signaling downstream of JAK2 in JAK2Per cells. We observed dose-

dependent inhibition of downstream signaling in naïve cells treated with INCB18424 or

JAK Inhibitor I, but not in INCB18424Per (Figure 2a and Supplementary Figure 6a) or JAK

Inhibitor IPer cells (Supplementary Figure 6b). Similarly, ex vivo treatment of granulocytes

from chronically treated INCB18424 patients demonstrated sustained downstream signaling

at inhibitor concentrations that inhibited signaling in naive MPN patient samples (Figure

2b). We then asked whether persistence was associated with constitutive JAK2 activation.

We observed persistent phosphorylation of JAK2 in JAK2Per cells (Supplementary Figures

2c and 6c). Further, gene expression analysis showed that expression of known JAK-STAT

target genes were maintained in JAKPer cells, whereas these genes were suppressed with

acute treatment of inhibitor naïve, parental cells (Supplementary Figure 7).

Given that JAK inhibitors should inhibit JAK2 autophosphorylation, we reasoned that other

kinases might associate with and phosphorylate JAK2 in persistent cells. Although EpoR

and MPL predominantly signal through JAK2,22 previous studies have shown that many

cytokine receptors signal through JAK kinase heterodimers23. We therefore assessed the

activation status of JAK1, JAK3, and TYK2 in naïve and persistent SET-2 and WL cells.

We observed increased phosphorylation of JAK1 in JAK2Per cells compared to parental

cells while TYK2 was constitutively phosphorylated in both parental and JAK2Per cells

(Figure 2c). Accordingly, immunoprecipitation studies demonstrated that JAK1 and TYK2

associated with phosphoJAK2 in JAK2Per SET-2, WL (Figure 2d) and UKE-1

(Supplementary Figure 2d) cells, but not in the respective parental cells. Most importantly,

we saw similar association between phosphoJAK2 and JAK1/TYK2 in INCB18424 treated

patient samples but not in inhibitor naïve patient samples (Figure 2e and Supplementary

Table 2).

Next, we asked whether the JAKPer cells were insensitive to JAK inhibitors. In vitro kinase

assays revealed that the JAKPer heterodimer complex could phosphorylate MBP at

concentrations of INCB18424 sufficient to inhibit JAK2 kinase activity in naïve SET-2 cells

(Supplementary Figure 8). These data suggest that the heterodimer complex in JAKPer cells

retains kinase activity that is relatively insensitive to JAK inhibitors. To determine if JAK1-

mediated phosphorylation of JAK2 was insensitive to INCB18424, we co-expressed a

constitutively active mutant form of JAK1 (JAK1V658F)24 with kinase-dead JAK2

(JAK2K882E) in JAK2-deficient γ2A cells. We observed persistent JAK2 phosphorylation
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in JAK1V658F/JAK2K882E γ2A cells exposed to INCB18424 at concentrations sufficient

to inhibit JAK2 autophosphorylation (Supplementary Figure 9).

We then investigated whether JAK2 inhibitor persistence was reversible. We removed

INCB18424 or JAK inhibitor I for 2–4 weeks which led to JAK inhibitor resensitization

(Figure 3a and Supplementary Figures 10a and 10b). Resensitized (JAK2Resens) cells were

sensitive to all 3 JAK inhibitors, suggesting MPN patients may respond to retreatment or to

a different JAK2 inhibitor after brief treatment withdrawal. JAK1/TYK2 association with

phosphoJAK2 was lost in JAK2Resens cells (Figure 3b and Supplementary Figure 10c), and

activated JAK2 levels were lower in JAK2Resens cells (Supplementary Figure 10d).

Previous work attributed persistence in EGFR inhibitor-insensitive DTPs21 to engagement

of alternate survival pathways. By contrast, JAKPer cells were characterized by JAK-STAT

pathway reactivation (Figure 2). We therefore hypothesized that changes in the epigenetic

regulation of JAK2 might contribute to JAK inhibitor persistence. JAK2 mRNA

(Supplementary Figure 11) and JAK2 protein (Figure 3c and Supplementary Figures 2e and
10e) levels were higher in JAK2Per cells compared to parental cells, and were reduced in

JAK2Resens cells. ChIP-Seq analysis of naïve JAK2-mutant SET-2 cells (M.A., O.A.W.,

B.E.B., R.L.L., unpublished data) revealed that the JAK2 locus is characterized by H3K4-

trimethylation, a histone modification associated with active promoters, and by H3K9-

trimethylation, a mark more typically associated with inactive heterochromatin

(Supplementary Figure 12a and Supplementary Table 3). ChIP-PCR analysis of the JAK2

locus demonstrated a significant increase in H3K4me3 and a reduction in H3K9me3 in

JAK2Per cells compared to parental cells (Figure 3d) consistent with a change to a more

active chromatin state at the JAK2 locus. Global H3K4me3 levels in naïve and persistent

cells, however, remained unchanged consistent with specific effects on H3K4me3 at the

JAK2 locus in persistent cells (Supplementary Figure 12b).

