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Mast cells and their mediators play a role in the control of homeostasis and in the

pathogenesis of several disorders. The concept of rodent mast cell heterogeneity, initially

established in the mid-1960s has been extended in humans. Human mast cells isolated

and purified from different anatomic sites can be activated via aggregation of cell surface

high affinity IgE receptors (FcεRI) by antigens, superantigens, anti-IgE, and anti-FcεRI.

MAS-related G protein-coupled receptor-X2 (MRGPRX2) is expressed at high level in

human skin mast cells (MCs) (HSMCs), synovial MCs (HSyMCs), but not in lung MCs

(HLMCs). MRGPX2 can be activated by neuropeptide substance P, several opioids,

cationic drugs, and 48/80. Substance P (5 × 10−7 M – 5 × 10−6 M) induced histamine

and tryptase release from HSMCs and to a lesser extent from HSyMCs, but not from

HLMCs and human cardiac MCs (HHMCs). Morphine (10−5 M – 3 × 10−4 M) selectively

induced histamine and tryptase release from HSMCs, but not from HLMCs and HHMCs.

SP and morphine were incomplete secretagogues because they did not induce the de

novo synthesis of arachidonic acid metabolites from human mast cells. In the same

experiments anti-IgE (3 µg/ml) induced the release of histamine and tryptase and the

de novo synthesis of prostaglandin D2 (PGD2) from HLMCs, HHMCs, HSyMCs, and

HSMCs. By contrast, anti-IgE induced the production of leukotriene C4 (LTC4) from

HLMCs, HHMCs, HSyMCs, but not from HSMCs. These results are compatible with the

heterogeneous expression and function of MRGPRX2 receptor on primary human mast

cells isolated from different anatomic sites.

Keywords: heart, histamine, leukotriene C4, mast cells, MRGPRX2, prostaglandin D2, substance P and tryptase

INTRODUCTION

Mast cells arise from stem cell-derived human mast cell progenitors in the bone marrow,
circulate and complete their maturation in all vascularized tissues (Galli, 2016; Olivera et al.,
2018). Mast cell differentiation, phenotypes and functions in tissues are largely determined
by the microenvironment (e.g., cytokines, activating and inhibitory stimuli, chemokines)

Frontiers in Cellular Neuroscience | www.frontiersin.org 1 July 2019 | Volume 13 | Article 299

https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://www.frontiersin.org/journals/cellular-neuroscience#editorial-board
https://doi.org/10.3389/fncel.2019.00299
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-9285-4657
https://orcid.org/0000-0002-9849-4701
https://orcid.org/0000-0003-3617-2819
https://orcid.org/0000-0002-5871-1898
https://orcid.org/0000-0002-4723-0167
https://orcid.org/0000-0002-6759-7521
https://orcid.org/0000-0002-7821-2957
https://orcid.org/0000-0001-7889-425
https://doi.org/10.3389/fncel.2019.00299
http://crossmark.crossref.org/dialog/?doi=10.3389/fncel.2019.00299&domain=pdf&date_stamp=2019-07-03
https://www.frontiersin.org/articles/10.3389/fncel.2019.00299/full
http://loop.frontiersin.org/people/392297/overview
http://loop.frontiersin.org/people/447012/overview
http://loop.frontiersin.org/people/402351/overview
http://loop.frontiersin.org/people/699376/overview
http://loop.frontiersin.org/people/714847/overview
http://loop.frontiersin.org/people/761464/overview
http://loop.frontiersin.org/people/147729/overview
http://loop.frontiersin.org/people/461455/overview
https://www.frontiersin.org/journals/cellular-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Varricchi et al. Heterogeneity of Human Mast Cells

(Mukai et al., 2018). Mast cells are canonically implicated in
allergic disorders (Liccardi et al., 2003; Fujisawa et al., 2014;
Bradding and Arthur, 2016; Canonica et al., 2016; Subramanian
et al., 2016; Mukai et al., 2018), but also in several non allergic
conditions including autoimmune disorders (de Paulis et al.,
1996; Brown and Weinberg, 2018; Rivellese et al., 2018; Yu
et al., 2018), cardiovascular diseases (Patella et al., 1996, 1998;
Theoharides et al., 2011; Shi et al., 2015; Ngkelo et al., 2016),
bacterial (Piliponsky and Romani, 2018) and viral diseases
(Haidl and Marshall, 2015), neurological disorders (Skaper et al.,
2014; Theoharides et al., 2016; Skaper et al., 2017; Conti
et al., 2018), and cancer (Galdiero et al., 2016; Varricchi et al.,
2017). Increasing evidence supports the role of mast cells and
their mediators in neurogenic inflammation leading to pain
and itch (Gupta and Harvima, 2018; Steinhoff et al., 2018;
Yosipovitch et al., 2018).

