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Abstract
Lung cancer diagnosis is a challenge since it is also one of the 
most frequently diagnosed cancers. Diagnostic challenges 
are deeply related to the development of personalized ther-
apy and molecular and precise histological characterizations 
of lung cancer. When addressing these features, it is very im-
portant to acknowledge the issue of tumour heterogeneity, 
as it imposes several questions. First of all, lung cancer is a 
very heterogeneous disease, at a cellular and histological 
level. Cellular and histological heterogeneity are addressed 
with emphasis on the diagnosis, pre-neoplastic lesions, and 
cell origin, trying to contribute to a better knowledge of car-
cinogenesis. Molecular intra-tumour and inter-tumour het-
erogeneity are also addressed as temporal heterogeneity. 
Lung cancer heterogeneity has implications in pathogenesis 
understanding, diagnosis, selection of tissue for molecular 
diagnosis, as well as therapeutic decision. The understand-
ing of tumour heterogeneity is crucial and we must be aware 
of the implications and future developments regarding this 
field. © 2018 S. Karger AG, Basel

Introduction

Lung cancer is one of the most frequently diagnosed 
cancers, especially in developed countries. Despite recent 
developments in the diagnosis, classification, and therapy, 
the overall survival is still poor. Better understanding of 
the pathology of these tumours, especially molecular pa-
thology, is necessary to accumulate knowledge in order to 
better address this issue, aiming at personalized therapy. 

Tumour heterogeneity has been described in several 
tumours and it has been addressed in several ways: histo-
logical, cellular, and molecular/genetic. Lung cancer con-
stitutes a group of heterogeneous tumours, with several 
differentiation types, recognized by the WHO classifica-
tion of lung tumours. In this classification, the impor-
tance of molecular characterization of lung cancer is rec-
ognized. 

Tumour heterogeneity has an important impact not 
only on tumour classification but also on defining prog-
nosis and therapy decision. So, it is crucial to understand 
the implications of tumour heterogeneity in daily diagno-
sis routine.

The authors aim to address tumour heterogeneity in 
lung cancer, exploiting histological, cellular and molecu-
lar heterogeneity. They intend to review the heterogene-
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ity issue, discussing and reflecting on lung heterogeneity 
and addressing the new WHO classification and several 
published knowledge.

Histological and Cellular Heterogeneity in Lung 
Cancer

Lung cancer is a heterogeneous group of cancers. Im-
provements in the histological classification are continu-
ously being made. The new WHO classification of lung 
tumours has recently been published. This classification 
takes into account the great histological heterogeneity in 
lung cancers. It recognizes several types of lung cancers, 
such as epidermoid carcinomas, adenocarcinomas, small 
cell lung carcinomas, large cell carcinomas, large cell neu-
roendocrine carcinomas, adenosquamous carcinomas, 
sarcomatoid and pleomorphic carcinomas, and several 
other types. Non-small cell lung cancer reporting is not 
acceptable without an immunohistochemical profile to 
achieve differentiation as well as to identify genetic altera-
tions and biomarkers, some with predictive value for ther-
apy decision. Small biopsies are prone to identify CK7/
TTF1, CK5.6/p40, and vim/neuroendocrine markers. Bi-
opsies keep being the most representative tissue to classify 
and treat pulmonary carcinomas due to the high percent-
age – 70% – of tumours diagnosed in a non-surgical way.

This great variety of histopathologic diagnosis reflects 
tumour heterogeneity that could be explained by differ-
ent cells of origin or differentiation pathways.

Even in carcinomas like squamous cell carcinomas or 
adenocarcinomas heterogeneity has been found, as histo-
logical subtypes have been defined. For instance, variants 
of squamous cell carcinoma are recognized. The same is 
true for adenocarcinomas. These histopathological sub-
types have diagnostic, prognostic, therapeutic and demo-
graphic distinct features. So, although similar in differen-
tiation, they represent different tumours, thus reinforcing 
that heterogeneity is a feature of these tumours.

Histological and cellular heterogeneity in lung cancer 
is also well proven when we look for tumours with more 
than one type of differentiation. Adenosquamous carci-
nomas are a good example. They clearly demonstrate het-
erogeneity at the cellular level as we can find cells with 
adenocarcinoma differentiation markers like CK7 and 
TTF1 as well as with squamous differentiation markers 
such as CK5/6 or other high-molecular-height cytokera-
tins. This is also true for pleomorphic carcinomas where 
we can find areas with squamous or adenocarcinoma dif-
ferentiation and giant and/or fusiform cells. 

