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Glioblastoma (GBM) is an extremely aggressive and incurable primary brain

tumor with a 10-year survival of just 0.71%. Cancer stem cells (CSCs) are

thought to seed GBM’s inevitable recurrence by evading standard of care

treatment, which combines surgical resection, radiotherapy, and

chemotherapy, contributing to this grim prognosis. Effective targeting of

CSCs could result in insights into GBM treatment resistance and

development of novel treatment paradigms. There is a major ongoing effort

to characterize CSCs, understand their interactions with the tumor

microenvironment, and identify ways to eliminate them. This review

discusses the diversity of CSC lineages present in GBM and how this glioma

stem cell (GSC) mosaicism drives global intratumoral heterogeneity constituted

by complex and spatially distinct local microenvironments. We review how a

tumor’s diverse CSC populations orchestrate and interact with the

environment, especially the immune landscape. We also discuss how to map

this intricate GBM ecosystem through the lens of metabolism and immunology

to find vulnerabilities and new ways to disrupt the equilibrium of the system to

achieve improved disease outcome.
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Cancer stem cells (CSCs) in GBM

Glioblastoma (GBM) is a very aggressive and incurable

disease with a median survival of about 15 months and a 5-

year survival rate of only 5.5% (1–3). This dismal prognosis may

be due to lack of adequate treatment and targeting of glioma

stem cells (GSCs). Cancer stem cells (CSCs) have been observed

and described in a number of cancers, including GBM, and their

hallmarks are presented in Figure 1. GSCs are self-renewing,

tumorigenic cells that drive tumor formation, progression, and

ultimately disease recurrence (4, 5). GSCs are multipotent and

can differentiate along multiple lineages into progenies with

varying characteristics that create different niches, heavily

contributing to the heterogeneity found in GBM (6). This

heterogeneity is associated with poor prognosis and treatment

resistance (5, 7, 8). GSC is a collective term for a wide array of

heterogeneous cells that share certain phenotypic characteristics

and functional properties. There is no clear dichotomy between

non-GSCs and GSCs; rather, there appears to be a cellular

spectrum that spans multiple cell types or states (9). There is

no consensus over a strict set of characteristics delineating GSCs.

These cells overexpress several markers including CD133, CD44,

CD15, A2B5, PTPRZ1, ITGB8, L1CAM, SOX2, and Nestin,

which are common but not defining (5, 10–13). GSCs can also

be classified based on their behavioral and functional properties,

such as enhanced sphere forming ability and being slow-cycling

(14). Glycerol-3-phosphate dehydrogenase 1 (GPD1), a key

player in oxidative phosphorylation (OxPhos), has been

purported to be enriched in dormant GSCs (12). Slow-cycling

GSCs were also described to exhibit enhanced mitochondrial

activity and lipid metabolism (14). However, not all GSCs

express these markers or exhibit these features, which are not

exclusive to these cells. For instance, it was shown that CD133

negative GBM cells harbored stem cell properties, such as tumor

forming ability (9). Currently, much effort is being made by the

cancer stem cell community to standardize and innovate assays

for better characterization and targeting of CSCs. GSCs are

important factors in driving the progression of GBM through

their roles in immune suppression, preventing immune cells

from sufficient uptake of nutrients such as glucose and oxygen,

promoting angiogenesis, and increased invasion and metastatic

abilities (4). In creating a more immunosuppressive

environment, GSCs have been seen to inhibit T cell

proliferation and cytotoxic T cell activation, as well as secrete

factors such as IL-10 and TGFb, which suppress the tumor-

killing function of macrophages (15). GSCs exhibit specific

metabolic regulations allowing them to outcompete

neighboring cells for nutrients, such as glucose through

upregulation of glucose transporters (16), or lipids via the

overexpression of fatty acid transporters and binding proteins

(14). In addition, the hypoxic conditions of the TME promote

GSC survival by furthering the stem-like state through
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glycosylation of CD133 which plays a role in anti-hypoxia-

mediated apoptosis (17). GSCs can express higher levels of

proangiogenic growth factors such as vascular endothelial

growth factor (VEGF) and can transdifferentiate into pericytes,

contributing to vascular structure (18). GSCs also display greater

infiltration capacities and increased migratory abilities through

engaging in the epithelial-mesenchymal transition (EMT)

pathway (14, 19). By utilizing these specific characteristics,

these cells can shape a supportive TME, thereby promoting

cancer progression and leading to worse disease outcome (19).
Heterogeneity of GSCs in GBM

One of the hallmarks of GBM is its cellular heterogeneity

(Figure 1). This is reflected in the heterogeneity of the GSC

makeup of a tumor as well (5, 20, 21). Multiple populations of

GSCs have been defined based on the expression of various

markers (5). For instance, CD133 is commonly used as a marker

for GSCs. However, there has been evidence for CD133 negative

stem-like cells (22). Both positive and negative cells can give rise

to cells that express markers of neurons, astrocytes, and

oligodendrocytes, demonstrating multipotency with the ability

to give rise to different cell lineages (Figure 1). Furthermore, both

subtypes were identified as similarly tumorigenic, although the

proliferation index for the CD133 negative line was lower (22).

Different cell types can express one or a combination of CSC

markers, suggesting a diverse range of stemness within GSC

populations (5, 23). Expression of other markers, such as

EGFRvIII, can increase stemness of a cell population as well

(20, 24). Tumor samples have been found to contain multiple

CSC types, each exhibiting distinct characteristics, such as

differing abilities to give rise to multinucleated giant cells (25,

26). These separate subclones of GSCs also showed different

responses and resistance to treatments. Another study

demonstrated that different clones have varying sphere-

forming abilities, relating to their proliferation and self-

renewal (27). These different GSCs can therefore contribute

specifically and differently to the tumor presentation

and progression.

The diversity of GSC populations can be explained by their

spatial and cellular origin, which can include stem cells,

progenitor cells, and differentiated cells (6, 28). Interestingly,

heterogeneity has also been noted in adult neural stem cells

(aNSCs), with a spectrum depending on the developmental

stages and spatial location of these cells, impacting their self-

renewing capabilities and multipotency (29, 30). Drawing from

the idea that GSCs may arise from aNSCs, this concept can be

extrapolated to explain that they share these heterogeneous

features as well. GSCs vary in phenotypes and properties, and

their stem-like states has been described to change over time

(23). GSCs exist along a fluid spectrum of stemness with a
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dynamic cellular composition and geospatial distribution

regulated by intrinsic and extrinsic mechanisms and

dependent on the local microenvironment, the stage of the

disease, and the exposure to treatments (20, 31, 32).

Heterogeneity in GBM is also reflected by the existence of

different transcriptional and molecular subtypes identified by

bulk RNA sequencing. GBM has been classified into four

subtypes (proneural, neural, mesenchymal, and classical)

characterized by specific genetic aberrations and gene

expression of EGFR, NF1, and PDGFRA/IDH1 (33). Not only

can these subclasses vary between patients, they can also co-exist

in different areas within the same tumor. Subsequent single cell

RNA sequencing studies showed that distinct cells of a given

tumor can engage programs recapitulating each distinct subtype

(34–36). The subtypes can also change between primary and

recurrent tumors with about 65% of primary GBM switching

subclass after recurrence (37). Furthermore, the cell of origin

and initiating anatomical location may influence the GBM

subtype (38–42). For instance, the mesenchymal and

proneural subtypes are suggested to originate from an

astrocytic lineage and oligodendrocyte precursor cell lineage,

respectively (39, 41). Interestingly, each subtype is associated

with a different treatment sensitivity and immune signature (36,
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43–46). Additionally, distinct GSC signatures are identified in

