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Cellular heterogeneity influences bioprocess performance in ways that until date are

not completely elucidated. In order to account for this phenomenon in the design

and operation of bioprocesses, reliable analytical and mathematical descriptions are

required. We present an overview of the single cell analysis, and the mathematical

modeling frameworks that have potential to be used in bioprocess control and

optimization, in particular for microbial processes. In order to be suitable for bioprocess

monitoring, experimental methods need to be high throughput and to require relatively

short processing time. One such method used successfully under dynamic conditions is

flow cytometry. Population balance and individual based models are suitable modeling

options, the latter one having in particular a good potential to integrate the various

data collected through experimentation. This will be highly beneficial for appropriate

process design and scale up as a more rigorous approach may prevent a priori

unwanted performance losses. It will also help progressing synthetic biology applications

to industrial scale.

Keywords: population heterogeneity, single cell analysis, flow cytometry, population balance models, individual

based models

INTRODUCTION

Microbial populations developing in seemingly homogenous environments have been historically
considered as formed by identical individuals. In reality no two cells in a pure culture are alike,
even if they are derived from single clonal colonies (Ackermann, 2015). This phenomenon is of
fundamental importance in biotechnological fermentations as the yields obtained will be lower if
the cells are not in the same optimal productive state (Fernandes et al., 2011).

In bioprocess industries the bioreactors, and in particular the stirred tanks, are the central
production units. The performance of any bioreactor is the emergent property of the activity and
interactions at the single cell level and therefore, variations at this level can profoundly affect the
dynamics and productivity of the process. Fluctuations that affect cell metabolism in industrial
fermentations are estimated to generate losses of 30% or above (Lara et al., 2006; Takors, 2012).
Moreover, sometimes recombinant protein production processes fail completely for reasons which
are not fully understood but can be related to heterogeneity in the microbial population (Rosano
and Ceccarelli, 2014).
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The effect of cell individuality when using bacteria for
obtaining useful products has been emphasized recently in
several publications (Li and You, 2013; Wyre and Overton,
2014a,b; Chen et al., 2015). Nevertheless, the true impact of
microbial population heterogeneity on bioprocesses remains
unknown (Delvigne and Goffin, 2014) and therefore it is
not systematically considered in design. This is partially due
to the fact that experimental biological data obtained with
traditional methods represents population average information
(Pasotti and Zucca, 2014) which means that the performance
of individuals is masked (Ackermann and Schreiber, 2015).
Another potential reason is the relatively limited options
for monitoring the heterogeneity under dynamic conditions.
There are suggestions that minor subpopulations will not have
significant influence on the whole population function (Lidstrom
and Konopka, 2010), but more recent work emphasizes
that non-genetic variation plays an important role in the
overall biosynthetic performance of a bioprocess (Xiao et al.,
2016).

Ultimately, industry needs to be able to engineer heterogeneity
to obtain better yields and more robust processes. This requires
both quantitative evaluation of the change of individual cells in
time and of their interaction with the environment (Bley, 2011;
Sauer and Mattanovich, 2012). Furthermore, this information
needs to be included inmathematical frameworks used for design
and control in order to have a realistic representation of the
bioprocesses and to improve their performance.

In this mini-review we present an overview of the
experimental methods used for characterizing the cell to
cell variation in bacterial cultures and the corresponding
mathematical tools for modeling them (see Figure 1), with a
focus on the appropriate ones for fermentation processes.

SOURCES OF CELL HETEROGENEITY

The sources of heterogeneity in clonal microbial populations
are biological (intrinsic) or environmental (extrinsic), or both.
Whereas the intrinsic heterogeneity is generated by factors as
cell cycle states, age distribution or the stochasticity of gene
expression and metabolic reactions, the source for the extrinsic
heterogeneity are the fluctuations in the environment. Therefore
the latter represents a physiological response to stress (Lidstrom
and Konopka, 2010; Ryall et al., 2012) and a survival strategy
developed over evolutionary times (Booth, 2002; Sumner and
Avery, 2002). This is the real challenge in the scaling-up
of bioprocesses as poor mixing and heat transfer limitations
generate concentration gradients which further influence the cells
physiology.

A proposed way to overcome extrinsic heterogeneity and
obtain similar performance in large scale reactors compared with
laboratory reactors is to use strains specifically engineered to
withstand certain environmental variability (Löffler et al., 2016).
However, some investigations, both by modeling (Lavric and
Graham, 2010) and experimental studies (Chi Fru et al., 2011;
Ofiţeru et al., 2012) suggest that bacterial populations display
constant heterogeneity in apparently steady growth and habitat

conditions, questioning the very existence of truly homogenous
cultures (Grote et al., 2015).