Cellular heterogeneity is also observed in combined 
tumours such as small cell lung carcinomas combined 
with other lung carcinomas such as adenocarcinoma or 
squamous cell carcinoma or large cell neuroendocrine 
carcinomas combined with other carcinomas.

This cellular heterogeneity could be, at least in part, 
explained by different cell origins. Pre-neoplastic lesions 
for some lung carcinomas are defined.

Two repair/carcinogenic pools of adult stem cells have 
been reported and are related to pulmonary carcinoma 
heterogeneity: the TRU – terminal respiratory unit; i.e., 
the respiratory bronchiole and adjacent alveolar duct/
septae – and the adult central respiratory epithelium till 
the TRU. Embryonic development of human-induced 
pluripotent stem cells after induction of adult fibroblasts 
in mouse skin has demonstrated the whole embryonic 
potential informing about the repair/adaptation and the 
possibilities of the intermingling of meso/ecto/endoderm 
in one single cell. In this preliminary study, CK7, CK5.7, 
TTF1, VIM, CD56, and Ki-67 demonstrated to be enough 
to classify carcinomas according to cellular populations/
heterogeneity. Similar results have been obtained with 
chromium treatment of both fibroblasts and normal 
bronchial cells in contact where epithelial-mesenchymal 
transition was revealed.

It is well known that squamous cell carcinomas have a 
basal cell origin (in the respiratory epithelia), demon-
strated by our group and several other investigators. The 
sequence basal cell hyperplasia – squamous metaplasia – 
squamous dysplasia – squamous carcinoma is well de-
fined. Our research group also demonstrated molecular 
changes in this spectrum of lesions, reflecting the severity 
and biological aggressiveness along the spectrum of le-
sions, using immunohistochemical markers such as Ki-
67, p53, EGFR, and HER2 and also evaluating EGFR and 
HER2 gene copy number [1]. 

We have studied EGFR expression in these pre-neo-
plastic lesions, demonstrating its increasing expression in 
lesions in this spectrum; therefore, EGFR and its respec-
tive pathways may play a role in early steps of epidermoid 
carcinoma development, reflecting the importance of 
EGFR signalling transduction pathways in pre-neoplastic 
lesions [1]. Other studies also corroborate these results 
[2–9]. On the other hand, it seems that HER2 might not 
be involved in the first steps of epidermoid cancer devel-
opment; other studies have found identical results [8,  
10, 11].

EGFR, Ki-67, and p53 might play a role in the identi-
fication of epidermoid carcinoma pre-neoplastic lesions 
at higher risk of developing epidermoid carcinoma [1]. 
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An increasing expression of these markers was observed 
[1]. The study reinforced the utility of Ki-67 as a biomark-
er for dysplasia, a group of pre-neoplastic lesions charac-
terized by a higher proliferative index, also identified by 
other authors [1, 12–17].

Atypical adenomatous hyperplasia is considered as an 
adenocarcinoma pre-neoplastic lesion. Peripheral adeno-
carcinomas have their origin in epithelial cells of the 
TRU, like pneumocytes, with CK7 and TTF1 expression. 
Nevertheless, we must consider that more central adeno-
carcinomas have a different cell of origin as they develop 
upstream the TRU. So, it is hypothesized that the origin 
is in cylindrical cells of the respiratory tract. Also, adeno-
carcinomas can clearly have a lung differentiation dem-
onstrated by CK7 and TTF1 positivity, but some lung ad-
enocarcinomas express CK20 and are TTF1 and CK7 
negative, revealing a colonic-like expression. Another 
perspective is to observe the way cells are organized. Sev-
eral patterns of cellular organization can be observed. 
These different patters may reflect not only cellular type/
differentiation but molecular differences that could ex-
plain cellular organization and even biological behaviour, 
as well as prognostic and therapeutic differences in be-
tween patterns. Our research group has been addressing 
lung carcinomas considering histological patterns, espe-
cially in adenocarcinomas but also exploring adenosqua-
mous and pleomorphic carcinomas [18]. For instance, we 
proved the relevance of pattern classification demon-
strating that adenocarcinomas are molecularly different 
from normal adjacent tissue, and that acinar and BA/lep-
idic patterns are the most alike and papillary patterns the 
most different [18]. Cluster analysis revealed three clus-
ters: papillary, solid, and a group composed of acinar, BA/
lepidic and micropapillary patterns [18]. Papillary and 
solid patterns revealed lower TTF1 expression (identical 
to normal tissue), exhibiting a non-TRU/bronchial phe-
notype [18]. Acinar, BA/lepidic and micropapillary pat-
terns showed higher TTF1 expression corresponding to 
TRU origin [18]. These patterns, especially lepidic and 
acinar, being TTF1-positive, are those where EGFR mu-
tations are said to be more frequent [18]. TTF1 expres-
sion, identifying possible TRU origin, defines a subgroup 
of adenocarcinomas with molecular and biological par-
ticularities [18]. The solid pattern also revealed lower 
HER2 and higher EGFR and ERCC1 expression (com-
pared to papillary) [18]. In solid patterns, EGFR pathway 
activation was related to EGFR overexpression [18]. We 
stated that adenocarcinomas with a solid pattern were less 
differentiated adenocarcinomas, with a worse prognosis 
[18]. Papillary patterns showed higher HER2 and lower 