the different GBM subclasses. The mesenchymal subtype is, for

example, characterized by low expression of CD133 and high

levels of expression of CD44, YKL40, BMI1, ALDH1A3,

TWIST1, SNAI1-2, TGFB1, STAT3, and CD248, whereas the

proneural subtype is defined by GSCs with high expression of

CD133, OLIG2, SOX2, and EZH2 (47–49). Mesenchymal GSCs

tend to localize to hypoxic and necrotic areas, while proneural

GSCs are mostly found in the perivascular regions (48). More

recently, using single cell RNA sequencing, Neftel and colleagues

demonstrated the presence of four different malignant cellular

states including neural-progenitor-l ike (NPC-like) ,

oligodendrocyte-progenitor-like (OPC-like), astrocyte-like

(AC-like), and mesenchymal-like (MES-like) (50). The

frequency of each state is correlated to genetic alterations in

CDK4, PDGFRA, EGFR, and NF1, with each alteration favoring

a particular state. Tumors enriched for the AC-like and MES-like

states correspond to the bulk defined subtypes, classical and

mesenchymal, respectively, whereas the proneural subtype

corresponds to the combination of the OPC-like and NPC-like

states. Finally, the neural subclass reflects a dominance of

nonmalignant oligodendrocytes and neurons. The immune

environment differs between subtypes as well. For instance,
FIGURE 1

Hallmarks of GSCs. GSCs have many distinct characteristics that differentiate them from other types of tumor cells. Their degree of stemness is
related to the hallmarks presented. Adapted from “Hallmarks of Cancer: Circle”, by BioRender.com (2022). Retrieved from https://app.biorender.
com/biorender-templates.
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increased gene expressions of CD11b and IBA1 were reported in

the mesenchymal subtype, suggesting a greater recruitment of

macrophages/microglia compared to the proneural and classical

subtypes (36). Classical GBM was also associated with greater

activation of dendritic cells. Moreover, mesenchymal and

proneural GBM exhibit lower populations of NK cells and

CD4+ T cells, respectively. Strikingly, this study also reported

that classical or proneural subtypes transitioning to

mesenchymal upon recurrence are characterized by an

increased recruitment of macrophages/microglia.

There is also a dynamic plasticity between GSCs and non-

GSCs, where environmental triggers can induce stemness in

non-GSCs (20, 31, 32, 51). Such triggers can include treatment

with TMZ, inducing the expression of molecular markers such as

CD133, SOX2, OCT4, and Nestin. These treatment-induced

newly converted GSCs exhibit high tumorigenicity and

infiltrative properties recapitulating the original tumor

population (31). Together these studies suggest that CSCs may

reflect a functional state that tumor cells can shift in and out of,

depending on the environment. Fully understanding the

molecular mechanisms behind these shifts in stemness will
Frontiers in Oncology 04
help develop effective therapies against GSCs and recurrence

(20). Epigenetic factors, such as histone modification and

microRNA regulation, are potential mechanisms by which

cells regulate stemness (20, 51, 52). These factors strongly

implicated in GSC plasticity and stemness modulation

represent viable targets for therapies. In conclusion, this

heterogeneity and shift between subtypes, triggered by the

fluidity of the CSCs, underlie treatment resistance and disease

recurrence (Figure 1).
Heterogeneity of immune cells in
GBM TME

The immune microenvironment of GBM plays an important

role in the growth and development of tumor cells (Figure 2).

One of the characteristics of GBM is that they are “cold” tumors,

characterized by the lack of a strong immune response. Such

tumors are enriched in cells that are able to limit an anti-tumor

immune response by inhibiting dendritic cell and T cell

migration and activities (53). The main immune cells in the
FIGURE 2

Crosstalk between GSCs and immune cells in the GBM TME. This graphic demonstrates the bidirectional relationship between GSCs and the
immune compartment. These signaling pathways result in immune cells producing an immunosuppressive milieu and tumor cells becoming
more tumorigenic with increased expression of stemness markers. Adapted from “Immunosuppressive Cells in the Tumor Microenvironment”,
by BioRender.com (2022). Retrieved from https://app.biorender.com/biorender-templates.
frontiersin.org
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GBM TME are macrophages, microglia, myeloid-derived

suppressor cells (MDSCs), T-regs (T cell subset), dendritic

cells (DCs), and neutrophils. These different immune cells can

be distinguished within the GBM TME through various cell

surface markers. Many of these markers are shared between

humans and mice, however some are unique to their respective

species (Table 1). Typically, tumor associated macrophages

(TAMs), MDSCs, and T-regs are upregulated in GBM,

contributing to their immunosuppressive nature, with higher

populations associated with poor prognosis (75). Conversely,

DCs are downregulated, further supporting immune

suppression in GBM (75). B cells, especially regulatory B cells

(Breg), have also been identified and described in the GBM

microenvironment (76) . Lee-Chang and col leagues

demonstrated that GBM-associated MDSCs promote Breg

function via transfer of PD-L1, conferring Bregs the capacity

to suppress CD8+ T cell activation and acquisition of an effector

phenotype (76).

Microglia encompass 5-20% of the total glial cell population

in the adult brain, but their role in the GBM TME is still poorly

understood (77). Arising from immune progenitors in the yolk

sac during early embryogenesis, they play a primary role in

immune surveillance and maintaining overall tissue health

through phagocytosis of cellular debris and dead neurons (78).

Microglia have been shown to be highly heterogeneous, plastic,

and dynamic (79–81). Microglia comprise the majority of

CD45mid cells in human IDH mutant (IDHmut) glioma that

exhibit smaller numbers of monocyte derived macrophages and

fewer lymphocytes or neutrophils compared to human IDH

wild-type (IDHwt) glioma (54, 82). scRNA sequencing analyses

coupled with cytometry by time of flight (CyTOF) studies of

microglial heterogeneity in human IDHwt GBM identified nine

microglia clusters (54, 83). Microglia have also been described to

stimulate tumor cell infiltration. This was seen in murine glioma

cells when the tumor cells without microglia had decreased and

delayed tumor cell migration compared to cells with intact

microglia (84). Upregulation of matrix metalloproteinases
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(MMPs), such as MMP2 and MMP4, by microglia plays a

crucial role in enabling cancer cell migration and metastasis

through the degradation of extracellular matrix (ECM)

macromolecules such as collagens, laminins, and proteoglycans

(85, 86). Other upregulated MMPs connected to microglial

expression include MMP9 or MT1-MMP, which act through

toll-like receptors and the p38 MAPK pathway (87, 88).

Caponegro and colleagues demonstrated that microglia

contribute to the recruitment of macrophages and regulatory

T cells by releasing CCL2, both contributing to the immune

escape of tumor cells (89). Post-transcriptional regulatory

mechanisms modulating metabolic, inflammatory, and

interferon-related pathways, regulate the microglial responses

in the GBM TME (83). In multiple mouse models of glioma,

microglia were found predominantly at the tumor margins

promoting spatially related functions of glioma cells including

proliferation, infiltration, and stemness (89–92).

The brain TME is also comprised of monocyte-derived

macrophages, which make about a third of the entire tumor mass,

and their abundance correlates with glioma grade (93). Key

differences exist between brain tumor associated monocyte-derived

macrophages and microglia with respect to ontogeny-specific

transcription factors and their respective spatial distributions (94,

95). Functional and phenotypic differences were also noted between

these two immune cell types (54). Tumor associated monocyte-

derivedmacrophages are classified by their activation state, previously

grouped into the classically activated M1 (anti-tumor effects) or

alternatively activated M2 group (pro-tumor effects) (96).

Proinflammatory cytokines such as IFN-g and TNF-a, as well

as TLR (toll-like receptor) ligands, are associated with the M1-like

characteristics, while anti-inflammatory cytokines such as IL-4, IL-3,

and TGF-b are associated with the M2-like characteristics (97, 98).

However, this dichotomy of M1-M2 macrophages is more complex

and nuanced with a broader range of macrophage phenotypes and

function along the spectrum defined by the M1-M2 extremes. This

was shown when human macrophages were activated with 28

different stimuli and had differing activation responses (99). Thus,
TABLE 1 Non-exhaustive list of markers expressed by GBM-associated immune cells.