EXPERIMENTAL METHODS

The first step in single cell analysis is the isolation and/or
immobilization of individuals from cell suspension. The
experimental methods employed for this include serial dilutions
(the traditional method), physical trapping (mechanical,
hydrodynamic or dielectrophoretic), flow suspension [e.g., flow
cytometry and in particular fluorescence-activated cell sorting
(Winson and Davey, 2000)] and micromanipulation [mechanical
or with optical tweezers (Landry et al., 2013)]. Between these
techniques, the use of trapping of single cells in lab-on-a-chip
microfluidic devices is expanding.

Once the isolation is achieved, single cell heterogeneity can
be assessed. Bioprocess monitoring requires high throughput
methods which allow rapid and highly parallel experimentation,
with relative fast processing time. In general, the methods for
single cell analysis were primarily developed for basic research
and not all of them are adapted to be used for fermentation
processes (Geiler-Samerotte et al., 2013). At the same time,
some micro tools for isolation and interrogation of single cells
developed for mammalian cells need further refinement when
dealing with smaller microbial cells (Love et al., 2013).

The experimental methods for monitoring and assessing
single cell heterogeneity can be classified as: (i) biophysical
characterization; (ii) gene expression; (iii) protein analysis; and
(iv) metabolite analysis. Several detailed reviews exist on single
cell heterogeneity analysis (Brehm-Stecher and Johnson, 2004;
Amantonico et al., 2010; Fernandes et al., 2011; Lecault et al.,
2012; Shi et al., 2015; Vasdekis et al., 2015). We are presenting a
general overview, emphasizing the ones appropriate formicrobial
population under dynamic process conditions.

Biophysical characterization gives information on the cell
size, mass, volume, internal structure, and mechanical properties.
Optical microscopy is widely used, being the simplest and
quickest method but with low throughput. A high throughput
method which provides information on cell size is flow
cytometry. The composition of the individual cells can be
obtained by Raman spectroscopy, a label free optical method that
has been used for bioprocess investigation (Huang et al., 2004).

Gene expression methods (e.g., RT-qPCR, RNA-seq, FISH)
give information on the expression state of a certain gene and
protein synthesis dynamics. However, if a method involves lysis
of cells, the dynamics of the gene expression in bioprocesses
cannot be followed. An alternative is to use reporter systems (e.g.,
green fluorescent protein and its variants) that can be monitored
with fluorescent time-lapse microscopy (Young et al., 2012). The
limitation in this case is that production cultures usually do not
contain fluorescent protein as marker and therefore this method
is less suitable for monitoring fermentation processes.

Protein analysis at the single cell level can, in theory,
provide information on protein abundance, protein secretion,
or protein/protein interaction. Flow cytometry is the most
commonly used method for measuring the protein content (Wu
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FIGURE 1 | Single cell analysis methods and modeling approaches for characterizing population heterogeneity. An individual or a group of sorted individuals isolated

from a cell population can be characterized with respect to its biophysical properties, gene expression, protein and metabolite characteristics. The data collected

through experimentation is then included in mathematical models which will help interpreting it and further inform the bioprocess design. Reciprocally, the

experimental data will help validate the mathematical models proposed.

and Singh, 2012). Mass spectrometry has a high sensitivity
and offers high quantity of information, from simultaneous
identification of proteins to their posttranslational modifications.
A workflow for sorted subpopulations, involving flow cytometry
and mass spectrometry, was reported by Jahn et al. (2013).
Nevertheless, there are still significant limitations due to the
complexity of the proteome, the small amount of protein and the
various types of measurement to be performed.

Metabolites analysis (intracellular and extracellular) is an
indirect measurement of the phenotype of the biological
system. The small size of the microbial cell and the minute
quantity of metabolites make their detection at the single cell
level very challenging. Methods used successfully in proof-of-
concept experiments are Raman microspectroscopy, secondary
ion mass spectrometry (SIMS) and Fourier transform infrared
spectroscopy (Heinemann and Zenobi, 2011; Armitage et al.,
2013; Rubakhin et al., 2013). Coupling a microfluidic unit
to a mass spectrometer has the highest potential to deliver
relevant data. NanoSIMS is a powerful tool for revealing
element distribution in nanometer-scale resolution (Musat
et al., 2012; Gao et al., 2016). However, the single cell
metabolite analysis is considered to still be in its early
stages.