ERCC1 expressions. It seems that impaired DNA repair 
mechanisms are implicated in carcinogenesis when the 
papillary pattern is dominant [18]. Adenocarcinomas 
showed higher TTF1 expression in acinar, BA/lepidic and 
micropapillary patterns corresponding to TRU adeno-
carcinomas that express TTF1 [18, 19], probably related 
to a better prognosis when compared to non-TRU-type 
adenocarcinomas [20]. This is also highlighted by some 
authors that identified an inverse correlation between 
TTF1 and Ki-67, a marker of proliferation and biological 
aggressiveness [21]. We identified higher TTF1 expres-
sion in acinar and lepidic patterns, in TRU-type adeno-
carcinomas, corroborating the published results [18]. 
TTF1, expressed in TRU-type adenocarcinomas, has 
been associated with good prognosis [21–26].

However, Pelosi et al. [27] did not find a correlation 
between TTF1 expression and prognosis. Several studies 
identified a correlation between TTF1 expression, like 
TRU-type adenocarcinomas, and EGFR mutations [28, 
29]. TRU-type adenocarcinomas have also been associ-
ated with EGFR mutations [28–32]. It is also known that 
EGFR mutations are more frequent in lepidic and acinar 
patterns. EGFR protein expression has been described as 
more frequent in TRU-type adenocarcinomas as well as 
in epidermoid lung carcinomas [33]. 

The micropapillary pattern had higher retinoblastoma 
protein (RB) expression, and the acinar pattern lower 
ERCC1 and higher EGFR expression when compared 
with normal tissue [18]. Cyclin D1 seemed to be relevant 
in acinar and BA/lepidic patterns and not related to the 
micropapillary pattern [18]. 

ERCC1 protein expression in micropapillary, solid 
and BA/lepidic patterns indicated DNA repair preserva-
tion, while in acinar and papillary patterns, there was low-
er expression [18]. Lung cancer with higher ERCC1 ex-
pression was associated with cisplatin-based chemother-
apy resistance as ERCC1 acts by removing DNA adducts, 
which relates to poor prognosis [34–39].

These differences identified between the adenocarci-
noma patterns represent a form of heterogeneity with im-
plications in the diagnosis, pathogenic understanding, 
and therapeutic outcome.

We can also argue that carcinogens could have a role 
in determining heterogeneity as some lung carcinomas 
are more frequently diagnosed in smokers or ex-smokers, 
such as small cell lung carcinoma and squamous cell car-
cinoma, and some other carcinomas, like adenocarcino-
ma, are being diagnosed in never-smokers. However, 
there are adenocarcinomas related to smoking and others 
not related to smoking. This fact indicates that the envi-



Heterogeneity in Lung Cancer 99Pathobiology 2018;85:96–107
DOI: 10.1159/000487440

ronment is also a determinant of tumour heterogeneity, 
as different exposure histories are related to different ge-
netic and molecular changes, explaining the histological 
heterogeneity. Also, we know that several lung patholo-
gies/conditions are associated with an increased risk of 
lung carcinoma, such as lung fibrous/scar areas and lung 
interstitial diseases. These diseases could constitute a field 
of cancerization, and some may share molecular path-
ways with the lung cancers, such as pathways implicated 
in epithelial mesenchymal transition (EMT).

Tobacco and professional or other exposure inhaling 
demand cellular remodelling and adaptation of the basal 
cells in either TRU or respiratory epithelium, with conse-
quent hyperplasia of vimentin-positive cells and TTF1 
bronchial-positive cells, demonstrated in carcinomas 
arising after molecular transformation in less matured 
cells, and consequently, in multi-patterned carcinomas 
and in pleomorphic carcinomas. This approach facilitat-
ed pulmonary carcinoma classification in biopsies but 
does not correlate directly with metastatic potentiality.

