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Abstract

This paper analyses the importance of scale economies by means of unbalanced plant-level
panel data from three Norwegian manufacturing industries. Focus is on heterogeneous
technologies, and unlike most previous work on micro data, the model description includes
heterogeneity in both the scale properties (the slope coefficients) and the intercept term, rep-
resented by random coefficients in the production function. Three (nested) functional forms
are investigated: the Translog, an extended Cobb-Douglas, and the strict Cobb-Douglas.
Although constant or moderately increasing returns to scale is found for the average plant,
the results reveal considerable variation across plants. Variations in both input and scale
elasticities are to a larger extent due to randomness of the production function parameters
than to systematic differences in the input mix.

JEL classification: C23, D24, L61, L65, L73

Keywords: panel data, economies of scale, heterogeneity, random coefficients

1. Introduction

The scale properties of production technologies are of vital importance for our understanding
of market structure, productivity, and economic growth, and, within the industrial economics
literature, economies of scale is put forward as a possible important barrier to entry, see, e.g.,
Tirole (1989, pp. 305–306) and the references therein. Hence, knowing the scale properties
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may help us understand the evolution of industries. Although there are important exceptions,
it is common in empirical analyses of the production process, applying both the primal and
the dual approach, to assume a constant returns to scale technology. This is true for analyses
using both micro and macro data. One explanation for this restriction is co-movements of the
explanatory variables that make it difficult to identify independently the impacts of technical
change, capital stock growth, and returns to scale; cf. inter alia, Morrison (1988) and Biørn,
Lindquist and Skjerpen (2003). However, if the constant returns to scale restriction is false,
this is likely to influence conclusions regarding technical change and productivity.

There is a growing number of articles that analyse the production process econometri-
cally using micro data under the assumption that heterogeneity in size, age, management,
employees’ education, technology, etc., can be represented by a plant specific fixed or ran-
dom intercept term in the production, cost, or profit function. Most likely, however, such
differences will manifest themselves not only as a permanent variation in efficiency across
plants, but will also result in heterogeneity in scale properties. In this case, the standard
modelling approach, with only fixed or random effects in intercept terms, may lead to
inefficient estimation of the slope coefficients and invalid inference.

In this paper we choose a more general approach and analyse the importance of scale
economies by estimating a four-factor (KLEM) production function with heterogeneous
scale properties and no a priori restrictions on the returns to scale. Three (nested) functional
forms of the production function are investigated: the Translog, an extended Cobb-Douglas,
and the strict Cobb-Douglas. Heterogeneity in both the slope coefficients and the intercept
term is allowed for. A random coefficient approach, with specific assumptions made about
the distribution from which the plant specific coefficients are drawn, is applied. This is a
parsimonious and easily interpretable way of representing heterogeneity. The expectation
vector in this distribution represents the coefficients of an average plant, while its covariance
matrix gives readily interpretable measures of the degree of heterogeneity which is due to the
random coefficient variation. In addition, the non-homotheticity of the production function
allows for systematic variation in the scale elasticity, i.e., variation with the input quantities.
The purpose of this paper is to quantify both the random and the systematic variation of the
scale elasticity.

Our primary argument for using the primal approach and not following the alternative
dual approach is our focus on heterogeneity in the production function parameters rather
than in the parameters of the cost or profit function. Arguments for taking the primal
approach, even if the agents follow optimising behaviour, have been given by, inter alia,
Zellner, Kmenta and Drèze (1966) and Mundlak (1996) in a Cobb-Douglas context; see
also Griffiths and Anderson (1982), Mairesse (1990), Mairesse and Griliches (1990), Wan,
Griffiths and Anderson (1992), and Griliches and Mairesse (1998, Section 2). Our approach
differs from that in the panel data literature on frontier production functions and efficiency
measurement, dealing with deterministic or stochastic production frontiers in a framework
with firm specific heterogeneity; cf. Cornwell and Schmidt (1996).

The panel data set applied is from the Norwegian manufacturing statistics data base
of Statistics Norway. It is unbalanced and consists of plants from the Pulp and paper
industries, the Chemical industries, and the Basic metals industries in Norway. We follow
the recommendations in Mátyás and Lovrics (1991) and Baltagi and Chang (1994) and do
not omit observations to make the panel balanced. The combination of a random coefficient
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model and unbalanced panel data is far from standard, at least in applied econometrics.
Mixed regression models with unbalanced design, however, have, to some extent, been
discussed in the statistical literature, see, e.g., Amemiya (1994) and Shin (1995). Random
coefficients in regression equations in econometrics are treated in the pioneering studies of
Swamy (1970, 1971, 1974); see also Hsiao (1975, 1996) and Longford (1995a,b).

A major finding is that substantial improvement in model fit is obtained when allowing
for random coefficient heterogeneity. We find constant or moderately increasing returns to
scale for a plant with an average technology, but the results reveal important variation across
plants, and plants with both increasing and decreasing economies of scale are present.

2. Model and Econometric Method

We assume that the average plant has a four-factor technology, with capital (K ), labour (L),
energy (E), and materials (M) as inputs and with one output (Y ). The most general specifi-
cation of the technology is assumed to be non-homothetic and is represented by a production
function belonging to the Translog class, with a trend, and with some coefficients specified
as random variables. This random variation represents non-systematic heterogeneity of the
technology. Below we describe the basic elements of our model, for simplicity without
explicitly incorporating the unbalancedness of the panel data set. The accommodation of
the model to our unbalanced panel data and the Maximum Likelihood estimation procedure
is elaborated in Appendix A.

Let subscripts i and t denote the plant and the year (number) of observation, respectively.
Our model framework, when we suppress the industry subscript, can be written as

yit = ci +γ τt + 1

2
γ ∗τ 2

t + z′
i tαi + 1

2
z′

i t Bzit + z′
i tδτt +uit , (1)

where yit = ln(Yit ), zit = [ln(Kit ), ln(Lit ), ln(Eit ), ln(Mit )]′, ci is a plant specific random
intercept term, τt is a deterministic trend representing the level of the technology in year t ,
and uit is a genuine disturbance term. The plant dependent vector αi is specified as random,
and the matrix and vector of second-order coefficients, B (symmetric) and δ, as well as γ

and γ ∗, as constants:1

αi = [αK i , αLi , αEi , αMi ]
′, B = [β jk], j, k = K , L , E, M, δ = [δK , δL , δE , δM ]′.