Immune Cell Type Human Mouse

Microglia CD11b, Tmem119, P2RY12, CD45low, TLR4low (54–58) CD11b, Tmem119, P2RY12, CD45low, TLR4high, IFNg receptor (54, 56, 57)

Macrophages CD45high, CD14, CD11b
M1 macrophages: HLA-DR, iNOS,
M2 macrophages: CD206, CD204, CD163 (54, 57, 58)

Arg1, F4/80, Ly6G/C, CD11b
M1 macrophages: pSTAT1,
M2 macrophages: CD206, CD204, CD163 (58–60)

MDSCs CD11b, CD33, CD15 (61–63) CD11b, Gr1, Ly6G, Ly6Clow (61–63)

Tregs CD4, CD39, CD127low, FOXP3high, Ki-67 (61, 64) CD4, CD39, CD127low, FOXP3high (61, 64)

Dendritic cells cDC1: CD45, CD11c, DNGR1, CD141, XCR1
cDC2: CD1C, CD207, CD11b, CD11c, NOTCH2, SIRPA
pDC: CD303, CD85k, CD304, and CD197
mo-DC: CD14, CD206, CD209, SIRPA, CD11b, CD1A (65–71)

cDC1: CD45, CD11c, MHC class II, CD8, CD24, CLEC9A
cDC2: CD45, CD11c, MHC class II, CD4, SIRPa, CD11b
pDC: CD45, CD11c, MHC class II, CD317, Siglec-H, Ly-6C, B220
Inflammatory DC: CD11c, MHC class II, CD64, and CD11b (62, 71, 72)

Neutrophils CD11b, CD16, CD66b (73, 74) CD11b, CD16, CD66b, Ly-6G (73, 74)
The main immune populations in the GBM TME are microglia, macrophages, MDSCs, Tregs, dendritic cells, and neutrophils. These can be distinguished based on the cell surface markers
listed above and corresponding to each immune cell type.
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rather than the dichotomous M1-M2 model, distinguishing

macrophages through the expression of gene clusters, defining

signatures, or inducing stimuli, may be a more accurate depiction

of macrophages diversity (100). In a model generated through single

cell -omics, and spanning multiple cancer types, seven groups of

TAMs were described with varying signature genes, enriched

pathways, and predicated function: interferon-primed TAMs (IFN-

TAMs), immune regulatory TAMs (Reg-TAMs), inflammatory

cytokine-enriched TAMs (Inflam-TAMs), lipid-associated TAMs

(LA-TAMs), pro-angiogenic TAMs (Angio-TAMs), RTM-like

TAMs (RTM-TAMs), and proliferating TAMs (Prolif-TAMs) (98).

IFN-TAMsmost closely resemble M1-like macrophages, but have an

immunosuppressive function through tryptophan degradation and

Treg recruitment (101). Reg-TAMs most closely resemble M2-like

macrophages with an immunosuppressive function regulated by

triggering receptor expressed on myeloid cells 2 (TREM2) with

characteristics dependent on the signature genes induced in specific

cancers (98, 102). Inflam-TAMs are involved in the tumor

inflammatory response, aiding in recruiting and regulating immune

cells to the site of inflammation (98). Angio-TAMs are involved in

tumor progression, tumor cell intravasation, extravasation, and

chemotherapy resistance with a large population seen in hypoxic

regions of the GBM TME, and are associated with worse patient

prognosis (103–105). LA-TAMs help suppress the anti-tumor

immune response to promote tumor progression through the

immunosuppressive lipid catabolism and inflammation-promoting

lipid synthesis (106, 107). RTM-TAMs have a high level of

heterogeneity and have been shown to promote tumor invasiveness

through the induction of tumor cell epithelial–mesenchymal

transition (EMT) and Treg recruitment in a GBM model (108).

Prolif-TAMs expand through proliferation to promote tumor

progression, playing an important role in tumor growth and may

function as precursors to other TAM subsets (98, 109). These are not

the only monocyte subtypes but can serve as means of organization

and macrophage classification, with the main signature genes and

markers for each subtype listed in Table 2. TAMs display a large

range of CX3CR1 andCCR2 expression levels, suggesting that there is

a frequent transformation of infiltrating monocytes into mature

macrophages (128). They also enhance immune suppression and
Frontiers in Oncology 06
angiogenesis by expelling specific anti-inflammatory cytokines, such

as TGFb or IL-10, and angiogenic factors, such as VEGFa (97). IL-10

acts to promote tumor growth through the JAK2/STAT3 pathway

(129). An activation loop is formed as STAT3 is transcribed, causing

suppression of nearby immune cell activity, also leading to a

reduction in IFN-g and TNF-a in GBM, preventing all anti-tumor

activity and creating a pro-immunosuppressive environment (129).

GBM cells regulate the recruitment and phenotype of monocyte-

derived macrophages in the TME. For instance, macrophages can

vary in composition and have been shown to be influenced by

mutations in the IDH1 or IDH2 genes, encoding for isocitrate

dehydrogenase and resulting in the production of oncometabolite

2-hydroxyglutarate (130).

Myeloid-derived suppressor cells (MDSCs) are activated

neutrophils and monocytes that have immunosuppressive

activity. During GBM development, the integrity of the blood

brain barrier is compromised, leading to the infiltration of

inflammatory monocytes, which enter the brain tissue and

differentiate into MDSCs (90). This leads to an abundance of

MDSCs within the GBM TME. MDSCs can be characterized into

three main subtypes: granulocytic (G-MDSCs), mononuclear

(M-MDSC), and early-stage (eMDSCs), each with different roles

and functions (131). G-MDSCs can be separated due to their

low-density properties, and eMDSCs are immature, lineage-

negative cells that do not express some of the common MDSC

markers such as CD15 (131, 132). M-MDSCs have the highest

immunosuppressive capacity through the secretion of

immunosuppressive cytokines, suppressing T cell function and

promoting Treg cells through the secretion of TGF-b and IL-10

(133, 134). G-MDSCs can also play a role in T cell

immunosuppression through increased expression of S100A8/9

and arginase, and the production of reactive oxygen species

(ROS) (135, 136). One study found that MDSCs had

significantly impaired CD4+ T cell memory functions in GBM

patients (61). They detected a strong association between G-

MDSCs and CD4+ effector memory T cells, along with

upregulated PD-L1 expression associated with driving T cell

exhaustion in the TME (61). The CD74 receptor is also

overexpressed in MDSCs as a macrophage migration
TABLE 2 Non-Exhaustive Signature Genes and Markers for Tumor-associated Macrophage (TAM) Diversity.

TAM
subset

Human Mouse

IFN-TAMs CXCL10 (103, 110, 111), PDL1 (112, 113), ISG15 (103), CD86 and
MHCII (112)

Ccl2/7/8, Cd274, Cxcl9/10/11, Ifit1/2/3, Isg15, Nos2, Rsad2, Tnfsf10 (104,
113, 114)

Reg-TAMs ARG1, MRC1, CX3CR1, TREM2 (102, 113, 115) Apoe, Arg1, Cx3cr1, Hmox1, Mrc1, Pf4, Spp1, Trem2, Itga4 (113, 115, 116)

Inflam-TAMs IL1B, CXCL1/2/3/8, CCL3, and CCL3L1 (103, 114, 117–121) Cxcl1/2/3/5/8, Ccl20, Ccl3l1, Il1rn, Il1b, G0s2 (114)

Angio-TAMs VEGFA, SPP1, VCAN, FCN1, THBS1, STAT3 (103, 117, 119, 122, 123) Arg1, Adam8, Bnip3, Mif, Slc2a1, Stat3 (104)

LA-TAMs APOC1, APOE, ACP5, FABP5 (112, 117, 119–121, 124, 125) Acp5, Apoc1, Apoe, Fabp5, Gpnmb, Lgals3 (104, 114, 125)

RTM-TAMs LYVE1, HES1, FOLR2 (15, 110, 112, 126) Bin1, Cst7, Hexb, Nav3, P2ry12, Sall1, Siglech, Sparc (104)

Prolif- TAMs Ki-67, CDK1, CDC45, HMGB1 (98, 127) Cdk1, Mki67, Stmn1, Top2a, Tubb (102, 104, 114)
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inhibitory factor (MIF) receptor, especially in the M-MDSC

subtype (137). CD74 mediates the MIF signal transduction and

leads to the recruitment of CD44 and downstream Src/MAPK

signaling, which promotes oncogenesis (138). Recent work

reported an increased level of circulating M-MDSCs in the

blood of GBM patients compared to low grade glioma (136,

139). In addition, these studies identified that an increase in

MDSCs infiltrating the GBM microenvironment correlated with

poor prognosis.