Histological heterogeneity is also observed in the dif-
ferentiation grade. For instance squamous cell lung car-
cinoma could be classified as well or poorly differentiated. 
The degree of differentiation is associated with a greater 
biological aggressiveness and poor outcome. 

So, only by looking for cellular and histological hetero-
geneity can we say that lung carcinomas are a good mod-
el for cancer heterogeneity study. Cancer heterogeneity is 
a constant and identified in other organs and system of 
organs.

Several authors recognize morphologic heterogeneity 
in lung adenocarcinomas and the WHO recommends re-
porting the patterns present as well as the most prevalent 
pattern. These patterns have prognostic value, with the 
lepidic pattern having better prognosis and the micro-
papillary and solid pattern having worse prognosis. This 
morphologic heterogeneity also has therapeutic implica-
tions as patients with solid and micropapillary patterns 
benefit more from adjuvant chemotherapy [40–42].

We also know that different molecular expression pat-
terns are associated with heterogeneity as well as with 
prognosis. The differential expression of several molecu-
lar markers, such as c-erb-2, bcl-2, p53, p63, rb, egfr, and 
neuroendocrine markers, reinforces the utility of pattern-
based classification [40, 41].

Morphologic heterogeneity has clear prognostic im-
plications. We clearly know that the histological type is 
associated with prognosis (for instance small cell carci-
noma has worse prognosis and in situ adenocarcinoma 
and typical carcinoid have better prognosis). Also, the 

histological subtype is associated with prognosis (for in-
stance, well-differentiated squamous cell carcinoma 
compared to basaloid squamous cell carcinoma and typi-
cal carcinoid compared to atypical carcinoid) [42–45].

We all also recognize that morphologic or histologic 
heterogeneity has therapeutic implications especially as 
the prevalence of molecular targetable changes differs in 
between histologic subtypes [42, 45, 46]. For instance, 
EGFR mutations are more frequently identified in lung 
adenocarcinoma, especially arising from the TRU, and 
also more frequently identified in some patterns like lep-
idic, papillary and acinar patterns [45, 47]. ALK translo-
cations are more prone to be identified in lung adenocar-
cinomas and in acinar, solid and signet cell morphology 
[45, 48–50]. However, there are some conflicting results 
as some authors identify EGFR mutations in all the pat-
terns of lung adenocarcinomas; these authors identified 
an association of KRAS and BRAF mutations and high 
nuclear grade [51].

Molecular heterogeneity has been identified in mor-
phologic heterogeneous carcinomas such as in adeno-
squamous cell carcinomas, for KRAS mutations and 
EGFR mutations [52]. Molecular heterogeneity related to 
KRAS mutations status has also been identified in pleo-
morphic carcinomas [53]. By whole-genome sequencing, 
different rates of gene mutations, gene copy number al-
terations, and different protein expression levels and pro-
tein phosphorylation levels were demonstrated, confirm-
ing the association between morphologic and molecular 
heterogeneity [54]. Fang et al. [54] reported that p53 is the 
most frequently mutated gene; KRAS, EGFR, MLL3, and 
STK11 the most frequently mutated genes in adenocarci-
nomas; PI3KCA, SOX2, CDK2, P63, and FGFR1 the most 
frequently mutated genes in squamous cell carcinomas; 
and RB1, MLL2, SMO, and PI3KCA the most frequently 
mutated genes in small cell lung cancer.

Molecular and Genetic Heterogeneity

Tumour molecular and genetic heterogeneity has been 
identified not only in lung tumours but also in other or-
gans. Molecular/genetic heterogeneity has been identi-
fied in breast, gastric, bladder, prostate, pancreatic, as well 
as in lung cancer [55–57].

Only 1/3 of somatic mutations are present in all the 
regions of the same tumour [57]. Intra-tumour heteroge-
neity (ITH) was first described by Fidler [58].

Genetic heterogeneity has been described in lung can-
cer [59–63]. Tumour heterogeneity has been explained by 
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genetic heterogeneity (intra- and inter-tumour heteroge-
neity) and also by non-genetic heterogeneity driven by 
external and internal pressures allowing outgrowth of cell 
subpopulations, some cases depending on selective pres-
sure related to microenvironment and interactions with 
immune and stromal cells or with matrix components 
[61, 62, 64, 65]. 