We also consider simpler models, as will be explained below.
The heterogeneity of the coefficient structure is represented as follows. Let θi denote the

column vector containing all the (random or fixed) coefficients in the model, i.e.,

θi = [ci , α ′
i , γ, γ ∗, β ′, δ′]′, (2)

where β = vech B is the half-vectorisation of B, i.e., the lower triangular part of B stacked
into a column vector. We assume that all zit , uit , and θi ’s are mutually independent, with
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E(uit ) = 0, var(uit ) = σuu , and

E(θi ) = θ = [c, α′, γ, γ ∗, β ′, δ′]′, E[(θi − θ)(θi − θ)′] = Ω =




ωcc �′
αc 0

�αc �αα 0

0 0 0


, (3)

where α = E(αi ), ωcc = var(ci ), �αα = E[(αi −α)(αi −α)′], etc., and the zero sub-matrices
of �, involving non-random coefficients, have suitable dimensions.

We denote the model with diagonal B, δ = 0, γ ∗ = 0 as the Extended Cobb-Douglas
model, B = 0, δ = 0, γ ∗ = 0 giving a strict Cobb-Douglas model. The Extended
Cobb-Douglas model implies that the elasticity of output with respect to a specific input
(input elasticity, for short) depends on the volume of that input, but is independent of the
other inputs. This is in contrast with the more flexible Translog model, in which the in-
put elasticities depend on all inputs. Both the Translog and the Extended Cobb-Douglas
technologies are non-homothetic, with variable scale elasticity.

The (column) vector of input elasticities of plant i in year t is

ηi t = [ηK it , ηLit , ηEit , ηMit ]
′ = ∂yit

∂zit
= αi + Bzit + δτt , (4)

the derivative of log-output with respect to the trend is

ητ i t = ∂yit

∂τt
= γ +γ ∗τt + δ′zit , (5)

and the scale elasticity of plant i in year t is

νi t = e′
4ηi t = ᾱi + β̄ ′zit + δ̄τt , (6)

where en is the n vector of ones and ᾱi = e′
4αi , β̄ ′ = e′

4 B, δ̄ = e′
4δ. Conditionally on zit , the

random variation of the input elasticities and the scale elasticity is due to the randomness of
the first-order coefficients in the production function, αi , only. The expectation and variance
of the scale elasticity of plant i in year t , conditionally on the input vector zit , can be written
as, respectively,

E(νi t | zit ) = E(ᾱ)+ β̄ ′zit + δ̄τt , (7)

var(νi t | zit ) = var(ᾱ), (8)

where E(ᾱ) = e′
4α and var(ᾱ) = e′

4�ααe4. We can interpret var(νi t | zit ) as the dispersion
of the random heterogeneity of the scale elasticity. Similar expressions can be derived
for the input elasticities. Using (7), (8), and the law of iterated expectations, the marginal
(unconditional) expectation and variance of the scale elasticity can be written as

E(νi t ) = E[E(νi t | zit )] = E(ᾱ)+ β̄ ′E(zit )+ δ̄τt = e′
4α + e′

4 BE(zit )+ e′
4δτt , (9)

var(νi t ) = E[var(νi t | zit )]+var[E(νi t | zit )] = var(ᾱ)+ β̄ ′V(zit )β̄

= e′
4�ααe4 + e′

4 BV(zit )Be4, (10)

where V(zit ) is the covariance matrix of zit . Equation (10) represents jointly the heterogene-
ity in the scale elasticity which is due to the stochastic variation in the first-order coefficients
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Table 1. Models.

Model ωcc �αα �αc B δ, γ ∗

TL(c, α) Unrestricted Unrestricted Unrestricted Unrestricted Unrestricted
TL(c) Unrestricted 0 0 Unrestricted Unrestricted
TL 0 0 0 Unrestricted Unrestricted
ECD(c, α) Unrestricted Unrestricted Unrestricted Diagonal 0
ECD(c) Unrestricted 0 0 Diagonal 0
ECD 0 0 0 Diagonal 0
CD(c, α) Unrestricted Unrestricted Unrestricted 0 0
CD(c) Unrestricted 0 0 0 0
CD 0 0 0 0 0

(the first term) and the heterogeneity which is due to the variation in the input vector across
plants (the second term). Similar expressions can be obtained for the input elasticities.

Nine models, that differ with respect to functional form and the representation of the
heterogeneity of the technology, are considered. As abbreviations for Translog, Extended
Cobb-Douglas, and strict Cobb-Douglas we use TL, ECD, and CD, respectively—in paren-
thesis indicating which coefficients are treated as random in each model. The models are
specified in Table 1.

The expected coefficient vector θ and the unknown elements of the covariance matrix Ω,
for the different models, are estimated by Maximum Likelihood, using the PROC MIXED
procedure in the SAS/STAT software (see Littell et al., 1996). Positive definiteness of the
non-zero submatrix of Ω (relating to the random coefficients) is imposed as an a priori
restriction. Details are given in Appendix A.

3. Empirical Results

Goodness of fit. Table 2 reports the goodness of fit of all the estimated models, expressed
in terms of the log-likelihood value (LLH),2 Akaike’s Information Criterion (AIC), and
Schwarz’s Bayesian Criterion (SBC).3 Within models with the same functional form, these
three criteria give identical ranking with respect to the specification of heterogeneity: the
models that include heterogeneity in both the intercept term and the first-order coefficients
in the production function, i.e., ci and αi , give a clearly better fit than the models with
heterogeneity only in the intercept term, and a markedly better fit than the models with no
coefficient heterogeneity. There is thus evidence that allowing for random heterogeneity in
the αi coefficients improves the fit to our plant panel data.