Enerbäck first established the concept of mast cell
heterogeneity through detailed morphological and histochemical
studies (Enerback, 1966a,b,c). Two distinct subpopulations of
rodent mast cells, connective tissue mast cells and mucosal
mast cells, differ in their location, staining features, mediator
content and responsiveness to activating stimuli (Enerback,
1966a,b,c; Tainsh and Pearce, 1992; Varricchi et al., 2016). Mast
cells isolated and purified from several human tissues have led to
the recognition of histochemical, functional, and immunological
differences among these cells in humans (Church et al., 1982;
Schwartz et al., 1987; Casolaro et al., 1989; Stellato et al., 1991;
Bischoff and Dahinden, 1992). For example, activation of mast
cells isolated from human lung (HLMCs) by antigens, anti-IgE
and superantigens leads to arachidonic acid metabolism through
both the cyclooxygenase (prostaglandin D2, PGD2) and the 5-
lipoxygenase pathway (peptide leukotriene C4, LTC4) (Schulman
et al., 1982; de Paulis et al., 1991; Stellato et al., 1992a), whereas
HSMCs only synthesize PGD2 (Benyon et al., 1987; Stellato et al.,
1992b). Based on their protease composition, two types of human
mast cells have been proposed: tryptase+ chymase+ cells (MTC),
and tryptase+ chymase− (MT), being the prototypes (Schwartz
et al., 1987). However, this traditional classification is rather
simplistic and mast cells show significant plasticity (Galli et al.,
2011; Borriello et al., 2014). Indeed, analysis of human mast cell
transcriptome demonstrated considerable greater heterogeneity
across tissues than previously appreciated (Motakis et al., 2014;
Dwyer et al., 2016). Moreover, recent evidence indicates that each
of the two mast cell subsets originates from different precursors
through several waves of mast cell differentiation, and that they
display distinct surface receptors and mediators (Gentek et al.,
2018; Li et al., 2018).

Human mast cells can be activated by the engagement of a
plethora of receptors (Varricchi et al., 2018). Aggregation of cell
surface FcεRI by antigens, anti-IgE or superantigens leads to
the degranulation and the generation of newly synthesized lipid
mediators, cytokines, angiogenic, and lymphangiogenic factors
(Marone et al., 2006; Detoraki et al., 2009; Theoharides et al.,
2010; Taracanova et al., 2018). The identification of MRGPRX2
receptor and its mouse orthologue Mrgprb2 has opened a new
research avenue in mast cell biology (Tatemoto et al., 2006;
Fujisawa et al., 2014; McNeil et al., 2015). MRGPRX2 can

be activated by several ligands such as neuropeptides (e.g.,
substance P, VIP, etc.), opioids (i.e., morphine), cationic drugs
(e.g., atracurium, icatibant), and 48/80 (Tatemoto et al., 2006;
McNeil et al., 2015; Ali, 2017). A clinical relevance is emerging for
MRGPRX2 because this receptor is implicated in drug reactions
(McNeil et al., 2015) and is overexpressed in HSMCs of patients
with chronic urticaria (Fujisawa et al., 2014). Gaudenzio et al.
have elegantly demonstrated that substance P (SP) and IgE cross-
linking (i.e., anti-IgE) induce distinct mast cell degranulation
strategies in human primary MC cultures and mouse MCs
(Gaudenzio et al., 2016). In this study we compared the patterns
of responsiveness to anti-IgE and to MRGPRX2 agonists (SP
and morphine) and the mediators synthesized by primary
human lung (HLMCs), cardiac (HHMCs), skin (HSMCs), and
synovial MCs (HSyMCs).