Given that JAK2 protein levels and particularly phosphoJAK2 levels increased with

persistence, we asked whether JAK2 inhibitor persistence was also associated with post-

transcriptional stabilization of total/activated JAK2. We have previously shown that JAK2

levels rapidly decline with cycloheximide treatment in JAK2-mutant cells25. We noted a

time-dependent decrease in phosphoJAK2 and total JAK2 levels in naïve and resensitized

WL/SET-2 cells, however cycloheximide exposure did not result in a significant decline in

JAK2, or more notably in phosphoJAK2, in INPer cells (Figure 3e and Supplementary

Figure 13). These data suggest that chronic inhibitor treatment results in stabilization of

activated JAK2, which combined with increased JAK2 mRNA expression facilitates the

formation of heterodimers.

We then assessed whether this phenomenon was observed in vivo. We treated mice

engrafted with MPLW515L-mutant murine bone marrow26 with vehicle or with

INCB18424. INCB18424 treatment was associated with reduced splenomegaly; however the

proportion of malignant cells was not reduced with JAK inhibitor treatment as previously

described (Supplementary Figure 14a)26. INCB18424 treatment was associated with an

increase in JAK2 mRNA and JAK2 protein expression (Supplementary Figure 14b) similar

to that observed in JAK2Per cells. We also observed an increase in JAK2 granulocyte mRNA
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levels in INCB18424 treated patients without clinical/molecular responses, compared to

patients with clinical/molecular responses to INCB18424 (p=0.05) (Figure 3f and
Supplementary Table 2). Finally, consonant with the expression data, we noted increased

JAK2 phosphorylation and increased association between JAK1 and JAK2 in hematopoietic

cells from INCB18424 treated PMF mice (Supplementary Figures 14c and 14d).

We asked whether JAK2Per cells remain JAK2 dependent. JAK2 silencing inhibited

proliferation (Figure 4a), JAK2 activation, and downstream signaling (Figure 4b) in naive

and JAK2Per SET-2 cells consistent with a requirement for JAK2 expression in JAK2Per

cells. These data are consistent with previous studies in prolactin receptor cellular systems

demonstrating that catalytically inactive JAK2 can serve as a scaffold for transactivation and

downstream signaling27. However this had not previously been implicated in JAK-mutant/

dependent malignancies or in the response to JAK kinase inhibitors. Knockdown of JAK1/

TYK2 increased sensitivity of SET-2 INPer and SET-2 JPer cells to INCB18424 and JAK

Inhibitor I, respectively (Figure 4c and Supplementary Figures 15a, 15b and 15c), while the

parental cells remained unaffected by JAK1/TYK2 knockdown (Supplementary Figure 15d).

Further, JAK1/TYK2 knockdown led to decreased downstream signaling and reduced JAK2

phosphorylation in the persistent cells (Supplementary Figures 15e and 15f).

We next assessed whether novel therapeutic approaches might reverse JAK inhibitor

persistence. We previously reported HSP90 inhibitors increase JAK2 degradation in vitro

and in vivo.25 JAK2Per and parental cells were equally sensitive to HSP90 inhibition by PU-

H71, (Figure 4d and Supplementary Figure 16a) and PU-H71 treatment led to JAK2

degradation and inhibited signaling in JAK2Per cells (Figure 4e). Currently available, type I

JAK inhibitors are conformation dependent and can only engage activated JAK2.28 We

therefore tested the effects of BBT-594, a Type II inhibitor which retains the ability to bind

inactive JAK2,28 in JAK2Per cells. BBT-594 inhibited the proliferation, JAK activation, and

signaling of naïve and JAKPer cells to a similar extent (Figure 4f and Supplementary Figures

16b and 16c).

Taken together, our results suggest that kinase inhibitor persistence can occur through

reversible changes in JAK2 expression and transphosphorylation (Supplementary Figure

17). We show that persistent JAK2 activation in the setting of JAK inhibitor exposure allows

cells to survive without reducing dependence on JAK2 expression. Consequently, treatments

which lead to JAK2 degradation (HSP90 inhibitors or HDAC inhibitors)29,30 or which retain

the ability to inhibit JAK2 in persistent cells have the potential to improve therapeutic

efficacy in MPN patients.