Concentrating on the functional form while using models with the same specification
of heterogeneity, the picture is somewhat less clear. According to the AIC criterion, TL(·)
outperforms both ECD(·) and CD(·) in all industries. The SBC criterion, which penalizes
coefficient-rich models relatively harder than AIC, ranks CD(c, α) first for all industries.
The estimates of the genuine disturbance variance, σuu , support our general conclusion
that the fit improves when more heterogeneity is allowed for and/or the flexibility of the
functional form is increased.
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Table 2. Model fitting information for the various models in the three industries.a

Model

TL(c, α) ECD(c, α) CD(c, α) TL(c) ECD(c) CD(c) TL ECD CD

Pulp and paper

qb 37 26 22 23 12 8 22 11 7
LLH −330.65 −358.77 −364.73 −725.83 −764.85 −779.22 −2250.15 −2368.11 −2409.85
AIC −367.65 −384.77 −386.73 −748.83 −776.85 −787.22 −2272.15 −2379.11 −2416.85
SBC −477.65 −462.06 −452.14 −817.20 −812.52 −811.00 −2337.55 −2411.81 −2437.66
MSPEc 0.2790 0.2760 0.2757 0.3114 0.3167 0.3165 0.5319 0.5484 0.5494
σuu 0.0397 0.0406 0.0408 0.0708 0.0729 0.0734 0.2883 0.3134 0.3228
ωcc 5.9590 5.7793 5.9336 0.3789 0.3821 0.4003 0d 0d 0d

ϕ 0.9034 0.8986 0.9085 0.8426 0.8398 0.8450 0d 0d 0d

Chemicals

qb 37 26 22 23 12 8 22 11 7
LLH −1350.06 −1371.88 −1374.42 −1539.89 −1601.92 −1624.17 −2102.14 −2151.74 −2179.96
AIC −1387.06 −1387.88 −1396.42 −1562.89 −1613.92 −1632.17 −2124.14 −2162.74 −2186.96
SBC −1482.19 −1464.73 −1452.98 −1622.02 −1644.77 −1652.74 −2180.70 −2191.02 −2204.96
MSPEce .. .. .. 1.1277 1.1544 1.1549 1.6051 1.6276 1.6485
σuu 0.2926 0.3019 0.3019 0.5214 0.5711 0.6028 1.6295 1.7626 1.8431
ωcc 23.6710 24.6901 25.0253 1.5646 1.5791 1.5196 0d 0d 0d

ϕ 0.9082 0.8993 0.9006 0.7501 0.7307 0.7160 0d 0d 0d

Basic metals

qb 37 26 22 23 12 8 22 11 7
LLH −1041.70 −1076.64 −1083.00 −1223.51 −1279.51 −1284.46 −2533.11 −2622.37 −2654.60
AIC −1078.70 −1102.64 −1099.00 −1246.51 −1291.51 −1292.46 −2555.11 −2633.37 −2661.60
SBC −1183.02 −1175.95 −1144.11 −1311.36 −1325.35 −1315.02 −2617.14 −2664.39 −2681.34
MSPEc 0.4876 0.4907 0.4965 0.5158 0.5280 0.5268 0.8493 0.9002 0.9231
σuu 0.0968 0.0984 0.0986 0.1409 0.1483 0.1490 0.6704 0.7306 0.7536
ωcc 2.7431 3.3558 3.5973 0.6517 0.7084 0.7109 0d 0d 0d

ϕ 0.8196 0.8212 0.8293 0.8223 0.8269 0.8267 0d 0d 0d

aLLH is the Log likelihood value; AIC is Akaike’s Information Criterion; SBC is Schwarz’s Bayesian Criterion; MSPE is
the mean square prediction error.
bq is the number of parameters in the model.
cPulp and paper: Based on 442 predictions for the years 1989–1993; Chemicals: Based on 233 predictions for the years
1989–1993; Basic metals: Based on 376 predictions for the years 1989–1993.
d A priori restriction.
eMSPE is not available for the random coefficient models due to lack of convergence in reduced samples.

It is also of interest to compare the models with regard to their prediction performance.
We predict log-output over the years 1989–1993. For each year we utilise predicted (or
estimated in the case of non-random parameters) coefficients, cf. Appendix A, based on
observations up to the previous year. Letting ŷs−1

is denote the predicted log-output of plant i
in calendar year s based on observations up to year s −1 and yis the value realized, we define
the mean square prediction error as MSPE = [(1/M)

∑
i

∑
s∈S(i)(yis − ŷs−1

is )2]1/2, where
S(i) is the set of years for which we make predictions for plant i and M is the number of
predictions.4 The MSPEs are given in Table 2. Due to lack of convergence when estimating
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the random coefficent models on reduced samples for Chemicals, which had the smallest
number of observations among the three industries, we are unable to report MSPEs for these
models. Again we find that adding a random intercept improves the prediction considerably
and that further improvement is obtained when also the first order coefficients are random.
For the random coefficient models there are small differences with regard to MSPE. In Pulp
and paper the ranking of the models agrees with that of the SBC-criterion. In Basic metals
the ranking is the opposite and the lowest MSPE is found for Model TL(c, α), which also
was the best-fitting model according to the AIC. Our overall conclusions from the prediction
experiments thus agree well with those following from the information criteria.

Degree of coefficient heterogeneity. The last row of each panel of Table 2 gives a measure
of the overall degree of coefficient (including intercept) heterogeneity. The measure is the
estimated share, ϕ—at the overall sample mean of the inputs,5 of the variances of the gross
disturbance ψ(i p)t [cf. (A.3) and (A.6)]—which is due to coefficient heterogeneity. In the
model with random intercept ci only, it is the estimated value of ϕ = ωcc/(ωcc +σuu). In the
random coefficients model, the share is the estimated value of ϕ = w ′�w w/(w ′�w w +σuu),
where w is the 5×1 vector with 1 in the first position and the log of the overall mean of
the inputs in the remaining positions, and �w is the sub-matrix of Ω which corresponds to
the random coefficients, cf. (3). A very high share of the total variance is due to coefficient
heterogeneity: 72–85 per cent in the models with random intercept term and 82–91 per cent
in the models that also include random first-order coefficients.