From the reviewed methods, flow cytometry is the most
suitable, relatively fast and user-friendly for measuring
phenotypic single cell heterogeneity in bioprocesses and

under dynamic conditions (Want et al., 2009; Muller and
Nebe-von-Caron, 2010; Ambriz-Aviña et al., 2014; Delvigne and
Goffin, 2014; Baert et al., 2016). Flow cytometry measures the
distribution of a large variety of cellular parameters across a
cell population by analyzing the light scattering and fluorescent
signals of stained cells which flow in front of a powerful light
source (e.g., a laser beam). Individual cells can be segregated
based on their size, shape, intracellular properties, membrane
potential, and variation in fluorescent signal. Because the
large number of cells (tens of thousands) measured in a short
processing time, flow cytometry offers statistically significant
results and provides a quantitative measurement of heterogeneity
in the sample, having the potential to identifying rare cell
types (Shapiro, 2000; Davey and Winson, 2003). Recently, in
combination with supervised machine learning techniques,
flow cytometry was used also for single cell identification of
populations in synthetic bacterial communities (Rubbens et al.,
2017).

Nevertheless, the challenge of the high throughput methods
is the amount of data generated, which requires rigorous quality
control, together with sophisticated bioinformatics and statistics.
Therefore, although automated flow-cytometry was expected
to be implemented for real-time quality programs in factories
(Hewitt et al., 1999; Díaz et al., 2010), to date single cell
characterization is not routinely used in-process (Royle et al.,
2013).
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A complementary way to evaluate the microbial phenotypic
heterogeneity under realistic bioprocess conditions is by
employing scale down single cell micro-cultivation devices in
which large scale reactors conditions are mimicked. Single
cells in lab-on-a-chip microfluidic devices allow parallelization
and high throughput experiments (Grünberger et al., 2014;
Dusny and Schmid, 2015; Rosenthal et al., 2015; Oliveira
et al., 2016), contributing to large-scale bioprocess improvement
(Grünberger et al., 2012; Ladner et al., 2017). Sorting of different
subpopulations of cells in order to understand the physiological
responses in fluctuating microenvironments was also performed
by microarray analysis (Hewitt et al., 2007).

MODELING OPTIONS FOR
HETEROGENEOUS POPULATIONS

There is currently a gap between the new methods for single cell
analysis and the availability of mathematical models which can
integrate the data collected. But models are essential in the design
and control of bioprocesses. Use of the complex information
obtained by investigations of cells at genomic, transcriptomic,
proteomic, and metabolomic level to predict bioprocesses
is challenging and requires multidisciplinary analysis and
significant computational efforts (Zhang et al., 2010).

The traditional classification of the mathematical models
for cell populations is in unsegregated/segregated and
unstructured/structured. The least complex is a model
unstructured and unsegregated, which considers a homogenous
population represented by an average unstructured cell, while
the most complex is a model structured and segregated, which
considers a heterogeneous population of structured cells (Song
et al., 2014). The behavior of an average cell is representative
only for a synchronous population (Noack et al., 2008), but for a
heterogeneous population the model needs to include at least the
segregation in the biophase.

Since their initial development, single cell models were seen
as a promise for connecting the macroscopic bioreactor with
the microscopic one, the cell (Shuler, 1999). Integrated multi-
omics predictive models can inform biological discovery but their
application is in its infancy (Brink et al., 2016; Kim et al., 2016).
Some authors have attempted models which involve a laborious
theoretical development to account for different sources of
heterogeneity (Stamatakis and Zygourakis, 2010), though the
same authors acknowledge them as being far too complex to lend
themselves for practical application (Fredrickson and Mantzaris,
2002). Therefore, so far, the distributed properties measured
within cell population are not integrated in a single modeling
framework appropriate to be used in design, optimization and
control of bioprocesses (Henson, 2003; Müller et al., 2010;
Fernandes et al., 2011).

Here, we are presenting two options for modeling
heterogeneity: population balance models (PBM) and individual
based models (IBM). Both modeling approaches describe the
variation in the population, but, while the PBM consider each
fraction of the population as a continuous phase, in IBM the cells
are discrete particles.

Population Balance Models
In PBM cells are differentiated based on variables which
characterize their intracellular state. Most commonly these
variables are cell age or/and cell mass. The mass balances for
substrates, biomass, and products are represented by non-linear
and partial differential equations which have as independent
variables time and the internal state of the cells. The different
phases during the cell life cycle can be represented. The results
obtained with PBM will predict the time variation of the cell
number distribution, as resulted from growth and division.

Multidimensional PBM can be developed based on flow
cytometry data (Fernandes et al., 2013; Ramkrishna and Singh,
2014). Biological heterogeneity in bioreactors was modeled by
coupling a population balance model with a biokinetic model
(Morchain et al., 2013) and later with a hydrodynamic model
(Pigou andMorchain, 2015). One important limitation of PBM is
that they are computationally demanding if they are represented
more than one single internal state of the cells and this limits on
line applications (Royle et al., 2013).

Individual Based Models
In IBM the cells are discrete particles which interact with each
other and with the environment. Microbial characteristics are
described at single cell level. This allows the study of the system
behavior as a result of the properties and performance of the
individual components (Railsback and Grimm, 2012). However,
it is not always possible to simulate all the individual cells of
the system due to computing constraints and choices need to be
made about the type of agents used (a cell or a cluster of cells or
superindividual) and the level of detail for each of them.