Methods summary

Generation of JAK2 Inhibitor-persistent Cells

Cells were cultured continuously in increasing concentrations of INCB18424 or JAK

Inhibitor I for 4–6 weeks. Cells were considered resistant when the IC50 values of the

persistent derivatives was at least twice the IC50 of parental cells (verified by in vitro

inhibitor assays). Persistent cells were cultured continuously in the presence of the JAK2
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inhibitor. For resensitization experiments, inhibitor was withdrawn from the media and cells

were cultured in the absence of the drug for 2–4 weeks.

Knockdown of JAK2 and TYK2 in Human Cell Lines

shRNA for JAK2 was either purchased from the High Throughput Drug Screening Facility

at Memorial Sloan-Kettering Cancer Center, or were a kind gift from Dr. Louis Staudt.

shRNA against TYK2 was a kind gift from Dr. Thomas Look. Whenever required, shRNA

oligonucleotides were cloned into pLKO lentiviral systems. Cell lines were transfected with

lentivirus, and selected using puromycin. siRNA targeting either JAK1 or TYK2 were

purchased from Invitrogen, and used according to manufacturer's instructions.

Murine model and Analysis of Mice

The MPLW515L murine BMT assay was performed as described previously5. Sick mice

were randomized to receive INCB18424 twice daily at 60 and 90 mg/kg or vehicle (0.5%

methylcellulose) by oral gavage. Mice were treated for 28 days or until any one of several

criteria for sacrifice were met, including moribundity, >10% body weight loss, and palpable

splenomegaly extending across the midline. Animal care was in strict compliance with

Memorial Sloan-Kettering Cancer Center guidelines. Bone marrow and spleen cells were

strained and viably frozen in 90% FCS and 10% DMSO.

Additional references, methods and information are in the attached supplement.

Full Methods

Reagents and cell lines

The pan JAK inhibitor, JAK Inhibitor I, was purchased from Calbiochem (Cat. No. 420097).

The JAK1/2 specific inhibitor, INCB18424 was purchased from Chemietek (Indianapolis,

IN, USA). PU-H71 8-(6-iodobenzo[d][1.3]dioxol-5-ylthio)-9-(3-(isopropyl

amino)propyl)-9H-purine-6-amine was synthesized as previously reported31. BBT-594 was

a kind gift from Dr. Thomas Radimerski. 1mM stock aliquots were prepared in DMSO and

diluted in appropriate media prior to use. Antibodies used for Western blotting and

immunoprecipitation included phosphorylated and total JAK2, STAT3, MAPK, AKT and

phosphoSTAT5 (Cell Signaling Technologies, Beverly, MA, USA), Total STAT5 antibody

was purchased from Santa Cruz (Santa Cruz Biotechnology, Santa Cruz, CA, USA), and

Actin from EMD Chemicals (Darmstadt, Germany). JAK1 and TYK2 antibodies were

purchased from BD Transduction, San Diego; CA. Pan phospho-tyrosine antibody was

purchased from Millipore, MA, USA. The generation and maintenance of Ba/F3

hMPLW515L and Ba/F3 EpoR-V617F cells has been described previously5. The

JAK2V617F positive human leukemic cell line SET-2 was grown in RPMI-1640 with 20%

heat-inactivated serum; whereas, UKE-1 (also JAK2V617F positive) cells were grown in

RPMI-1640 with 10% fetal calf serum, 10% horse serum, and 1μM hydrocortisone (Sigma,

Cat. No. H6909). Cycloheximide was purchased from Sigma.
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Knockdown of JAK1, JAK2 and TYK2 using siRNA or shRNA

siRNA against JAK1 and TYK2 were purchased from Invitrogen, and used according to the

manufacturer's instructions. The two siRNA oligonucleotides used for JAK1 knockdown

were GCACAGAAGACGGAGGAAAUGGUAU (JAK1VHS41387) and

GCCUUAAGGAAUAUCUUCCAAAGAA (JAK1VHS41388). siRNA sequence for TYK2

included a combination of two oligonucleotides (TYK2VHS41729

UUCUCAUGGACUGUCUUCAGAAUGG) and TYK2VHS41246

(GCAGCAAGUAUGAUGAGCAAGCUUU). Scrambled siRNA was purchased from

Dharmacon (D-001206-13-20). Cells were transfected with scrambled siRNA, siJAK1,

siTYK2 or both. Viability assays were set up 24 hours post transfection and harvested after

48 hours. Cells were harvested after 72 hours post transfection to verify knockdown and

assess downstream signaling. Persistent cells were cultured in the presence of inhibitor

during the entire experiment. shRNA against JAK2 and TYK2 were kind gifts from Dr.