Mean input and scale elasticities. The complete set of (mean) coefficient estimates in the
various models is given in Biørn, Lindquist and Skjerpen (2000a, Tables A2–A4) and is not,
for lack of space, reported here. The derived estimates of the expected input elasticities, the
expected scale elasticity, and the expected trend effect—all calculated at the overall mean
of the inputs—are given in Table 3.6 The expected scale elasticity is relatively stable across
models and clearly indicates weakly increasing or constant returns to scale for Pulp and
paper and Basic metals. The estimates for Chemicals are more variable and both Models
TL(c, α) and ECD(c, α) show increasing returns to scale, with scale elasticities in the
range 1.3–1.4.

Overall, the estimated expected input elasticities at the sample mean show larger variabil-
ity across models than does the scale elasticity. Most estimates have the expected positive
sign, the exception is the labour elasticity in six of the nine cases that do not include co-
efficient heterogeneity. A weakly, although not significantly, negative7 labour elasticity is
also found in Model TL(c, α) in Basic metals, however. Comparing columns 4–6 with
columns 1–3 in Table 3, it is clear that when we allow for randomness of the αi ’s, the stan-
dard deviation estimates of the expected coefficients increase substantially—in most cases
to almost the double value. This seems to be a consequence of allowing a less restrictive
model specification.

Trend effects. The trend variable τt is represented by the calendar year. Excepting the three
models with no heterogeneity in Pulp and paper, the estimated (sample mean) trend deriva-
tive ητ (Table 3) is significantly positive in all models. The positive values vary around
0.7 per cent in Pulp and paper, around 3–4 per cent in Chemicals, and around 2 per cent in
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Table 3. Estimated scale properties. Standard errors in parentheses.a

Model

TL(c, α) ECD(c, α) CD(c, α) TL(c) ECD(c) CD(c) TL ECD CD

Pulp and paper

ηK 0.2677 0.2448 0.2503 0.1275 0.1532 0.1717 0.1093 0.0969 0.0735
(0.0469) (0.0455) (0.0344) (0.0296) (0.0277) (0.0197) (0.0272) (0.0264) (0.0187)

ηL 0.1485 0.1476 0.1717 0.1096 0.1330 0.1863 −0.4189 −0.3036 −0.2314
(0.0514) (0.0468) (0.0381) (0.0301) (0.0278) (0.0215) (0.0270) (0.0251) (0.0206)

ηE 0.1339 0.1487 0.0854 0.1649 0.1582 0.0921 0.4936 0.3995 0.3333
(0.0256) (0.0253) (0.0169) (0.0189) (0.0175) (0.0103) (0.0190) (0.0166) (0.0099)

ηM 0.5136 0.5183 0.5666 0.6367 0.6243 0.6064 0.7074 0.7586 0.7530
(0.0421) (0.0406) (0.0309) (0.0263) (0.0239) (0.0167) (0.0246) (0.0226) (0.0160)

ν 1.0637 1.0595 1.0740 1.0386 1.0687 1.0564 0.8914 0.9514 0.9284
(0.0426) (0.0411) (0.0287) (0.0302) (0.0291) (0.0186) (0.0139) (0.0135) (0.0095)

ητ 0.0067 0.0065 0.0065 0.0069 0.0074 0.0084 −0.0093 −0.0005 −0.0002
(0.0017) (0.0013) (0.0013) (0.0016) (0.0012) (0.0012) (0.0026) (0.0019) (0.0019)

Chemicals

ηK 0.5201 0.4490 0.1270 0.5020 0.3986 0.0713 0.7839 0.7557 0.4646
(0.1954) (0.1905) (0.1149) (0.1176) (0.1150) (0.0667) (0.0846) (0.0826) (0.0577)

ηL 0.4215 0.3457 0.3117 0.2057 0.2618 0.4711 −0.2408 −0.1379 0.0537
(0.2245) (0.2089) (0.1605) (0.1150) (0.0978) (0.0763) (0.1041) (0.0883) (0.0733)

ηE 0.1500 0.1698 0.2156 0.1548 0.1916 0.2244 0.2504 0.2247 0.3046
(0.1089) (0.0999) (0.0718) (0.0646) (0.0594) (0.0368) (0.0618) (0.0575) (0.0350)

ηM 0.3389 0.3478 0.3544 0.4548 0.5245 0.2530 0.2341 0.2146 0.1825
(0.1321) (0.1250) (0.0968) (0.0807) (0.0725) (0.0482) (0.0693) (0.0597) (0.0404)

ν 1.4305 1.3123 1.0087 1.3172 1.3763 1.0199 1.0276 1.0570 1.0053
(0.1918) (0.1821) (0.1062) (0.1085) (0.1059) (0.0606) (0.0435) (0.0437) (0.0292)

ητ 0.0375 0.0323 0.0306 0.0329 0.0384 0.0422 0.0243 0.0253 0.0238
(0.0067) (0.0048) (0.0047) (0.0066) (0.0046) (0.0045) (0.0098) (0.0067) (0.0068)

Basic metals

ηK 0.1806 0.0270 0.1246 0.1180 0.0619 0.0944 0.1039 0.0103 0.1438
(0.0830) (0.0732) (0.0472) (0.0587) (0.0461) (0.0273) (0.0564) (0.0437) (0.0280)

ηL −0.0316 0.2400 0.2749 0.0381 0.2257 0.3073 −0.0648 0.1149 0.1629
(0.0847) (0.0702) (0.0550) (0.0602) (0.0444) (0.0351) (0.0721) (0.0484) (0.0360)

ηE 0.4440 0.3970 0.2138 0.3010 0.1734 0.1628 0.3857 0.2478 0.1502
(0.0635) (0.0618) (0.0374) (0.0437) (0.0330) (0.0174) (0.0386) (0.0293) (0.0190)

ηM 0.4262 0.3960 0.4928 0.5521 0.5666 0.5210 0.5411 0.6446 0.6868
(0.0640) (0.0598) (0.0406) (0.0452) (0.0356) (0.0235) (0.0480) (0.0324) (0.0217)

ν 1.0192 1.0600 1.1061 1.0091 1.0276 1.0856 0.9660 1.0176 1.1438
(0.0570) (0.0535) (0.0324) (0.0510) (0.0492) (0.0271) (0.0999) (0.0228) (0.0142)