MATERIALS AND METHODS

Reagents
HClO4 (Baker Chemical Co., Deventer, Netherlands), BSA,
piperazine-N, N′-bis (2-ethanesulfonic acid), hyaluronidase,
chymopapain, elastase type I, morphine, substance P, LTC4,
and PGD2 (Sigma Chemical Co., St. Louis, MO), collagenase
(Worthington Biochemical Co., Freehold, NJ), Hanks’ balanced
salt solution and fetal calf serum (FCS; GIBCO, Grand Island,
NY), deoxyribonuclease I and pronase (Calbiochem, La Jolla,
CA), RPMI 1640 with 25 mM HEPES buffer, Eagle’s minimum
essential medium (Flow Laboratories, Irvine, United Kingdom),
Percoll (Pharmacia Fine Chemicals, Uppsala, Sweden), (3H)-
LCT4 and (3H)-PGD2 (New England Nuclear, Boston, MA) were
commercially purchased. CD117 MicroBead kit was purchased
from Miltenyi Biotec (Bologna, Italy). Rabbit anti-IgE antibody
was kindly donated by Dr. Kimishige Ishizaka (La Jolla Institute
for Allergy and Immunology, La Jolla, CA). Rabbit anti-LTC4

antibody was a gift of Dr. Lawrence M. Lichtenstein (The Johns
Hopkins University, Baltimore, MD). Tryptase fluoro-enzyme
immune assay (FEIA; Phadia Diagnostic AB, Uppsala, Sweden)
was kindly donated by Kabi Pharmacia (Milan, Italy).

Buffers
The Pipes buffer used in these experiments was made by 25 mM
Pipes, 110 mM NaCl, 5 mM KCl, pH 7.37 and referred to as
P buffer. P2CG contains, in addition to P buffer, 2 mM CaCl2
and 1 g/l dextrose (Patella et al., 1996); pH was titrated to 7.4
with sodium bicarbonate. PGMD contains 1 mMMgCl2, 10 mg/l
DNase, and 1 g/l gelatin in addition to P buffer, pH 7.37. The
Tyrode’s buffer was made by 12 mM NaHCO3, 127 mM NaCl,
5 mM KCl, 0.5 mM NaH2PO4, 1 mM MgCl2, 5 mM glucose,
and 10 mMHEPES.

Isolation of HLMCs
The study was approved by the Ethics Committee of the
University of Naples Federico II (N. 7/9).Macroscopically normal
lung tissue obtained from patients undergoing lung resection for
lung cancer was dissected free from pleura, bronchi, and blood
vessels, minced into 5- to 10-mm fragments and dispersed into
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a single cell suspension as previously described (de Paulis et al.,
1991; Staiano et al., 2016). Yields with this technique ranged
between 0.4× 105 and 1.5× 106 mast cells per g of wet tissue and
purity between 1 and 8%. Mast cells of enhanced purity (10–65%)
were obtained by flotation over discontinuous Percoll gradient.
Mast cells were further purified using a CD117 MicroBead kit
sorting system according to the manufacturer’s instructions. Mast
cell purities using this technique ranged from 85 to 98%.

Isolation of HSMCs
Skin obtained from patients undergoing either mastectomy for
breast cancer or elective cosmetic surgery was separated from
the subcutaneous fat by blunt dissection. The tissue was cut into
1- to 2-mm fragments dispersed into single cell suspension as
previously described (de Paulis et al., 1992). Yields with this
technique ranged between 0.1 and 0.9 × 106 mast cells/g of
wet tissue and purities were between 4 and 8%. Mast cells were
further purified using a CD117 MicroBead kit cell sorting system
(Miltenyi Biotec, Bologna, Italy) according to the manufacturer’s
instructions. Mast cell purities using this technique ranged
from 84 to 96%.