Louis Staudt and Dr. Thomas Look respectively. shRNA target sequences used for

knockdown of JAK2 were shRNA #1 CTCTTCGAGTGGATCAAATAA and shRNA #2

GCAGAATTAGCAAACCTTATA. The target sequence for shRNA against TYK2 was

CGTGAGCCTAACCATGATCTT. Lentiviral particles were generated using standard

procedures. Cells were spinfected with virus and selected using puromycin. Cell viability

was monitored using trypan blue (for JAK2 knockdown studies), and cells were harvested

10 days after selection in puromycin. JAK2Per cells were cultured in the presence of

respective inhibitors during the entire experiment.

In Vitro Inhibitor Assays, Western Blot Analysis and Immunoprecipitations

Viable cells were plated at 10,000 cells/well in 96 well tissue culture treated plates in 200μL

media with increasing concentrations of the JAK2 inhibitor or PU-H71 in triplicate. 48 hour

inhibitor assays were assessed using the Cell viability luminescence assay (CellTiter-Glo®,

Promega, Cat. No. G7571). Results were normalized to growth of cells in media containing

an equivalent volume of DMSO. The effective concentration at which 50% inhibition in

proliferation occurred was determined using Graph Pad Prism 5.0 software.

For Western blot analysis, cells were harvested after treatment, and processed as described

previously26. For immunoprecipitation experiments, cells were harvested either at steady

state conditions or after 4h incubation with a JAK2 inhibitor. Protein was normalized using

the Bradford dye, and 500–1000 μg of total protein was incubated the appropriate antibody

overnight, followed by incubation with protein-G agarose beads (EMD Chemicals) for a

further 2 hours. Post incubation, cells were washed thrice with cold PBS and boiled with

Laemmli buffer for 12 minutes. Supernatant was loaded onto gels and separated as

previously described26.

Quantitative RT-PCR Analyses

Total RNA was extracted using using the RNeasy Mini Kit (Qiagen) and cDNA was

synthesized using the Verso cDNA Kit (Thermo Scientific). Quantitative PCR was

performed using FastStart Universal SYBR Green Master (Roche) with the following primer

sequences:
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mouse JAK2 F: GATGGCGGTGTTAGACATGA,

mouse JAK2 R: TGCTGAATGAATCTGCGAAA,

mouse β actin F: GATCTGGCACCACACCTTCT,

mouse β actin R: CCATCACAATGCCTGTGGTA,

human JAK2 F: TCTTTCTTTGAAGCAGCAAG,

human JAK2 R: CCATGCCAACTGTTTAGCAA,

human HPRT1 F: AGATGGTCAAGGTCGCAAG,

human HPRT1 R: GTATTCATTATAGTCAAGGGCATATC.

Chromatin Immunoprecipitation (ChIP) assay

We performed ChIP-qPCR and ChIP-Seq analysis in SET2 naïve and JAK2-inhibitor

persistent cells using a previously described ChIP method32. Briefly, chromatin from fixed

cells was fragmented to a size range of 200–700 bases with a Branson 250 Sonifier.

Solubilized chromatin was immunoprecipitated with antibody against H3K4me3 (Abcam

8580), H3K9me3 (Abcam 8898) and H3K27me3 (Upstate 07-449). Each of these antibodies

was validated by Western blots and peptide competitions as previously described32.

Antibody–chromatin complexes were pulled-down using protein A-Sepharose, washed and

then eluted. After cross-link reversal and Proteinase K treatment, immunoprecipitated DNA

was extracted with phenol-chloroform, ethanol precipitated, and treated with RNase. ChIP

DNA was quantified using PicoGreen. For ChIP-qPCR, primer sequences for qPCR tiling

primers across the JAK2 promoter region are listed in Supplementary Table 3. qPCR was

performed on ABI-7500 instrument. For ChIP-Seq in native SET2 cells, ChIP DNA and

input controls were sequenced using the Illumina Genome Analyzer.

In vitro kinase assays

Protein was harvested from naïve and INPer SET-2 cells and used for in vitro kinase assays.

Endogenous JAK2 protein was precipitated with anti-JAK2 antibody (Santa Cruz, Cat. No.

sc-34480) and Protein G Sepharose gel. For JAK2 activity assay, the immunoprecipitated

JAK2 was incubated with Myelin Basic Protein (MBP) in a buffer containing 25 mM Tris-

HCl (pH7.5), 10mM MgCl2, 5 μM ATP and 2 mM DTT. The reaction was incubated at

room temperature with 1 and 10 nM INCB18424 for an hour and stopped by adding the SDS

sample loading buffer. Samples were run in reducing conditions on SDS-PAGE gels and

immunoblotted using a pan phospho tyrosine antibody (Millipore).