ητ 0.0156 0.0220 0.0214 0.0153 0.0215 0.0228 0.0246 0.0211 0.0220
(0.0035) (0.0022) (0.0021) (0.0034) (0.0020) (0.0020) (0.0059) (0.0036) (0.0036)

aThe elasticity of output with respect to a specific input j (η j ), the scale elasticity (ν) and the derivative of the log
of output with respect to time (ητ ) are evaluated at the overall empirical mean and at the expectation of random
coefficients.
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Table 4. The distribution of plant specific coefficients in model ECD(c, α). Variances along the main diagonal
and correlation coefficients below.

ci αK i αLi αEi αMi

Pulp and paper

ci 5.7793
αK i −0.4419 0.1163
αLi −0.7111 −0.0850 0.1501
αEi 0.3424 −0.4025 −0.2504 0.0231
αMi 0.3791 −0.5748 −0.4264 0.0707 0.1075

Chemicals

ci 24.6901
αK i −0.1680 0.5284
αLi −0.7909 −0.3138 1.2903
αEi 0.4052 0.0071 −0.5199 0.2408
αMi 0.1818 −0.3718 −0.2111 −0.3161 0.4423

Basic metals

ci 3.3558
αK i −0.0698 0.1611
αLi −0.6744 −0.5664 0.1753
αEi 0.2091 −0.6226 0.2600 0.1004
αMi 0.2153 0.0698 −0.4188 −0.6390 0.1335

Basic metals. This is consistent with industry specific R&D costs, since there probably is a
connection between cumulated R&D costs and technical progress. The Chemical industry
invests much more in R&D than the other two industries, measured both in NOK and as a
share of value added.

Distribution of the random coefficients. Tables 4–6 characterize, in different ways, plant
heterogeneity. We give results for the ECD(c, α)-specification; the results for the other
functional forms are reported in Biørn, Lindquist and Skjerpen (2000a, Tables 4–6). The
results are in general very robust to the form of the average production function. Table 4
reports the covariance matrix of the random coefficients, with variance estimates along the
main diagonal and correlation coefficient estimates below. The majority of the correlation
coefficients are negative, and in several cases, their absolute values are quite large. Hence,
a relatively high coefficient of one input is often matched with a relatively low coefficient
of the other inputs.

Predicted input and scale elasticities: Random and systematic heterogeneity. From predic-
tions of plant specific random coefficients, cf. Appendix A, we can obtain plant specific scale
elasticities, νi , and input elasticities, (ηK i , ηLi , ηEi , ηMi ). Tables 5 and 6 report descriptive
statistics of these plant specific predictions. These tables represent both the random hetero-
geneity, i.e., due to the random coefficient variation, and the systematic heterogeneity which
is due to differences in the input mix across plants; cf. (10). The range of the predicted scale
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Table 5. Descriptive statistics of plant specific predicted elasticities for model ECD(c, α).

Predicted Coef. of Minimum Maximum Share of
Elasticities Mean Std. Error Variationa Value Value Values < 0b

Pulp and paper

ν̂ 1.0685 0.1906 0.1784 0.4176 2.0975 0.0
η̂K 0.2511 0.2491 0.9922 −0.9079 1.4487 8.0
η̂L 0.1667 0.2768 1.6602 −0.8692 1.6395 20.7
η̂E 0.0875 0.1088 1.2425 −0.4752 0.4150 15.6
η̂M 0.5632 0.2365 0.4199 −0.5824 2.6413 1.3

Chemicals

ν̂ 1.0381 0.5750 0.5539 −0.2242 4.4304 3.3
η̂K 0.1595 0.5753 3.6073 −1.4167 2.0343 40.0
η̂L 0.3065 0.8805 2.8730 −2.4537 4.3556 31.1
η̂E 0.2106 0.3708 1.7605 −0.9477 1.8410 21.1
η̂M 0.3615 0.4989 1.3800 −2.1927 2.0873 15.6

Basic metals

ν̂ 1.0687 0.1315 0.1230 0.7210 1.5817 0.0
η̂K 0.0956 0.3085 3.2250 −1.6831 0.8331 34.9
η̂L 0.2665 0.2906 1.0904 −0.4398 1.5265 12.7
η̂E 0.2238 0.2687 1.2007 −0.9921 1.3472 15.7
η̂M 0.4828 0.2631 0.5451 −0.2515 1.5322 3.6

aDefined as the standard error divided by the mean.
bIn percentage of the total number of plants.

Table 6. The distribution of plant specific predicted elasticities from Model ECD(c, α). Variances along the main
diagonal and correlation coefficients below.

ν̂ η̂K η̂L η̂E η̂M

Pulp and paper

ν̂ 0.036
η̂K 0.162 0.062
η̂L 0.778 −0.009 0.077
η̂E −0.294 −0.447 −0.336 0.012
η̂M −0.140 −0.707 −0.380 0.167 0.056

Chemicals

ν̂ 0.331
η̂K 0.233 0.331
η̂L 0.689 −0.325 0.775
η̂E −0.474 0.042 −0.556 0.137
η̂M 0.019 −0.341 −0.182 −0.356 0.249

Basic metals

ν̂ 0.017
η̂K −0.003 0.095
η̂L 0.562 −0.663 0.084
η̂E −0.276 −0.685 0.356 0.072
η̂M 0.165 0.258 −0.411 −0.750 0.069



HETEROGENEITY IN RETURNS TO SCALE 49

elasticities is (0.42, 2.10), (−0.22, 4.43) and (0.72, 1.58) in Pulp and paper, Chemicals,
and Basic metals, respectively (Table 5, columns 4 and 5). About two thirds of the plants
in Pulp and paper and Basic metals have increasing returns to scale when evaluated at the
plant specific means of the explanatory variables. The corresponding share in Chemicals is
somewhat lower, about 0.55.

The variability of the scale elasticity is much less than the variability of the input elas-
ticities, measured by the coefficients of variation (Table 5, column 3). For all functional
forms and all industries, the coefficient of variation is smaller for the scale elasticity than for
any of the input elasticities. The coefficient of variation of the scale elasticities is uniquely
higher in Chemicals than in the two other industries. This explains why we can find clearly
increasing returns to scale at the sample mean in some models in Chemicals only, although
this industry has the smallest share of individual plants with increasing returns.