Molecular heterogeneity could be explained by several 
mechanisms such as by stem cell theories, by genomic or 
chromosomal instability, epigenetics modifications, and 
by adaptation mechanisms in response to microenviron-
ment stimulus [66]. This molecular/genetic heterogene-
ity is associated with resistance to therapy like EGFR-tar-
geted therapy [66].

ITH is also explained by clonal (monoclonal or poly-
clonal) evolution resulting in genetic heterogeneity, by 
selective pressure induced by the microenvironment or 
by chemotherapy favouring one or more than one clone 
of cells, by the EMT theories and by inter-clonal coopera-
tion mechanisms [61, 67–69]. Inter-clonal cooperation is 
also important for metastases, as clones favour metastases 
by sequential or simultaneous cooperation in motility, 
matrix degradation, vascular invasion or distant coloni-
zation [67, 70–74].

Other authors associate tobacco with ITH, as they 
identified EGFR mutation heterogeneity according to ad-
enocarcinoma pattern (more frequent in lepidic pattern) 
and to tobacco habits [75]. Multiple carcinogens present 
in tobacco are related to the development of a field of can-
cerization, where cells tend to accumulate several molec-
ular changes leading to genetic instability and therefore 
favouring heterogeneity. Other authors identified asso-
ciations between gene copy numbers (for EGFR) and in-
tra-tumour mutation heterogeneity [76]. These authors 
propose that non-small cell lung cancer could be strati-
fied into four groups according to ITH: pure mutated; 
pure wild-type, mutated heterogeneous; and wild-type 
heterogeneous. Those tumours with higher or pure mu-
tational rates mutated with better response to EGFR-tar-
geted therapy [76]. 

DNA repair has important implications in cancer. De-
ficient DNA repair function allows genomic instability 
[77, 78]. Genomic instability allows the accumulation of 
mutations thus promoting heterogeneity. DNA repair im-
pairments could also explain the increased sensitivity of 
tumour cells to radiation and chemotherapy and thus 
clonal selection pressure [77, 78]. DNA damage could be 
related to spontaneous hydrolysis, cytosine deamination, 
mismatched bases, and secondary to reactive oxygen spe-
cies (ROS) [77, 78]. Also, anticancer agents, such as alkyl-

ating agents and bleomycin, are responsible for DNA 
breaks [77, 78]. Six different mechanisms are involved: 
mismatch repair, homologous recombination and non-
homologous end joining, translesion DNA synthesis, base 
excision repair, and nucleotide excision repair [77, 78]. 

Several authors and studies revealed molecular/genet-
ic heterogeneity concerning EGFR and KRAS mutations; 
however, conflicting results have been published [79]. Bai 
et al. [76] identified an ITH rate of 28.2% (24/85%); Man-
suet-Lupo et al. [80] identified an ITH rate of 5% (2/40); 
Kim et al. [81] an ITH rate of 2.9% (1/34); Tomonaga et 
al. [75] an ITH rate of 23.7% (9/38); Taniguchi et al. [82] 
an ITH rate of 28.6% (6/21); Zhang et al. [83] an ITH rate 
of 100% (7/7); Zhong et al. [79] found an ITH rate of 
15.4% (10/65), mainly in adenocarcinomas and in some 
studies in squamous cell carcinomas and adenosquamous 
carcinomas. On the other end, other studies and authors 
did not find ITH [29, 84–86]. Some of these works had 
small samples and studied less foci of the same tumour 
compared to the studies where ITH was identified. Other 
authors showed that EGFR mutation heterogeneity is rare 
in primary tumours and metastasis, being higher in mul-
tiple lung nodules, with ITH rates of 9.1%, discordance 
rate between primary and lymph node metastasis of 
10.2%, discordance rate of 14.3% between primary and 
distant metastasis and discordance between multiple lung 
nodules of 24.4% [87].

Zito Marino et al. [88] identified ITH for ALK translo-
cation but no ITH for EGFR in lung adenocarcinomas.

Several authors (Badalian et al. [89], Cortot et al. [90], 
Kalikaki et al. [91], Schmid et al. [92], and Sun et al. [93]) 
identified ITH for KRAS mutation status in adenocarci-
nomas, ranging from 69 to 86%. However, Alsdorf et al. 
[94] reported that intra-tumour KRAS heterogeneity is a 
rare event, without discordance between primary tumour 
and metastasis.

For MET high intra-tumour spatial heterogeneity rate 
was identified in non-squamous lung carcinomas, associ-
ated with worse prognosis [95]. 