Tumor-associated neutrophils (TAN) are also observed in

GBM (54). Neutrophils have also been seen to promote the

progression and proliferation of GSCs through upregulation of

S100 protein-dependent mechanisms (140), as well as induce

immunosuppression of other immune cells through the

production of arginase 1, involved in hydrolysis of L-arginine

to produce urea and L-ornithine (141).

T cells represent a small percentage of the immune cells within

the GBM TME; however, T cell dysfunction still plays an important

role in tumor development (142). Among the populations of CD8

cytotoxic T cells and CD4 helper T cells, regulatory T cells (Tregs)

are a critical subpopulation of CD4+ T cells involved in preventing

autoimmunity and having a greater association with GBM

prognosis (143). Tregs can be split into two groups: the thymus

derived Tregs, which express high levels of FoxP3 and develop after

antigen presentation by thymic epithelial cells, and the peripherally

induced Tregs, which differentiate in the periphery after antigen

presentation and recognition by CD4+ T cells (143). The strong

immunosuppressive microenvironment described in GBM is

associated with an abundance of Tregs and worse prognosis (75).

GSCs attract Tregs by secreting CCL22, CCL2, and TGF-beta

chemokines (Figure 2) which bind to CCR4, a target commonly

expressed on Tregs. High indoleamine 2,3-dioxygenase 1 (IDO1)

levels are also correlated with a decreased GBMpatient survival, and

it was shown that Tregs facilitate IDO1 immunosuppression,

leading to decreased activities of CD8+ effector T cells and overall

T cell immune response (144). Additionally, Nrp1 in Tregs has an

important function in suppressing the anti-tumor immune

response (145). The interaction of Nrp1 with the ligand,

semaphorin 4a, stabilizes the Treg phenotype, and the loss of

Nrp1 leads to the loss of this immunosuppressive nature (145).

Interestingly, in human IDHmut glioma, 2-hydroxyglutarate

released by tumor cells can be transferred to T cells, where it

interferes with calcium-dependent transcriptional activity of nuclear

factor of activated T cells (NFAT), polyamine biosynthesis, and

ATP-dependent TCR signaling, resulting in the suppression of T

cell activity (146). This illustrates how tumor metabolic activities

can shape and modulate the tumor immune microenvironment.

The dendritic cell (DC) population is very limited in the

GBM TME due to their low intra-tumor infiltration, further

contributing to GBM evasion of immune surveillance (75).

However, some DC subsets have been identified in GBM such

as conventional DC1 (cDC1), cDC2, migratory DCs, pre-DCs,

and plasmacytoid DCs (pDCs). Their presence suggests a
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potential for an anti-tumor immune response that could be

exploited in the context of immunotherapies. Recruitment of

DCs could be stimulated by CCL5 and XCL1, which in turn

would produce cytokines such as IL-12, promoting the anti-

tumor activity of T cells and NK cells (147).
Geospatial distribution of
GSCs and association with
the immune landscape

The utilization of spatial profiling in providing an architectural

context to tumors is being increasingly recognized as a critical

method to understand the fundamental mechanisms driving

diseases and to develop novel therapies. As mentioned above,

GBM subtypes, GSC populations, and their corresponding tumor

microenvironments are spatially defined within a single tumor (35).

Specific GBM niches have been classified as perivascular,

perinecrotic, or hypoxic and invasive (148). These are areas where

GSCs can interact specifically with the microenvironment,

regulating metabolism, supporting survival and growth, and

affecting immune surveillance (91). These spatially resolved niches

can shape and maintain specific GSC populations. The perivascular

niche is characterized by contact between tumor cells and

vasculature, specifically endothelial cells (148, 149). This contact

supports tumor growth, diffusion, and treatment resistance. Lineage

tracing experiments revealed that GSCs can differentiate into

pericytes to promote angiogenesis (150). Another study showed

specifically that CD133+ GSCs are able to differentiate into

endothelial cells (151). Furthermore, tumor growth is also

supported by the angiogenic and immunosuppressive properties

of monocytes, neutrophils, and MDSCs that are found specifically

in the perivascular niche (91, 152, 153). Perinecrotic/hypoxic niches

were also associated with enhanced stemness of tumor cells by

promoting self-renewal, proliferation, and survival (91, 148, 154–

156). These niches are also correlated with increased PD-L1

expression in GSCs, further contributing to immune evasion from

T cells, as previously discussed (76, 157). The invasive niche is

characterized by GBM cells invading normal tissue and building

vessels through the release of factors such as angiopoietin 1 and 2,

and VEGF. Microglia and macrophages were found to be recruited

to tumor invasive edges, where they also promote immune

suppression, enhance tumor cell stemness, and lead to treatment

resistance (158). These studies support the specific relationship

between GSCs and immune cells in different spatially resolved

niches, and that the cellular contexture in the tumor immune

microenvironment (TIME) plays a pivotal role for GSCs. Notably,

these different regions have been shown to respond differently to

treatments and therefore modulating disease presentation and

progression. For instance, interactions of tumor cells with

endothelial cells reduces their sensitivity to radiation (43, 159).

Garcia-Barros and colleagues demonstrated that tumors grown
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with endothelial cells that are resistant to radiation-induced

apoptotic death exhibited reduced radiation damage and

enhanced tumor growth when exposed to irradiation in

comparison to tumors grown with normal endothelial cells (160).

Additionally, the hypoxic niches have shown to not only increase

self-renewal, but also the expression of MGMT in GSCs, further

contributing to resistance to alkylating chemotherapies such as

TMZ (159, 161). These studies demonstrate a direct supportive

function of the TME in the maintenance of tumor cells and GSCs.

Piccirillo and colleagues reported differential GSC signatures

between spatially distinct tumor regions (core vs periphery),

further supporting a spatialized distribution of GSCs (21). The

study also revealed that while these core and periphery GSCs shared

a common ancestry, they both differ in tumorigenic potential,

growth kinetics, and phenotype, illustrating the functional range

of stemness present within the same tumor (162). Yang et al., used a

combination of optical tissue clearing methods (CUBIC and

iDISCO+) and deep tissue imaging with two-photon microscopy

to also reveal intratumoral spatial heterogeneity in GBM in terms of

GSC marker expression, microvasculature, and immune

contexture (163).

Significant efforts are currently underway to study the TIME by

not only investigating its molecular features and cellular

compositions, but also characterizing its spatial architecture.