A share of the predicted input elasticities is negative (Table 5, column 6), which means that
the predicted functions for some of the plants do not fulfill the usual regularity conditions
of a production function, as representing the technically efficient combinations of inputs
and output. This makes economic interpretation more difficult. It should be remembered,
however, that outliers—according to some pre-defined rules—are not excluded from our
data set. Such data cleaning, which reduces heterogeneity and hence probably also the
problem with theory inconsistent results, is rather common in analyses of micro data.
Furthermore, if our data set is affected by variation in factor utilisation over the business
cycle, this may also explain the presence of negative predicted input elasticities. Generally,
negative predicted input elasticities seem to be somewhat more pronounced for Models
TL(c, α) and ECD(c, α) than for CD(c, α). Stated otherwise, increased flexibility of the
functional form intensifies the problem of violation of the regularity conditions. Negativity
of the predicted input elasticities occurs least frequently for materials. The occurrence of
negative predicted input elasticities as well as negative estimates of average input elasticities
(cf. Table 3) may suggest that some kind of constrained estimation procedure, or other
distributional assumptions for the random coefficients, should have been applied. Such
modifications, however, may require computer software which is presently unavailable,
and/or may enhance the numerical problems.

Differences between the values for Model ECD(c, α) in Table 3—calculated at the esti-
mated expected values of the random coefficients and the overall input means—and the val-
ues in Table 5—calculated at the plant specific random coefficients and plant specific input
means—reflect both random and systematic heterogeneity. In Pulp and paper, the differences
are modest for the scale elasticities, the largest difference, 0.06, occurring for the energy
elasticity. For the other two industries, we find in general larger discrepancies. In Chemi-
cals, the discrepancy in the scale elasticity is as high as 0.27. The main contribution to these
discrepancies comes from the capital elasticity. In Basic metals, the discrepancy in the scale
elasticity is modest, but both the energy and the materials elasticities deviate significantly.

Predicted input and scale elasticities: Correlation pattern. The empirical covariance pat-
tern of the predicted plant specific input elasticities, given in the last four columns of
Table 6 (variances along the diagonal, correlation coefficients below), shows that most of
the correlations are negative. To a considerable extent this reflects the pattern in Table 4
for the (random) first-order coefficients (αK i , αLi , αEi , αMi ). The empirical variances of
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the predictions are far smaller than the estimated population variances of the random input
coefficients.

High estimates (in absolute value) of corr(αmi , αni ) (m and n denoting two arbitrary
inputs) seem to be accompanied by high empirical correlations between predicted input
elasticities of inputs m and n. Since parameter heterogeneity accounts for an important
part of the dispersion in the predicted input elasticities, this is not surprising. Reproducing
the calculations in Table 6 with the predicted plant specific coefficients replaced by their
estimated means confirms that most of the dispersion reflects the randomness of the coeffi-
cients. For example, the empirical variances of the scale elasticities are reduced to less than
one third.

Finally, the predicted plant specific scale elasticity is strongly positively correlated with
the predicted labour input elasticity in all the three industries (correlation coefficient 0.56
or more) (Table 6, column 1). On the other hand, it is clearly negatively correlated with the
predicted energy input elasticity (correlation coefficient −0.28 or below).

4. Concluding Remarks

In this paper, the importance of heterogeneity in economies of scale is analysed using an
unbalanced plant-level panel data set from Norwegian Manufacturing Statistics in Pulp
and paper, Chemicals, and Basic metals industries. A random coefficient approach is cho-
sen, and unlike most previous work on panel data, we allow for heterogeneity in the
slope coefficients representing the scale properties as well as in the intercept term. Nine
specifications of a four-factor (KLEM) production function are estimated: the Translog, an
Extended Cobb-Douglas and the strict Cobb-Douglas, each with three representations of
the heterogeneity.

We find constant or moderately increasing returns to scale for a plant with an average
technology, but the results reveal considerable variation across plants, and plants with both
increasing and decreasing economies of scale are present. The input elasticities at the
sample mean are even more variable than the scale elasticity. In general, the input elasticity
of materials is largest. Variations in the input elasticities across plants seem to a larger extent
to be due to randomness of the production function parameters than to systematic differences
in the input mix. Including heterogeneity in slope coefficients, in addition to heterogeneous
intercept terms, improves the fit substantially. Among the models with heterogeneity in
slope coefficients, the fit does not seem to differ much across functional forms. However,
according to the predicted input elasticities, the Cobb-Douglas model yields plant specific
production functions which to a less degree than the two other functional forms violate the
regularity conditions regarding technical efficiency. Hence, it may be advisable to choose a
relatively restrictive functional form if heterogeneity in technology is a major concern and
is represented by random coefficients.

The lesson we learn from this analysis is that one should work carefully with the repre-
sentation of the plant specific heterogeneity when analysing production technologies from
micro data. This supports the findings of Mairesse and Griliches (1990), who use a simpler
description of the average technology than we do. In two of the three industries, our esti-
mated scale elasticity for the average plant is very robust to the choice of the model.



HETEROGENEITY IN RETURNS TO SCALE 51

An interesting issue for future research would be to analyse the distribution of scale
properties, and their aggregate implications, in more detail. This may be important since
knowledge about systematic variation in characteristics of plants with either increasing or
decreasing returns to scale, such as age, size, growth performance, etc., could be crucial for
our understanding of the evolution of an industry.