Isolation of HHMCs
The heart tissue used in this study was obtained from patients
undergoing heart transplantation at the Deutsches Herzzentrum,
Berlin, mostly for cardiomyopathy (Patella et al., 1998).
The explanted heart, immediately immersed in cold (4◦C)
cardioplegic solution, was processed within 5–18 h of removal.
Fat tissue, large vessels, and pericardium were removed. The
tissue was finely minced into 2- to 5-mm fragments, suspended
in P buffer (10 ml/g of wet tissue), and washed by centrifugation
3 times. After each centrifugation, the heart fragments were
filtered through a 150-µm pore Nytex cloth (Tetko, Elmsford,
NY). Fragments were incubated (15 min, 37◦C) under constant
stirring in P buffer containing 10 mg collagenase/g of wet tissue.
At the end of the incubation the cell suspension was filtered
through a 150-µm pore Nytex cloth and three additional cycles
of enzymatic digestion were performed. After the last procedure,
the cells were centrifuged (150 g, 22◦C, 8 min) and filtered
through a 60-µm pore Nytex cloth to remove large particles and
large cells (mostly myocytes). Lastly, cells were washed twice in
PGMD by centrifugation (150 g, 22◦C, 8 min). Cell pellets were
resuspended in P buffer containing 2% BSA and centrifuged
(25 g, 22◦C, 2 min) to remove sedimented myocytes. Myocytes
(>100 µm long) were pelleted and discarded; supernatants
containing endothelial cells, fibroblasts and mast cells were then
collected and centrifuged (150 g, 22◦C, 8 min). HHMCs were
partially purified by flotation through a discontinuous Percoll
gradient (Patella et al., 1998). The purity of these populations
ranged from 0.1 to 18%. The enzymatic dispersion tissue yielded
≈ 5 × 104 mast cells per gram of heart tissue. HHMCs were
further purified using a CD117 MicroBead kit sorting system.
Mast cell purities using these techniques ranged from 26 to 58%.

Isolation of HSyMCs
The synovial tissue used in this study was obtained from
patients with osteorthrites or rheumatoid arthritis undergoing

synoviectomy. Resected joint tissue was immersed in P buffer
(4◦C) and was processed within 2 h of removal (de Paulis et al.,
1996). Fat and fibrous tissue were removed and the tissue was
finely minced into 2-5-mm fragments, suspended in P buffer
(10 ml/g of wet tissue), and washed twice by centrifugation
(150 g, 22◦C, 8 min). The minced synovium was incubated
(45 min at 37◦C) with chymopapain (1 mg/ml) and pronase
(0.5 mg/ml) in 1 ml Tyrode’s buffer/g synovial tissue. Remaining
tissue was digested for another 45 min at 37◦C with collagenase
(1 mg/ml). Cell suspensions were filtered twice through 200 µ

pore Nytex cloth, centrifuged (200 g, 22◦C, 8 min), and washed
twice with P buffer. Yields with this technique ranged from
0.2 × 106 to 1.0 × 106 mast cells/g of wet tissue. HSyMCs
were purified by discontinuous Percoll gradient (de Paulis et al.,
1996). The purity of these populations ranged from 16 to 35%.
Mast cells were further purified using a CD117 MicroBead kit
sorting system. HSyMCs purities using these techniques ranged
from 71 to 94%.

Histamine Release Assay
Cells (≈ 3 × 104 mast cells per tube) were resuspended
in P2CG, and 0.3 ml of the cell suspension were placed in
12 × 75 mm polyethylene tubes and warmed to 37◦C; 0.2 ml
of each prewarmed releasing stimulus (anti-IgE, substance P
or morphine) was added, and incubation was continued at
37◦C for 45 min (Patella et al., 1990). Cell were centrifuged
(1000 g, 22◦C, 2 min), and the supernatants were stored at
−70◦C for subsequent assay of histamine, tryptase, LTC4 and
PGD2 content. Experiments with HSMCs were performed at
30◦C as previously described (Stellato et al., 1992a). The cell-
free supernatants were assayed for histamine with an automated
fluorometric technique (Siraganian, 1974). The percent histamine
release from mast cells was calculated as previously described
(de Paulis et al., 1991; Varricchi et al., 2019). All values are
based on means of duplicate determinations which differed
by less than 10%.

Immunoassay of Tryptase, PGD2, and
LTC4
Tryptase was analyzed by FEIA (Phadia Diagnostic AB, Uppsala,
Sweden) (Stellato et al., 1992a). PGD2 and LTC4 were analyzed
by radioimmunoassay (Patella et al., 1990; de Paulis et al.,
1991). The anti-PGD2 and anti-LTC4 antibodies had less
than 1% cross-reactivity to other eicosanoids (Patella et al.,
1990; de Paulis et al., 1991). Data were normalized on
total cell number.