Schaettler and colleagues demonstrated that spatial diversity in

brain tumors is also recapitulated in the distribution of immune

cells (164). This study reported a comprehensive immunogenomic

profiling of multiple spatially distinct areas from a large cohort of

GBM patients. The authors adopted specific immune

deconvolution methods to resolve immune cell populations from

transcriptional data to characterize multiple tumor regions (165,

166). Substantial inter-tumoral variation was observed, specifically

among CD8+ T cell and cytotoxic T cell scores. Together, this

demonstrates that the TIME within GBM is also spatially resolved.
Metabolic heterogeneity in GSCs

The Warburg hypothesis proposes that cancer cells exhibit

impaired mitochondrial function and utilize primarily glycolysis

via aerobic fermentation, generating lactate and ATP, bypassing

OxPhos even in an abundance of oxygen (167, 168). Most GBM

tumor cells follow the Warburg hypothesis, as evidenced by the

overexpression of pyruvate kinase M2 (PKM2) and lactate

dehydrogenase, enzymes that plays a key role in glycolysis by

directing glucose metabolism towards the production of lactate

(169, 170). Higher expression of glycolytic genes in GBM results

in a more aggressive and lethal phenotype with increased lactate

production facilitating biosynthesis of lipids, nucleotides, and

macromolecule production, overcoming the reduced availability

of nutrients in the TME and supporting tumor cell survival and

proliferation (171–173). Also, GBM cells compete with immune

cells for glucose, as activated T cells and NK cells, macrophages,
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and neutrophils have all been reported to exhibit a metabolic

shift towards aerobic glycolysis within the TME, especially

during hypoxic conditions, consequently increasing their need

for the nutrient (174, 175). The GBM TME is therefore

characterized by high demand for glucose but with limited

availability, creating a strong intercellular metabolic

competition (176). Multiple studies reported that GSCs show

metabolic adaptability and are able to utilize multiple nutritional

substrates to satisfy their metabolic needs, conferring an

advantage over less-plastic tumor cells or non-malignant cells

(168, 177). Accordingly, this provides an advantage over

differentiated glioma cells with more defined metabolic

dependencies, and allows them to resist and adapt to

metabolic pressures. This metabolic adaptability of GSCs

would suggest tolerance to treatments targeting a single

specific metabolic pathway (178). For example, GSCs with a

slow-cycling phenotype were found to be more resistant to

glucose deprivation than differentiated tumor cells (14). To

overcome metabolic pressure related to glucose restriction,

GSCs metabolize lipids to meet their energy demands (14,

179). Wang and colleagues found that, in breast cancer, when

fatty acid b-oxidation (FOA) is inhibited, breast cancer stem

cells become less resistant to treatment, demonstrating their

dependence on fatty acids (180). Concurrently, inhibiting fatty

acid acyl-CoA synthetase VL3 (ACSVL3), an important enzyme

in the lipid metabolic cascade that facilitates the synthesis of

phosphatidic acid, decreases expression of CD133 and SOX2 in

glioma cells (181). When mice were fed a high fat diet, the

intracranial accumulation of saturated lipids caused GBM to

become more lethal, with an enrichment of GSCs (182). Even in

the absence of exogenous lipids, GSCs can synthesize cholesterol

and fatty acids from acetyl-CoA, which allows for long term fuel

storage (183). In addition to PKM2, GSCs express PKM1,

allowing them to engage in glycolysis through both

fermentation and oxidation (169). GSCs isolated by sphere

formation assay were also found to produce more ATP than

differentiated cells while metabolizing less glucose and

producing less lactate (178), further suggesting their

engagement in OxPhos for ATP production. While aerobic

glycolysis may confer an advantage to rapidly proliferating

cells, GSCs, which can be slow-cycling, rely more heavily on

OxPhos for efficient energy synthesis to support their infiltrative

phenotype (14, 168). However, CD133+ GSCs in the hypoxic

core have been shown to overexpress GLUT3 (16), illustrating a

variety of metabolic phenotypes amongst GSC populations. It

was also proposed that glucose can be directed towards hypoxic

niches, where it is metabolized through homolactic fermentation

generating lactate (Figure 3) (184, 185). This lactate is then

transported to the perivascular and invasive niches, where it is

converted into pyruvate by lactate dehydrogenase B and fully

metabolized using OxPhos (184, 185). This demonstrates the

complex metabolic interplay between GSC niches, supporting

the idea that GSCs are capable of switching between different
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metabolic strategies based on nutrient availability. This concept

of the reverse Warburg effect has not been extensively accepted,

and more research is required to fully elucidate the complex

relationship between these distinct niches in the TME.

Interestingly, GSCs are not a homogeneous population, but

rather a mosaic of different genetic lineages which share

certain stem-cell properties (5, 12). Each lineage, characterized

by specific metabolic profile and stem cell marker expression,

may vary with microenvironmental variations, including

metabolic changes (10). This reveals the challenges of finding

a treatment universally targeting GSCs, and suggests the

requirement of combinatorial strategies to encompass GSC

diversity and adaptability.
Metabolic heterogeneity of immune
cells in GBM TME

The immune cells in the TME are programmed to rapidly

respond to tissue-derived or environmental stimuli, with their

function tied to metabolic signals (186). This includes differential

activation states, cellular reprogramming, and stimulated

expression (186). It has been shown that heterogeneity between

the pro-inflammatory and anti-inflammatory macrophage

phenotypes results in different regulation of lipid handling and

metabolism (187). The GBM microenvironment is marked by an

increase in anti-inflammatorymacrophages and a decrease in pro-
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inflammatory macrophages (188–192). The pro-inflammatory

phenotypes have been described to primarily utilize Warburg

metabolism, further fueled by the highly active u-PFK2 isoform of

phosphofructokinase-2 that promotes glycolysis (193), while anti-

inflammatory macrophages generate energy through enhanced

mitochondrial OxPhos (187, 194). Anti-inflammatory

macrophage metabolism is driven by engulfed lipids that are

oxidized by FAO and facilitated by the fatty acid sensor, PPARg
(186). FAO is linked to pro-tumorigenic macrophage state, and

acts as a source of ATP in the mitochondrial matrix during low

glucose availability, driven by IL-4 and IL-13 (195). Lipid

metabolism in macrophages is linked to tissue homeostasis and

phagocytosis, and depends on four cellular processes—lipid

uptake, efflux, biogenesis, and conversion into other metabolites

or lipid intermediates (186). Lipids are recycled from necrotic and

apoptotic cells through uptake by macrophages, and then

generated into free fatty acids that can be utilized by other cells

(196). Macrophages scavenge lipids from the TME through CD36

endocytosis induced by IL-4 (196, 197). Excess fatty acids are

stored in lipid storage organelles called lipid droplets, which can

be later converted back into fatty acids for energy production, and

play critical roles in lipid trafficking, lipid homeostasis, and

metabolism (198). These recycled lipids can also be transported

to and utilized by surrounding cells. Our group showed that slow-

cycling GSCs upregulate signaling pathways controlling and

enhancing lipid metabolism. Recruiting macrophages and

establishing a metabolic coupling with these cells may be a
FIGURE 3

Reverse Warburg Effect hypothesis. This model proposes a specific metabolic interplay between glycolytic and oxidative tumor niches via
trafficking and conversion of glucose, lactate and pyruvate. Adapted from “Cancer Metabolism”, by BioRender.com (2022). Retrieved from
https://app.biorender.com/biorender-templates.
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strategy by which the slow-cycling GSCs to support their

metabolic needs through transfer of critical signals and

nutrients, such as fatty acids (14, 168). Further study will be

required to fully understand the nature of this potential hetero-

cellular metabolic symbiosis and identify strategies to disrupt it for

therapeutic purposes. Similar to cancer cells, T cell functions are

metabolically regulated, with different subsets of T cells

undergoing various metabolic reprogramming and energy usage

along the differentiation spectrum. Effector T cells engage anabolic

metabolism and quiescent or memory T cells undergo catabolic

metabolism (199–201). Naïve T cells rely on fatty acid oxidation

with a lower glycolytic rate compared to the other subtypes,

whereas conventional activated T cells preferentially utilize

glycolysis, resulting in lactate production (199, 201). However,

variable levels and inconsistent availability of glucose in the GBM

TME can lead to impaired activation of cytotoxic T cells (199). In

this context, Tregs present an advantage by being able to oxidize

glucose and fatty acids through the upregulation of carnitine

palmitoyltransferase 1a (CPT1a), an enzyme regulating the

metabolism of acyl groups (202). Tregs express the transcription

factor, Foxp3, which is involved in lineage development and

metabolic function (203). It has been shown that the induction

of Foxp3 expression is sufficient for the shift from aerobic

glycolysis to OxPhos, conferring resistance to low-glucose and

high-lactate exposure, as experienced in the GBM TME (204).