Taking into account that most of the authors report 
intra-tumour genetic/molecular heterogeneity, we could 
ask if the small biopsy is representative of the whole ge-
netic panorama of the neoplasia. As the concordance rate 
varies between 68 and 97.1% for EGFR mutation status, 
we could argue that according to our group reports for 
most cases biopsy tissue will be representative, but not in 
some other cases [75, 76, 79–83, 96]. On the other end, 
Zhong et al. [79] and Yatabe et al. [84] stated that EGFR, 
KRAS, and ALK ITH is rare, defending the representative-
ness of the tissue obtained by biopsy. Mansuet-Lupo et al. 
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[80] also showed that EGFR mutations are independent of 
the primary tumour localization, of the type of sample, 
and consistent between primary and metastasis, validat-
ing the use of biopsies. Intra-tumour genetic heterogene-
ity for EGFR or ALK could also explain different TKI re-
sponse rates between patients. Clonal selection and acqui-
sition of new mutations could also be responsible for 
resistance. Re-biopsy or metastasis biopsy is important to 
evaluate therapeutic resistance. As some patients do not 
have conditions to re-biopsy or have inaccessible tumours, 
liquid biopsy is gaining importance and actually is a valid 
tool for diagnosis, evaluation of response, and recurrence 
as well as to address spatial and temporal heterogeneity. 

Temporal genetic/molecular heterogeneity is also be-
ing studied in lung cancer. This could be related with tem-
poral heterogeneity in the primary tumour or between 
primary tumour and metastasis over time. This temporal 
heterogeneity is of great importance in the understanding 
of recurrence and therapeutic resistance. Kim et al. [97], 
by next-generation sequencing, identified infrequent ge-
netic heterogeneity of 16 genes between primary tumour 
and metastasis. Sherwood et al. [98], in a review of 26 ar-
ticles, demonstrated that there are variable discordance 
rates between primary tumour and their metastases. How-
ever, as there is a substantial concordance, the molecular 
diagnosis could be made in the primary tumour or in the 
metastasis, recommending, however, the use of sensible 
methods [98]. The concordance or discordance could be 
explained by sample issues as the percentage of tumour 
cells, by the methodologies applied on diagnosis, by ITH, 
temporal heterogeneity (mutational status evolution), and 
preservation methods and even by the local of metastasis 
[98]. EGFR concordance rate between primary tumour 
and metastasis ranged from 100 to 72% [98]. Kalikaki et 
al. [91] identified concordance rates of 72% (18/25 cases), 
Schmid et al. [92] 94% (90/96), Mansuet-Lupo et al. [80] 
90% (9/10), Sun et al. [93] 91% (73/80), Wei et al. [105] 
94% (47/50), Yatabe et al. [84] 100% (77/77), Shimizu et 
al. [104] 86% (60/70), Park et al. [103] 88% (89/101), Mat-
sumoto et al. [102] 100% (8/8), Luo et al. [101] 93% 
(14/15), Gow et al. [99] 73% (49/67), and Han et al. [100] 
identified a concordance rate of 81% (30/37). KRAS con-
cordance rate between primary tumour and metastasis 
ranged from 100 to 64% [98]. KRAS concordance rates 
identified by different authors were: 76% (19/25) [91]; 
74% (71/96) [92]; 93% (74/80) [93]; 100% (9/9) [94]; 100% 
(15/15) [106]; 64% (7/11) [89]; 71% (15/21) [90]; 81% 
(17/21) [90] (using ARMS); and 97% (36/37) [100].

Lung cancer heterogeneity raises prognostic ques-
tions. Recurrence after therapeutic resistance is one of 

the most important causes of cancer-related death. Re-
sistance mechanisms are related to signal transduction-
redundant activation, new mutations, synergic interac-
tions with the target gene, EGFR inhibition bypass, EMT 
phenotype acquisition, DNA hypermethylation, and 
also related to the emergence of new tumour cell sub-
clones with secondary mutations resistant to previous 
therapy, this event is related to selective pressure and 
heterogeneity (cellular and molecular) [66, 107, 108]. 
Therapeutic selective pressure is associated with EGFR 
TKI resistance [66, 107, 108]. Chemotherapy and tar-
geted therapies are associated with the reduction of the 
number of sensible cell clones and to a higher proportion 
of resistant clones that persists after treatment. After 
chemotherapy, the response rate to EGFR TKIs is lower 
and some authors report a decrease in EGFR mutation 
rate [76, 109, 110]. Chen et al. [87] also demonstrated 
higher intra-tumour and inter-tumour heterogeneity in 
tumours of patients submitted to chemotherapy. Resis-
tance mutations and amplification rates are higher be-
fore EGFR TKIs [66]. EGFR TKIs resistance takes place 
about 10–13 months after EGFR TKIs, related frequent-
ly to EGFR T790M mutation, MET amplification, HER2 
mutation, and KRAS mutation. Anti-ALK therapy resis-
tance is often related to ALK mutations and amplifica-
tions, KIT amplification and EGFR activation. Bai et al. 
[76, 109] showed that patients with tumours showing 
higher EGFR gene copy number had lower ITH and 
those patients with higher heterogeneity had a worse 
prognosis and survival rate. Also they stated that tu-
mours with higher EGFR mutation rates showed better 
EGFR TKI response [76, 109]. Taniguchi et al. [82] also 
demonstrated that time to progression and overall sur-
vival after EGFR TKIs is significantly lower in patients 
with tumours with high ITH.