Patient samples

The Institutional Review Boards of Memorial Sloan Kettering Cancer Center and MD

Anderson Cancer Center approved sample collection and all experiments. Informed consent

was obtained from all human subjects prior to study. Granulocytes were extracted using

standard procedures from patient samples and viably frozen prior to use.
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Gene expression analyses

Ba/F3 WL cells were treated with either DMSO or 0.8 μM INCB18424 for 4 hours in

triplicates. INPer WL cells were also treated for 0.8 μM INCB18424 for 4 hours in triplicates

after which cells were harvested in Trizol. RNA was extracted from the cells and analyzed

for gene expression using Affymetrix microarray version MOE 430 2.0. Data was analyzed

using the Partek GS Version 6.5 software. Data has been deposited in the Gene Expression

Omnibus under accession number GSE38335.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Generation of JAK2 inhibitor-persistent cells
a) Proliferation of naïve and persistent SET-2 (i) and WL (ii) cells with JAK2 inhibitors.

Data are from wells plated in triplicate (S.D.), and are representative of 3 independent

experiments. b) IC50 values of SET-2 INPer and WL INPer cells exposed to INCB18424,

TG101348, and JAK Inhibitor I.
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Figure 2. Inhibitor-persistent cells and INCB18424 treated patient granulocytes show continual
JAK-STAT signaling and JAK2 activation via transphosphorylation by JAK1/TYK2
a) SET-2 and SET-2 INPer cells were washed and incubated with increasing concentrations

of INCB18424 for 4 hours and western blotted. b) Granulocytes from naïve and

INCB18424-treated patients were incubated ex vivo with DMSO or 150 nM of INCB18424

for 6 hours and western blotted. c) Increased phosphorylation of JAK1 in persistent cells and

constitutive TYK2 phosphorylation in both naïve and persistent cells. d) Increased

association between phosphoJAK2 and both TYK2/JAK1 in SET-2 JAKPer cells and

increased association between JAK2 and both TYK2/JAK1 in WL JAKPer cells. e) JAK1/

TYK2 association with phosphoJAK2 in granulocytes from 3 INCB18424 treated patients,

which is not observed in INCB18424 naïve MPN samples.
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Figure 3. JAK2-Inhibitor persistence is reversible and JAK2 levels correlate with persistence/
resensitization
a) Percent viability of SET-2 INPer and SET-2 INResens cells at 0.25μM JAK Inhibitor I,

0.25μM INCB18424 and 2μM TG101348, data are from wells plated in triplicate (S.D.), and

are representative of 3 independent experiments. b) Loss of JAK1/TYK2 association with

phosphoJAK2 in SET-2 and WL INResens cells. c) Reversible changes in JAK2 levels in

INPer cells compared to naïve and INResens SET-2 and WL cells. d) ChIP-PCR of JAK2

locus shows increased H3K4me3 and decreased H3K9me3 marks in SET-2 INPer cells. e)

PhosphoJAK2 and total JAK2 levels are degraded upon cycloheximide treatment (500 μg/ml

for 2, 4 and 6 hours) in naïve and resensitized WL cells, but not in INPer cells. f) Higher

JAK2 levels in INCB18424 treated MPN granulocytes by qRT-PCR compared to those in a

small cohort of best responders.
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Figure 4. Transphosphorylation of JAK2 by JAK1/TYK2 contributes to persistence and
persistent cells can be targeted using Type II JAK2 inhibitors or HSP90 inhibition
a) SET-2 cells were transfected with scrambled pLKO or JAK2 shRNA. Viability after 10

days of puromycin selection relative to cell numbers on day 1 is shown, results are from 3

biologic replicates, S.E.M. is shown. b) JAK2 knockdown inhibits signaling in puromycin

selected sensitive and persistent SET-2 cells. c) INPer SET-2 cells were partially resensitized

to INCB18424 following loss of JAK1 or JAK1+TYK2 using siRNA. Data are from wells

plated in triplicate (S.D.), and are representative of 3 independent experiments. d) Naïve and

persistent SET-2 cells are inhibited by PU-H71, data are from wells plated in triplicate

(S.D.), and are representative of 3 independent experiments. e) PU-H71 degrades JAK2,

inhibits signaling in SET-2 cells. Cells were treated with DMSO or 2 μM PU-H71 (SET-2)

and 1 μM PU-H71 (WL) for 16 hours. f) 4 hour treatment with BBT-594 inhibits signaling

in naïve and persistent SET-2 cells.
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