Together, these processes contribute to the overall

immunosuppressive nature of the GBM TME.

As key components of the TME, MDSCs also undergo

metabolic reprogramming regulating inflammation programs,

controlled by oxygen, nutrient, and metabolite levels (174). The

metabolic activities of MDSCs contribute to depleting amino

acids (e.g., tryptophan, L-arginine, and cysteine) that are crucial

for T cell function and activation, leading to their suppression

(205–208). MDSCs are capable of both glycolysis and fatty acid

metabolism, regulated by different signaling complexes, PPARg
and mTOR, that can sense extracellular glucose and metabolite

status (209). PPARg supports the expression and synthesis of

pro-inflammatory cytokines, promoting MDSC expansion and

immunosuppression (210). Deletion of mTOR complexes led to

reduced MDSC differentiation and immunosuppressive function

(207). The hypoxic conditions of the TME stimulate the

immunosuppressive function of MDSCs and lead to increased

uptake of extracellular nutrients required for glycolysis and fatty

acid oxidation (211). Additionally, lactate produced by tumor

cells can be taken up by MDSCs and used to support their

metabolism and immunosuppressive activities (211). Using PET

tracers, Reinfedl and colleagues investigated the access and

incorporation of nutrients, such as glucose and glutamine, by

multiple cell subsets in the TME (212). The study reveals great

competition for limited nutrients between cancer cells and

immune cells. Specifically, the authors reported that myeloid

cells exhibit the greatest ability to uptake and metabolize glucose

and tumor cells show the highest uptake of glutamine, both
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contributing to nutrient deprivation for T cells, impairing their

survival, maintenance, and activity. This study showed that

T cells compete for essential nutrients not only against tumor

cells but also against other immune cells such as myeloid cells.
GSC-immune cell interactions in
the TME

The GBM TME hosts an extremely complex network of

tumor and immune cells. A hallmark of GBM is its ability to

generate an immunosuppressive milieu supported by the

bidirectional crosstalk between GSCs and immune infiltrates,

subverting the effects of cytotoxic T cells while simultaneously

reprogramming other immune cells to foster a protumorigenic

microenvironment (213). This property of GSCs allows for their

survival of standard-of-care treatments, seeding disease

recurrence. This section will present potential mechanisms by

which GSCs can drive disease progression via specific

interactions with the different immune cells composing the

TME (Figure 2).
Tumor associated macrophages (TAMs)

TAMs play a key role in the establishment of the

immunosuppressive characteristics of the GBM TME. It was

shown that by overexpressing the extracellular matrix protein

periostin, CD133+ GSCs stimulate the recruitment of TAMs to

the TME (188). GSCs were also shown to secrete factors such as

CSF1, CCL2, CCL5, CCL7, VEGF-A, and NTS, also contributing

to the recruitment of immune suppressive macrophages (214,

215). Macrophages are also attracted by GSC secretion of

CXCL8 and CXCR1/2 chemokines (216). Not only do GSCs

recruit TAMs, but they also play a role in their M2-like

polarization. GSCs express arsenite-resistance protein 2

(ARS2), which activates the transcription of the MGLL gene to

produce monoacylglycerol lipase (MAGL), inducing TAMs to

adopt a pro-tumorigenic and immunosuppressive phenotype

(217). M2 macrophages release cytokines including IL-10, TGF-

b, and IL-23, which impair cytotoxic T cell function (214).

CD133+ GSCs were shown to inhibit the phagocytosis

capability of macrophages through the secretion of

macrophage inhibitory cytokine 1 (MIC-1) (218). Tao et al.,

further demonstrated the interplay between GSCs and

macrophages by showing that Wnt-induced signaling protein

1 (WISP1) expressed by GSCs promotes their maintenance by

autocrine mechanism regulated by a6b1-Akt signaling and

supports the survival of tumor supportive macrophages (219).

Interestingly, TAMs can also induce the stem cell phenotype in

GBM tumor cells by releasing mediators like IL-6 and IL-1b, or
through juxtacrine signaling (15, 220). Shi and colleagues
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reported that TAMs secrete high levels of pleiotrophin, thereby

increasing GSC maintenance and tumorigenic potential by

promoting PTPRZ1 signaling (189). Together, this suggests a

strong mutualistic relationship between GSCs and TAMs.
Microglia

Microglia are intrinsically antitumorigenic; however, exposure

to tumor-generated factors, such as IL-10, induces an

immunosuppressive phenotype (221, 222). Microglia from

healthy human brains exposed to GSCs expressing Nestin, SOX2,

Musashi-1, CD133, and inhibitor of differentiation (ID4) reduced

GSC sphere forming ability, but microglia derived from resected

human GBM conferred an increase in their sphere forming ability

(221). This shows that microglia found in the GBM TME have a

modified phenotype that promotes tumor growth and survival.

GSCs have been found to induce the mTOR pathway in microglia,

spurring their growth within the TME (223). Microglia are major

contributors of TGF-b, which amplifies immunosuppression in the

GBM TME by blocking T cell activation and proliferation,

inhibiting the activation of NK cells, down regulating IL-2

production, and promoting Tregs (75). TGF-b promotes tumor

cell invasion through changes in ECM components, enhanced

expression of subunits of a2,5, b3 integrin, and upregulated

MMP-2, 9, and MT1-MMP (224). Microglia can also regulate

stemness via the IL-6 pathways, which in turn stimulates M2

macrophage recruitment by GSCs by release of periostin (188).

Chen and colleagues recently reported that circadian locomotor

output cycles kaput (CLOCK) is amplified in GBM and stimulates

GSC maintenance and drive immunosuppression (225, 226). These

studies revealed that this circadian regulator upregulates LGMC

in GSCs through activation of the HIF1a pathway, which in turn

promotes the infiltration of microglia and their polarization toward

an immunosuppressive phenotype.
MDSCs

As mentioned above, MDSCs also play a critical

immunosuppressive role in GBM. Patients expressing higher

MDSC gene signatures correlated with worse prognosis (218).

Through geospatial analyses of human GBM tumors, MDSCs

were found in close proximity to CD133+ and SOX2+ GSCs;

these GSCs were found to secrete the cytokine macrophage

migration inhibitory factor (MIF) to recruit MDSCs (218), as well

as chemokine secretion of CCL2 and CCL5 (15). Gliomas also

overexpress chemokine ligands 1 and 2 (CXCL1 and CXCL2,

respectively), promoting the recruitment of MDSCs from the

bone marrow towards the tumor (227). A study of breast cancer

found that secretion of interleukin-6 (IL-6) by tumor cells can

recruit and induce an immunosuppressive phenotype in MDSCs

(131). Furthermore, MDSCs show an inhibitory effect on CD8+
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cytotoxic T cells through the production of reactive oxygen species

(228). MDSCs also promote angiogenesis and tumor growth in

GBM by the secretion of a variety of matrix metalloproteinases

(MMPs) and VEGF-A (205). Preventing cellular signaling between

MDSCs and GSCs may prove to be a beneficial therapeutic strategy.
Regulatory T lymphocytes (Tregs)

Chang et al., reported that TAMs in glioma produce CCL2,

which is essential for the recruitment of CCR4 expressing Treg

(229). The authors also showed that in the absence of CCL2,

Tregs failed to accumulate in the GBM TME and that CCR4-

deficient mice were defective in glioma accumulation.

Considering the ability of GSCs to recruit TAMs, this study

suggests an indirect relationship between Tregs and GSCs.