As expected intra- and inter-tumour genetic and mo-
lecular heterogeneity have important therapeutic impli-
cations. We must also take into account that molecular 
heterogeneity is also reflected when we consider that 
some genes could have different mutations or genetic 
events, some conferring different therapeutic sensibility, 
as described for EGFR mutations where we can also find 
resistance conferring mutations, like T790M EGFR muta-
tion [111]. Other EGFR mutations are associated with less 
sensibility to TKIs (exon 18 G719 and exon 21 L861Q for 
instance), and exon 20 in frame insertion are associated 
with no affinity for TKIs [111].

ITH has also been identified at a metabolic level, some 
with prognostic significance and implications in disease 
progression after chemotherapy [112–115].
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Another important issue is related to molecular het-
erogeneity when dealing with primary and metastatic dis-
ease. Several reports address this problem [58, 93, 98, 104, 
116–118]. Temporal heterogeneity is also an issue to con-
sider, with clinical implications in the clinical follow-up, 
determining the risk of recurrence and metastases, relat-
ed to acquiring resistance to chemotherapy or targeted 
therapy [108, 109, 119–122]. Several authors have been 
addressing these issues. 

To address the questions imposed by spatial and tem-
poral heterogeneity including heterogeneity between 
primary tumour and metastasis and by the selective ther-
apeutic pressure, several authors are recommending the 
sequential sampling of tumour cells or genetic material. 
This could be achieved by liquid biopsy either address-
ing circulating tumour cells or cell-free DNA like  
ctDNA. These approaches are useful in the selection of 
the treatment, monitoring and evaluation of early recur-
rence and minimal residual disease, and resistance ac-
quisition [123–125]. This methodology is also relevant 
when patients show no tolerance to a new biopsy, if there 
are several metastases in different localizations, when 
the tissue is insufficient or has artefacts related for in-
stance to decalcification, when there are problems re-
lated to heterogeneity or when biopsy imposes risks 
[124]. ctDNA can be used to identify resistance to TKIs 
[126–135]. Weber et al. [136] demonstrated a concor-
dance rate of 90% (179/199) for EGFR mutations be-
tween biopsy tissue and ctDNA (plasma) before EGFR 
TKIs. These authors identified EGFR mutations in the 
plasma not identified in the biopsy, probably related to 
sampling issues or heterogeneity [136]. Douillard et al. 
[137] demonstrates a concordance rate of 94.3% be-
tween tumour samples and plasma ctDNA. Mok et al. 
[138] achieved a concordance rate of 88%. Kim et al. 
[139] identified a concordance rate of 87.7% and 5 cases 
(8.7%) with EGFR or KRAS mutations only in plasma. 
However, some studies showed cases where the muta-
tional status evaluated in the plasma did not totally rep-
resent the mutational status in the tumour [108]. Tissue 
is still the choice when it possible to biopsy. In negative 
cases, it is necessary to recur to tissue and to apply more 
sensitive methods. Tissue biopsy is still the gold stan-
dard, but liquid biopsy could be adequate specially to 
overcome the problems related to biopsies.

Genetic/molecular heterogeneity is recognized when 
we consider the most frequent mutations according to the 
histologic type. EGFR, KRAS, P53 mutations and ALK, 
RET, ROS1 rearrangements and EGFR and MET amplifi-
cations are more frequently identified in lung adenocar-

cinomas [77, 140–146]. P53, PI3KCA mutations and 
FGFR1 amplification are more frequently identified in 
lung squamous cell carcinomas [77, 145, 147–150]. RB 
and P53 mutations and MYC amplification are more fre-
quently identified in small cell lung cancer [42, 77, 141, 
151].