Appendix A: Details on Estimation Method and Coefficient Prediction

Consider a data set from an unbalanced panel, in which the plants are observed in at least
1 and at most P years. We assume that the selection rules for the unbalanced panels are
ignorable, i.e., the way in which the plants enter or exit is not related to the endoge-
nous variables in the model; see Verbeek and Nijman (1996, Section 18.2). The plants
are arranged in groups according to the number of years the plants are observed. Let Np

be the number of plants which are observed in p years (not necessarily the same and not
necessarily consecutive), let (i p) index the i’th plant among those observed in p years
(i = 1, . . . , Np; p = 1, . . . , P), and let t index the observation number (t = 1, . . . , p). The
total number of plants in the panel is N = ∑P

p=1 Np and the total number of observations
is n = ∑P

p=1 Np p. The regression equation, i.e., the production function (1), can be written
compactly as

y(i p)t = x(i p)tθ(i p) +u(i p)t , p = 1, . . . , P; i = 1, . . . , Np; t = 1, . . . , p, (A.1)

where θ(i p) is the coefficient vector of plant (i p). The regressand of plant (i p), observation
t , is y(i p)t , the corresponding (1× H) regressor vector is x(i p)t , and the disturbance is u(i p)t .
The (H ×1) coefficient vector of plant (i p), cf. (2), is

θ(i p) = θ+ε(i p), (A.2)

where θ is the common expectation vector of θ(i p) for all plants, and ε(i p) is a zero mean
random vector specific to plant (i p). Inserting (A.2) in (A.1), we get

y(i p)t = x(i p)tθ+ψ(i p)t , ψ(i p)t = x(i p)tε(i p) +u(i p)t , (A.3)

where we interpret ψ(i p)t as a ‘gross disturbance.’ We assume that all x(i p)t , u(i p)t , and ε(i p)

are all independent, and that

u(i p)t ∼ IIN(0, σuu), ε(i p) ∼ IIN(0,Ω), (A.4)

where IIN signifies independently, identically, normally distributed. The matrix Ω is singu-
lar, reflecting that some of the coefficients are fixed, cf. (3).

We stack the p realisations from plant (i p) in y(i p) = [y(i p)1, . . . , y(i p)p]′, X(i p) =
[x′

(i p)1, . . . , x′
(i p)p]′, u(i p) = [u(i p)1, . . . , u(i p)p]′, and ψ(i p) = [ψ(i p)1, . . . , ψ(i p)p]′, and can
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then write (A.3) as

y(i p) = X(i p)θ+ψ(i p), ψ(i p) = X(i p)ε(i p) +u(i p). (A.5)

It follows from (A.3) and (A.4) that all ψ(i p) | X(i p) are independent and

ψ(i p) | X(i p) ∼ N
(
0,Ω(i p)

)
, Ω(i p) = X(i p)ΩX′

(i p) +σuuIp. (A.6)

The joint log-density function of y(i p) conditional on X(i p), is

L(i p) = − p

2
ln(2π)− 1

2
ln

∣∣Ω(i p)

∣∣− 1

2

[
y(i p) −X(i p)θ

]′Ω−1
(i p)

[
y(i p) −X(i p)θ

]
,

so that by utilising the ordering of the observations in the P groups, we can write the log-
likelihood function of all observations on the y’s conditional on all observations on the X’s
as

L =
P∑

p=1

Np∑
i=1

L(i p) = −n

2
ln(2π)− 1

2

P∑
p=1

Np∑
i=1

ln
∣∣Ω(i p)

∣∣

− 1

2

P∑
p=1

Np∑
i=1

[
y(i p) − X(i p)θ

]′ Ω−1
(i p)

[
y(i p) − X(i p)θ

]
. (A.7)

The Maximum Likelihood (ML) estimators of (θ, σuu,Ω) are obtained by maximising
L with respect to (the unknown elements of) these parameter matrices. The solution con-
ditions may be simplified by concentrating L over θ and maximising the resulting func-
tion with respect to σuu and the unknown elements of Ω. For a further discussion, see
Biørn (1999).

The coefficient vector of plant (i p), θ(i p), can be predicted as follows:

θ∗
(i p) = θ̂+ Ω̂X′

(i p)

(
X(i p)Ω̂X′

(i p) + σ̂uuIp
)−1(

y(i p) −X(i p)θ̂
)
, (A.8)

where θ̂ is the ML (strictly, the Feasible GLS) estimator of the expected coefficient vector
θ (cf. Lee and Griffiths, 1979, Section 4; and Hsiao, 1986, p. 134), and Ω̂ and σ̂uu are
the corresponding estimates of Ω and σuu . Apart from the fact that Ω and σuu have been
estimated, this is the best linear unbiased predictor (BLUP) of θ(i p). It can be shown that
this expression can be rewritten as a matrix weighted average of the overall (GLS) estimator
of θ and the OLS estimator of θ(i p), based on observations from plant (i p), i.e., θ̂(i p) =
(X′

(i p)X(i p))
−1(X′

(i p)y(i p)), in the following way

θ∗
(i p) = [

Ω̂
−1 + σ̂−1

uu X′
(i p)X(i p)

]−1[Ω̂−1
θ̂+ σ̂−1

uu X′
(i p)X(i p)θ̂(i p)

]
, (A.9)

cf. Judge et al. (1985, pp. 540–541). The latter expression, however, is only valid when
p > H , since otherwise θ̂(i p) does not exist.
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Appendix B: Data and Empirical Variables

We use an unbalanced plant-level panel data set that covers the period 1972–1993. The
primary data source is the Manufacturing Statistics database of Statistics Norway. Our initial
data set includes all large plants, generally defined as plants with five or more employees (ten
or more employees from 1992 on), classified under the Standard Industrial Classification
(SIC)-codes 341 Manufacture of paper and paper products (Pulp and paper, for short), 351
Manufacture of industrial chemicals (Chemicals, for short) and 37 Manufacture of basic
metals (Basic metals, for short). Both plants with contiguous and non-contiguous time series
are included.

In the description of the empirical variables below, MS indicates that the data are from
the Manufacturing Statistics, and the data are plant specific. NNA indicates that the data
are from the Norwegian National Accounts. In this case, the data are identical for plants
classified in the same National Account industry. While the plants in our unbalanced panel
mainly are collected from 18 different industries at the 5-digit SIC-code level, the plants
are classified in 14 different National Account industries. We use price indices from NNA
to deflate total material costs, gross investments and fire insurance values. The two latter
variables are used to calulate data on capital stocks, applying a variant of the perpetual
inventory method.