Expression of indoleamine 2,3-dioxygenase (IDO) by Nestin+

and SOX2+ GSCs has also been correlated with Treg recruitment

(230). Interestingly, resected GBM tumors with IDO deficiency

exhibited reduced Treg recruitment (231). Conversely, Treg

secretion of TGF-b promotes a stem-like phenotype in GBM

(232). Liu and colleagues demonstrated that TGF-b stimulated

the expression of the cancer stem cell-related gene core CD133,

SOX2, NESTIN, MUSASHI1 and ALDH1A regulated by NF-

kB–IL6–STAT3 signaling pathway (232). These studies

demonstrate that the relationship between Tregs and GSCs is

also bidirectional.
Cytotoxic T lymphocytes (CTLs)

Therapeutic modalities able to enhance CTL invasion and

activity in the TME could lead to increased survival in GBM

patients (233). However, GSCs represent a great obstacle to this

strategy due to their strong ability to impair T cell function. This

can occur through the expression of CCL2 and TGF-b, and the

release of inhibitory factors, including gangliosides, which

directly limit the functionality of CTLs (15, 234, 235). A study

reported that tenascin-C (TNC) produced by GSCs inhibits T

cell proliferation and activity via interaction with integrins,

resulting in reduced mTOR signaling (236). Notably, TNC

inhibitory effect on T cell activity is mediated by exosomes

trafficking. One aforementioned mechanism of enhanced

glucose uptake by CD133+ GSCs in the hypoxic core is the

overexpression of GLUT3, which allows for an increase in

glycolytic flux (16). This metabolic specificity of GSCs has

two-fold implications for CTL activities and include deviating

this essential nutrient from T cells and secreting lactate, which

acts as a strong immunosuppressant (183). Together, these GSC-

imposed metabolic stresses strongly contribute to the lack of

CTL mediated anti-tumor immunity in GBM.

The negative associations between cancer stemness and

anticancer immunity are increasingly recognized with cancer
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stem cell programs representing fundamental processes in

disease evolution but also providing potential mechanistic

understanding of the connections between intratumoral

heterogeneity, antigenicity, immune suppression, and poor

disease outcome (237). Experimental reports indicated that

resistance to immune-mediated targeting represent an intrinsic

property of CSCs and quiescent adult stem cells (238, 239).

Using gene-expression-based metrics, one report identified a

109-gene signature recapitulating stemness in both malignant

and nonmalignant cells and evaluated the relationship of the

signature with anti-tumor immunity. The authors used ssGSEA

based tools and were able to infer the cellular content of the TME

and predict immune infiltration and disease projection (237,

240). However, the complexity and heterogeneity present in GSC

populations render it very challenging to predict the immune

contexture and response. Unfortunately, our knowledge of the

specific immunoediting properties of the different lineages of

GSCs is limited, and therefore requires further investigation.

Integrating mechanistic insight from GSC biology, tumor

immunology, and their connection may therefore help identify

vulnerabilities to be exploited to boost immune surveillance and

engender an efficient anti-cancer immunity in the context

of GBM.
Targeting tumor-immune
interactions

Disrupting the symbiosis between tumor cells and immune

cells holds great promise in the quest to treat GBM. Multiple

strategies may be applied and would include inhibiting the direct

cell-cell interactions or neutralizing secreted and circulating

factors supporting both GSCs and immune cells.

Considering the crosstalk between GSCs and TAMs, targeting

the key pathways of their connection has the potential to inhibit

their properties and functions and to impair disease progression. A

promising approach to achieve this goal could be the blockade of

the CD47-SIRPa pathway. The binding of CD47, expressed by

CSCs, with SIRPa present on TAMs, results in the suppression of

CSC phagocytosis by TAMs and in preserving their function (241,

242). Therefore, inhibiting this binding represents an appealing

strategy for decreasing tumor burden with more efficient targeting

of CSCs through enhancing phagocytosis activities of macrophages.

Multiple clinical trials (e.g., NCT02216409, NCT03512340,

NCT02367196, NCT03717103, NCT02663518, NCT03013218)

investigating the effect of targeting this pathway using

monoclonal CD47-targeting antibodies (IBI188, Hu5F9G4, CC-

90002, and SFR231) or small molecule inhibitors (ALX148, TTI-

621) have been completed or are currently recruiting. Moreover,

neutralizing GSC-secreted factors such as periostin was shown to

impair GSC-TAM interaction and increase survival in murine

models (188). In addition to targeting receptors or blocking the
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release of secreted factors, another potential strategy is the trapping

of ligands in the TME. A study byWei and colleagues reporting the

use of a 4-1BB-osteopontin bispecific aptamer to trap and inhibit

osteopontin resulted in significant activation of anti-tumor

immunity and improved outcome in murine models of

GBM (243). It was shown that TAMs recruitment and

immunosuppressive polarization is promoted by ROBO receptor

signaling that is activated by GBM-secreted peptide SLIT2 (244).

The use of Robo1Fc efficiently trapped SLIT2 ligand and also

resulted in strong anti-tumor reactivity in murine GBM (244).

Given the profound role of MDSCs and their interaction with

GSCs in GBM, inhibition strategies to disturb their crosstalk are also

considered. Specifically, Qiu et al., reported that MDSC

differentiation is induced by exosome-packaged miR-1246

released by GBM cells and that restricting the expression of miR-

1246 and exosomal packaging with 2-methoxyestradiol repressed

MDSC tumor infiltration and delayed GBM tumor growth (245).

Notwithstanding, due to the great heterogeneity of phenotypes and

morphologies of MDSCs, it remains challenging to develop MDSC-

targeted treatments.

CSCs express higher level of PD-L1 than non-CSCs, including in

GBM, which in turn creates a positive feedback loop further

increasing the stemness in tumor cells and inhibiting cytotoxic T

cell activity via PD1/PD-L1 signaling (246–248). This suggests the

potential of using immune checkpoint inhibitors, such as anti-PD1

treatment, to target this CSC-T cell interaction and to improve anti-

tumor activity. However, even though such an approach has led to

remarkable results, the majority of patients do not respond as

efficacy is mainly dependent on the nature and composition of the

TME and the genetic makeup of the tumor. We are witnessing a

growing number of clinical investigations of the effect of immune

checkpoint inhibitors in GBM patients usingmodalities such as anti-

LAG-3 in combination with anti-PD-1 (NCT02658981), anti-PD1

combined with anti-TIGIT (NCT04656535), and anti-CD39

(NCT04306900), however significant positive results are still awaited.

In light of the critical role of the tumor-immune symbiosis in

regulating GSC activities and in controlling anti-tumor

immunity in GBM, targeting this crosstalk not only has the

potential to disrupt GSC activities but also to remodel the TIME

to make it more amenable and responsive to immunotherapies.

However, due to the complexity of these cellular networks and

connections exhibiting redundancy and multiple compensatory

mechanisms, combinatorial therapeutic paradigms may be

required to achieve efficient TME remodeling leading to

greater outcomes.
Metabolic targeting of the GBM-
immune crosstalk

Immune evasion and metabolic reprogramming are now

well recognized hallmarks of cancer and considered to be
frontiersin.org

https://doi.org/10.3389/fonc.2022.1022716
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Silver et al. 10.3389/fonc.2022.1022716
functionally linked (Figure 1). Consequently, targeting pathways

underlying the metabolic interplay between tumor cells,

especially GSCs and immune cells, has therapeutic potential

with the ability to condition the TME to be more permissive and

responsive to immunotherapies.

GBM displays a high degree of hypoxia, which mediates

stemness and induces T cell exhaustion through mitochondrial

fragmentation (249, 250). The main factors activated in response to

hypoxia are hypoxia-inducible factors (HIFs), with HIF2a being

specifically upregulated in GBM and colocalized with GSC markers

such as CD133 and OLIG2 (156, 251). Countering hypoxia-related

signaling to target GSCs and stimulate anti-tumor immunity is a

strategy currently being explored. A study recently investigated the

effect of a HIF2a inhibitor (PT2385) in combination with

nivolumab; however, the results encouraged the investigation of a

second-generation of HIF2a inhibitor (252).