Our studies in bronchial-pulmonary carcinomas, 
combining immunohistochemical and molecular pathol-
ogy testing, have demonstrated the following cascades in 
pulmonary carcinomas: epidermoid carcinoma – EGFR 
and HER2 polysomy and CK7/Vimentin for EMT non-
pure epidermoid carcinomas; bronchial-pulmonary ad-
enocarcinomas – non-smoking females – mutated EGFR 
and ERCC1 expression; micropapillary pattern with 
VIM/RB/ERCC1 expression; acinar/BA-lepidic/micro-
papillary patterns express TTF1 and mutated EGFR [18, 
47, 152].

We verified that generally EGFR mutations were pres-
ent in all the patterns of the same adenocarcinoma, rein-
forcing the possibility of mutational status determination 
in biopsies [47]. Some other authors also identified that 
the identification of EGFR mutations was independent of 
the localizations in the primary tumour and concordant 
with metastasis [80]. However, we did find some cases 
where the mutations were not present in all the patterns 
[47]. We also found cases with harbouring different EGFR 
mutations in different patterns, nevertheless all muta-
tions were activating mutations [47]. We have also identi-
fied cases with more than one type of EGFR mutation in 
the same patterns/cells of the same pattern and even have 
published cases with EGFR and KRAS mutation coexis-
tence [47]. These facts are in favour of the tumour hetero-
geneity hypothesis as these complex EGFR mutations 
(coexistence of more than one type) were detected in ad-
enocarcinomas, clearly demonstrating a molecular com-
plexity that might be related to different cell clones or 
genomic instability responsible for the accumulation of 
multiple molecular events in the EGFR gene. 

Our group has also investigated DNA promoter hy-
permethylation according to histologic type. We also 
found heterogeneity when studying MHL1 and MSH2 
gene methylation [153]. A higher prevalence of the MLH1 
gene was identified mainly in squamous cell carcinoma 
(72%) [153]. However, no obvious differences were found 
for MSH2 promoter hypermethylation [153].

FGFR1 was recently considered as a driver oncogene, 
especially for squamous cell carcinoma [154–156]. Some 
authors have identified overexpression and increased 
gene copy number especially in squamous cell carcino-
mas, an example of inter-tumour heterogeneity. 
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In our research, we have evaluated the FGFR1 gene, 
not only in squamous cell carcinoma but also in other 
histological types. We found FGFR1 protein expression 
in all subtypes of lung bronchial-pulmonary carcinomas, 
especially in pleomorphic carcinomas [157]. FGFR1 am-
plification, although more frequent in squamous cell car-
cinoma, was also identified in adenocarcinomas, adeno-
squamous and pleomorphic carcinomas [157]. Higher 
expression in pleomorphic carcinomas suggests that 
overexpression may also be implicated in the activation 
of the EMT pathway [157]. Overexpression could also be 
responsible for tumour growth and proliferation and in-
vasiveness, related with a more aggressive behaviour 
[157].

Inter-tumour heterogeneity can also be identified at a 
metabolic level as some works of our groups of research 
demonstrate [158–162]. Distinct metabolic signatures 
have been found between lung adenocarcinomas between 
adenocarcinomas and squamous cell carcinomas. These 
findings could be identified in several biological speci-
mens as neoplastic tissue, plasma, and urine [158–162]. 
The authors argue that RMN-based technologies could be 
used for diagnostic perposes after validation [158–162].

The development of next-generation sequencing 
methods allowed to easily demonstrate intra-tumour and 
inter-tumour genetic heterogeneity. 

Thus, it is very important to know that lung cancer 
heterogeneity is a fact, with implications in pathogenesis 
understanding, carcinogenesis, pathological diagnosis, 
selection of tissue for molecular diagnosis, and in thera-
peutic decision. The understanding of tumour heteroge-
neity is crucial and we must be aware of the implications 
and future developments regarding this field. 

Tumour heterogeneity could be addressed by different 
perspectives; for the pathologist as histological or pattern 
differences in the tumour, for the molecular pathologist 
as genetic/molecular and epigenetic variations in the tu-
mour (spatial and temporal), and for the oncologist as 
heterogeneity related to therapeutic response and resis-
tance.

Tumour heterogeneity is changing the paradigm: ini-
tially one treatment was fitted to all patients, then, with 
the emergence of targeted therapies, one patient/one 
treatment was applied, and now we are heading towards 
precision medicine, i.e., one patient/one moment in the 
disease evolution/one treatment.
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