In the last two decades IBM have gained popularity in
microbiology (Ferrer et al., 2008; Schuler et al., 2011; Hellweger
et al., 2016) due to rapid advancement in computational
technologies and the development of specialized software. Open
source generic platforms are now available (e.g., Sklar, 2007;
Lardon et al., 2011; Rudge et al., 2012; Coakley et al., 2016).
However, due to their complex structure IBM require more
computing skills than other modeling approaches.

Both PBM and IBM approaches can be used for multispecies
fermentation and can take into account the environmental
heterogeneity in bioreactors (see Coupling the scales). However,
PBM models explicitly the behavior of the population and can
include only limited cell properties. They are also more restricted
in representing stochastic processes as problems of closure may
arise (Ramkrishna andMahoney, 2002). Instead, IBMmodels the
behavior of individuals, each having its own properties, with the
population behavior emerging from their interactions. Therefore,
it has a higher potential to integrate the detailed data generated
with single cell analysis. At the same time, IBM offers a better
representation of the stochastic processes, being able to describe
the average fluctuations and not only the average behavior in a
population.

Coupling the Scales
The solution for PBM and IBM involve a numerical method using
discrete time steps. In biological processes there is a wide range of
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relevant timescales, varying from nanoseconds to hours. The use
of time steps in solving the mathematical models means that all
the transformations which have a timescale smaller than the time
step chosen for the numerical solution will only be approximated.
Their influence on the state variables may then results as non-
realistically high. Therefore, it is important to understand the
effect of the approximations on the final output of the model and
how it affects its predictive capabilities (Gameiro et al., 2016).

For a complete mathematical representation of the bioprocess,
suitable to be used in scale-up and design applications, a
two-way coupling between mass transfer, hydrodynamics, and
biology is required (Wang et al., 2015; Morchain, 2017). These
interactions are important as extracellular micro-heterogeneities
may amplify the intracellular ones and place an upper limit on
productivity and bioprocess reliability (Vasdekis et al., 2015).
Local environmental conditions generated by flow streams affect
the microbial metabolism and can be described by computational
fluid dynamics (CFD). The Euler-Lagrange method represents
the appropriate option for studying the impact of substrate
gradients on the microbial metabolism in conjunction with the
hydrodynamics (Lapin et al., 2004; Liu et al., 2016; Haringa
et al., 2017; Kuschel et al., 2017). However, because of the high
number of individual cells involved in a fermentation, it is not
feasible to directly couple IBM with CFD at the large scale.
One useful approach is using statistical emulators (metamodels),
which extract the significant information from microscale and
are computationally much faster (Wilkinson, 2009; Conti and
O’Hagan, 2010). The advantage of an emulator over using a
continuous model is that the former will not select a priori the
information to be transmitted across scales but it will be based on
a detailed mechanistic single cell model, representing therefore
a simplified simulation strategy to calibrate multi-scale models.
This approach was recently implemented by Oyebamiji et al.
(2017) as an attempt to scale up a microbial system.

CONCLUSION

In industrial setups there is a tradeoff between cellular growth and
process robustness (Carlquist et al., 2012). Understanding and
controlling cell heterogeneity at the single cell level will generate
more robust and efficient bioprocesses, as, for example, it has
been proven that it is not the highest biomass concentration, but
higher proportion of viable cells which gives the best productivity

(Want et al., 2009). Insights into bioprocesses at single cell
level are expected to contribute also to the development of
more accurate mathematical models that can be applied to the
prediction and control of fermentative processes (Zhang et al.,
2015). This will be highly beneficial as appropriate process and
bioreactor design, able to prevent a priori unwanted performance
losses, is still missing (Takors, 2012) and scaling up has a
high degree of empiricism (Brognaux et al., 2013). IBM have
the potential to integrate protein measurements with genomics,
transcriptomics and metabolomics, and to predict the dynamics
of the system across scales and in different environments
(Hellweger et al., 2016), giving a better evaluation of the overall
system performance.

This is relevant also for synthetic biology, a rapidly growing
field which is limited by the lack of understanding on complex
fluctuations in physiology and fitness of overall microbial
populations (Cardinale and Arkin, 2012). Therefore connecting
the single cell dynamics and heterogeneity of cell population with
the bioreactor performance is a strategically important objective
that is vital to the translation of systems and synthetic biology
into an industrial reality.
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Chen, Y., Kim, J. K., Hirning, A. J., Josić, K., and Bennett, M. R. (2015). Emergent
genetic oscillations in a synthetic microbial consortium. Science 349, 986–989.
doi: 10.1126/science.aaa3794
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