Y : Output, 100 tonnes (MS)
K = KB+KM: Total capital stock (buildings/structures plus

machinery/transport equipment), 100 000 1991-NOK (MS, NNA)
L: Labour input, 100 man-hours (MS)
E : Energy input, 100 000 kWh, electricity plus fuels (excl. motor gasoline) (MS)
M = CM/QM: Input of materials (incl. motor gasoline), 100 000 1991-NOK (MS, NNA)

CM: Total material cost (incl. motor gasoline) (MS)
QM: Price of materials (incl. motor gasoline), 1991 = 1 (NNA)

Output: The plants in the Manufacturing Statistics are in general multi-output plants
and report output of a number of products measured in both NOK and primarily tonnes or
kg. The classification of products follows The Harmonized Commodity Description and
Coding System (HS), and assigns a 7-digit number to each specific commodity. For each
plant, an aggregate output measure in tonnes is calculated. Hence, rather than representing
output in the three industries by deflated sales, which may be affected by measurement
errors (see Klette and Griliches, 1996), our output measures are actual output in physical
units, which are in several respects preferable.

Capital stock: The calculations of capital stock data are based on the perpetual inventory
method assuming constant depreciation rates. We combine plant data on gross investment
with fire insurance values for each of the two categories Buildings and structures and Ma-
chinery and transport equipment from the Manufacturing statistics. The data on investment
and fire insurance are deflated using industry specific price indices of investment goods
from the Norwegian National Accounts (1991 = 1). The depreciation rate for Buildings
and structures is 0.020 in all industries. For Machinery and transport equipment, the
depreciation rate is set to 0.040 in Pulp and paper and Basic metals, and 0.068 in Chemicals.
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For further documentation of the data and the calculations, see Biørn, Lindquist and
Skjerpen (2000b, Section 4, and 2003).

Other Inputs: From the Manufacturing Statistics we get the number of man-hours used,
total electricity consumption in kWh, the consumption of a number of fuels in various
denominations, and total material costs in NOK for each plant. The different fuels, such
as coal, coke, fuelwood, petroleum oils and gases, and aerated waters, are transformed to
the common denominator kWh by using estimated average energy content of each fuel
(Statistics Norway, 1995, p. 124). This enables us to calculate aggregate energy use in
kWh for each plant. For most plants, this energy aggregate is dominated by electricity.
Total material costs is deflated by the price index (1991 = 1) of material inputs (incl. motor
gasoline) from the Norwegian National Accounts. This price is identical for all plants
classified in the same National Account industry.

We have removed observations with missing values of output or inputs. This reduced the
number of observations by 4–8 per cent in the three industries. The number of plants per
year varies from 81 to 179 in Pulp and paper, from 46 to 66 in Chemicals, and from 71
to 111 in Basic metals. There is a clear negative trend in the number of plants from the
mid-seventies in all three industries. The unbalance in our data set is shown in Table B1,

Table B1. Number of plants classified by number of replications.

Pulp & Paper Chemicals Basic Metals
Industry
p Np Np p Np Np p Np Np p

22 60 1320 29 638 44 968
21 9 189 0 0 2 42
20 5 100 3 60 4 80
19 3 57 0 0 5 95
18 1 18 2 36 2 36
17 4 68 4 68 5 85
16 6 96 9 144 5 80
15 4 60 6 90 4 60
14 3 42 1 14 5 70
13 4 52 3 39 3 39
12 7 84 1 12 10 120
11 10 110 2 22 7 77
10 12 120 3 30 6 60
09 10 90 2 18 5 45
08 7 56 2 16 2 16
07 15 105 2 14 13 91
06 11 66 3 18 4 24
05 14 70 3 15 5 25
04 9 36 2 8 6 24
03 18 54 3 9 3 9
02 5 10 3 6 6 12
01 20 20 7 7 20 20

Sum: N , n 237 2823 90 1264 166 2078

Note: p = no. of observations per plant, Np = no. of plants observed p times, N = ∑
Np, n = ∑

Np p
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Table B2. Overall mean and standard deviation of basic variables.

Pulp & Paper Chemicals Basic Metals

Industry Log of Log of Log of
Variable Mean Mean Std. Dev. Mean Mean Std. Dev. Mean Mean Std. Dev.

ln(Y ) 4.117 2.079 4.750 2.444 3.586 2.658
Y 5.697 7.351 5.861
ln(K ) 6.691 1.787 7.217 1.942 6.643 2.244
K 7.971 8.777 8.512
ln(L) 6.836 1.297 6.886 1.496 7.060 1.694
L 7.568 7.889 8.277
ln(E) 4.417 2.599 5.332 2.481 4.808 2.807
E 6.575 7.440 7.809
ln(M) 5.393 1.792 5.452 2.014 5.404 2.254
M 6.603 6.983 7.285
τ 9.940 6.205 10.952 6.188 10.794 6.259

which gives the number of plants sorted by the number of observations. Table B2 gives the
overall mean and standard deviation of the basic variables.
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Notes

1. Attempts were made to solve the Maximum Likelihood estimation problem (under normality of the random
coefficients and the disturbance terms) with random B, γ , γ ∗, and δ. As this turned out to raise numerical
problems, we decided to consider only models in which these coefficients are constants.

2. Likelihood Ratio test statistics can be easily calculated from the tables. These statistics are, however, not
asymptotically χ2-distributed under the null hypothesis of full coefficient homogeneity, because the parameters
in Ω then are on the border of the admissible parameter space, see Shin (1995, p. 321). Thus, for making formal
inference of coefficient heterogeneity versus homogeneity, other test procedures may be needed, see the recent
papers by Khuri, Mathew and Sinha (1998) and Andrews (1999). We have not followed up these ideas in the
present paper.

3. The two latter criteria are defined, for a model, m, by, respectively, AI Cm = lm −qm and SBCm = lm −
0.5qm ln(Nm), where lm is the log-likelihood value of model m, qm is its number of parameters, and Nm is its
number of observations.

4. We do not consider prediction for a plant which enters the sample in year s.
5. Defined as the logarithms of their arithmetic means; cf. Table B2 in Appendix B.
6. Note that the standard deviation estimates given in parenthesis refer to the uncertainty of the estimated param-

eters and hence is conceptually different from the standard deviation of the random parameter, i.e., the square
root of the diagonal elements of �αα .

7. A 5 per cent significance level is used throughout.
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