As discussed above, the metabolic switch observed in GBM

leads to increased glycolysis in tumor cells and impacts the

tumor microenvironment, which in turn acts as a major barrier

for successful targeting of cancer by anti-tumor immune cells

like T cells. Overexpression of glucose transporters and

upregulation of the PI3k-Akt-mTOR signaling support the

energy demand associated with this metabolic reprogramming

and blockade of this pathway using an Akt inhibitor has shown

to decrease glioma growth (16, 253–255). The tremendous

increase in tumor glucose consumption imposes a great

metabolic pressure on T cells, which experience glucose

restriction. Strategies to enhance glycolytic flux and activities

in T cells may prove efficient to improve T cell function and

prevent or delay T cell exhaustion.

The increased glycolytic activity of GBM cells results in the

massive production and secretion of lactate into the tumor

microenvironment. Lactate acts as an oncometabolite and serves

as a potent inhibitory regulator of T cells (256, 257). For many

years, lactate was seen as just a metabolic waste product, but recent

studies have revealed new roles of lactate in the TME as part of

metabolic fuel or a signaling molecule regulating angiogenesis,

invasion, resistance to treatments, and immunological escape.

Consequently, lactate trapping may represent a viable strategy to

overcome this metabolically driven tumor-imposed

immunosuppression. He et al., recently reported on a new lactate

“nanofactory” based on the nano-packing of lactate oxidase (LOX)

by cationic polyethyleneimine (PEI) coupled with copper ions

(258). This study demonstrated the ability of this system to

actively trap lactate and promote its degradation, resulting in the

formation of anti-tumor ROS, mediating an immunological

response in a breast cancer model.

A study by Villa and colleagues reported that GBM cells are

highly dependent on cholesterol for survival (259). The enrichment

of the GBM TME in myeloid derived immunosuppressive cells,

which have been described to exhibit specific metabolic

characteristics specializing them in lipid and cholesterol transport

and exchange, suggests a potential metabolic support to GBM cells
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provided by immune cells through the form of lipid and cholesterol

transfer (196, 260, 261). Therefore, perturbation of cholesterol and

lipid trafficking may have the potential to impair this metabolic

crosstalk. Considering the mechanism of action of statin drugs

(targeting lipid/cholesterol pathways), their widespread clinical use,

well-characterized safety profile, and documented ability to inhibit

the immunosuppressive function of TAMs, their utilization in the

context of GBM may be considered (262, 263). Retrospective

studies analyzing the effect of statins in GBM patients have not

provided conclusive positive results; however, the metabolic and

immunomodulatory function of statins may not be sufficient to

enable efficient anti-tumor response and may require a

combinatorial approach with immune checkpoint inhibitors (ICI)

to achieve a significant and durable therapeutic effect. Indeed, the

concomitant use of statins during ICI treatments has been

correlated with improved survival in cancer patients (264–267).
Emerging technologies

This review provides some examples illustrating the complex

crosstalks that GSCs establish with tumor infiltrating immune cells.

Moving forward, the systematic use of a combination of advanced

technologies, such as single cell RNA sequencing, spatial profiling,

metabolomics, CyTOF, and machine learning, will provide more

comprehensive platforms for a deeper understanding of the

composition and dynamics of the TME and evaluation of novel

therapeutic modalities for a more effective translation of preclinical

findings into the clinic.

For example, Bulk RNA sequencing has been instrumental in

advancing our knowledge in the genetic drivers of cancer, however,

this platform has inherent limitations that restrict a deeper

characterization of the TME and TIME and understanding of the

function and phenotype of individual cell types. Conversely, high-

dimensional technologies, such as single cell RNA sequencing,

overcome many limitations related to conventional profiling

techniques and are helping propel forward the field of cancer

research by facilitating breakthroughs in dissecting the phenotypic

and functional heterogeneity among single cells, understanding the

overall biology of cancers, discovering biomarkers, perfecting

diagnosis, and measuring and predicting response to treatments.

Spatial analysis of disease mechanisms is currently gaining

tremendous momentum and commercialization of these

technologies has been critical for boosting the democratization

of their implementation. Spatial transcriptomics and proteomics

will allow the generation of high-dimensional spatially resolved

atlases of diseases such as cancers. Multiple spatial techniques

can be applied and can include gene and protein expression

analyses on microdissected tissues, in situ sequencing, in situ

hybridization or capturing, and computational reconstruction of

spatial data. There are, however, limitations of image acquisition

and processing for entire tissues or organs that exceed

capabilities of most current methodologies, which requires
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region sampling by selecting areas of interest. This selection

represents another limitation in terms of unbiased identification

of locations of interest in the architectural heterogeneity of

tumors. Possible solutions may come from improved

computing abilities and the advancement and utilization of

machine learning algorithms, which may facilitate the next

logical generation of spatial profiling techniques that will

involve spatial single-cell ‘omics, followed by the ultimate

resolution of spatiotemporal 3D single-cell ‘omics in living

tissues or organisms.

Metabolomics represent another powerful method to

characterize and evaluate dynamic changes of the metabolic

profiles present in the TME and TIME. Metabolomic approaches

capture altered metabolites that can be used as biomarkers for

diagnosis or assessment of treatment response, such as immune

response in the context of immunotherapies. However, such an

approach has some limitations to interrogating metabolism at

the single cell level. To overcome some of these challenges,

Wagner et al., developed an in silico approach to infer the cellular

metabolic status based on single cell transcriptomics (268). This

platform, named Compass, is an algorithm allowing network-wide

deep metabolic profiling and metabolic target identification based

on flux balance analysis and single cell RNA sequencing data.

Applying this algorithm, the authors uncovered significant

immunometabolic diversity of Th17 cells associated with multiple

inflammatory effector functions. The study reported that Th17

pathogenicity is linked to a metabolic reprogramming between

glycolysis and beta oxidation and that the polyamine pathway was

critical for Th17 induction and restriction of Treg-like program in

Th17 cells (268). In this particular example, Compass demonstrated

the significance of the polyamine signaling in regulating the

epigenome balancing Th17/Treg differentiation, and therefore

regulating autoimmunity.

Based on the technical advancements aforementioned, the

TME has been intensively analyzed in view of transcriptomic,

proteomic, metabolomic, and spatial information. However, deep

machine learning and AI have the potential to further our

understanding by accurately integrating and managing data from

these multiple -omics platforms. Newman and Alizadeh

laboratories, who developed the analytical tool CIBERSORTx to

impute gene expression profiles and provide estimates of

abundances of mixed cell population, recently reported a new

machine learning framework (EcoTyper) for the systematic

identification of cell states and ecosystems integrating data from

bulk RNA sequencing, single-cell RNA sequencing, and spatially-

resolved expression data (269–271). The utility of EcoTyper was

demonstrated by the creation of global atlases of transcriptionally

distinct cellular states from sixteen types of carcinoma and revealing

fundamental units of cellular organization with significance for

diagnosis, disease presentation and response to therapies (270).

Similarly, Steen and colleagues used this machine-learning

framework to characterize the cell states and ecosystems in the

TME of diffuse large B cell lymphoma (269).
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Conclusion

The role of the immune system in GBM and its interaction with

tumor cells, especially GSCs, is gaining ever growing attention as

both cellular compartments are critical participants of the TME,

promoting disease progression and recurrence. In this review we

discussed the complexity existing in GBM, with a specific focus on

the diversity of CSCs and how this heterogeneity regulates the

tumor immune landscape. We also analyzed the specific reciprocal

relationship between these cells and how the spatial patterning of

the GBM microenvironment can be regulated by the distribution

and composition of CSCs and immune cells. Due to the important

role of CSCs in treatment resistance and tumor recurrence, they

represent an important therapeutic target. In light of their strong

alliance with particular immune cells, it will be critical to develop

strategies to target and disrupt communications between CSCs and

immune cells, to improve recognition by cytotoxic T cells and

achieve improved disease outcome.
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