Statistical Analysis
Values are expressed as means ± SEM. Statistical significance
was assessed by using 1-way ANOVA (for data sets with
Gaussian distribution) or Kruskal-Wallis test (for data
sets without Gaussian distribution), followed by the
Dunn multiple correction test. Results were analyzed
with GraphPad Prism software (version 7.05: GraphPad
Software, La Jolla, CA), and p-values of less than 0.05 were
considered significant.
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RESULTS

Heterogeneous Effects of Anti-IgE on the
Activation of HLMCs, HSMCs, HHMCs,
and HSyMCs
As previously reported (Peachell et al., 1988; de Paulis et al.,
1996; Genovese et al., 2000; Varricchi et al., 2019), exposure
of mast cells isolated from different anatomic sites (lung:
HLMCs; skin: HSMCs; heart: HHMCs; synovial tissue: HSyMCs)
to anti-IgE (10−1 to 3 µg/ml) resulted in a dose dependent
release of histamine (data not shown). The ability of mast cells
isolated from different human tissues to secrete histamine when
challenged with anti-IgE indicates that they have IgE bound to
FcεRI. Figure 1 summarizes the release of preformed (histamine
and tryptase) and de novo synthesized mediators (LTC4 and
PGD2) from HLMCs, HLSMCs, HHMCs, and HSyMCs when
challenged anti-IgE (3 µg/ml). All types of human mast cells
examined released the same percent of histamine and tryptase
(Figures 1A,B). By contrast, striking differences were found
among different types of mast cells when we compared the
de novo synthesis of lipid mediators. HSMCs did not produce
LTC4 compared to HLMCs (p < 0.01) and to HHMCs and
HSyMCs (p < 0.01). Moreover, maximal stimulation of HHMCs
and HSyMCs with anti-IgE led to the LTC4 production of

20.2 ± 3.5 and 22.5 ± 4.4 ng/106 mast cells, respectively,
which was significantly lower than HLMCs (51.5 ± 8.40 ng/106

cells; p < 0.05). Interestingly, the anti-IgE-mediated production
of PGD2 from HLMCs (52.3 ± 6.9 ng/106 mast cells) and
HSMCs (39.0 ± 10.0 ng/106 mast cells) did not differ between
the two groups. However, only the production of PGD2 from
HLMCs, but not HSMCs, was significantly higher than that
produced by HHMCs (19.3± 4.5 ng/106 mast cells) andHSyMCs
(21.3± 4.6 ng/106 mast cells) (p< 0.01). Collectively these results
identify striking differences with respect to the release of different
types of mediators in response to IgE-mediated stimuli among
human mast cells isolated from different anatomic sites.

Heterogeneous Effects of Substance P
on the Activation of HLMCs, HSMCs,
HHMCs, and HSyMCs
Substance P (SP) has long been established as an inflammatory
neuropeptide (O’Connor et al., 2004; Mashaghi et al., 2016)
and potent endogenous pruritogen in mice and humans (Azimi
et al., 2017; Gupta and Harvima, 2018; Yosipovitch et al.,
2018). Although the classical receptor for SP is the neurokinin-
1 receptor (NK-1R) (Douglas and Leeman, 2011), recent studies
have demonstrated that SP activates MRGPRX2 receptor in
addition to NK-1R to induce itch (Azimi et al., 2017). There

FIGURE 1 | Effects of maximal stimulation of anti-IgE (3 µg/ml) on the release of histamine (A), tryptase (B) and the de novo synthesis of LTC4 (C), and PGD2 (D)

from HLMCs (black bars), HSMCs (open bars), HHMCs (dashed bars), and HSyMCs (dot bars). Each point represents the mean ± SEM of six experiments in

duplicate. Statistical significance was determined by ∗p < 0.05; ∗∗p < 0.01.
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is also evidence that SP can activate adventitial mast cells (Bot
et al., 2010). Moreover, SP can be released into joint tissues from
sensory nerve fibers (Pereira da Silva and Carmo-Fonseca, 1990;
Gronblad et al., 1991) and its concentrations are increased in
synovial fluid from patients with rheumatoid arthritis (Devillier
et al., 1986). We therefore compared the effects of increasing
concentrations (5 × 10−7 to 5 × 10−6 M) of SP on the activation
of HLMCs, HSMCs, HHMCs, and HSyMCs. Figure 2 shows
that SP caused concentration-dependent histamine and tryptase
release from HSMCs whereas it had no effect on both HLMCs
and HHMCs. SP caused histamine and tryptase release from
HSyMCs only at the higher concentrations (10−6 Mand 5× 10−6

M) examined. The percent histamine release from HSyMCs
caused by the latter concentrations of SP was significantly lower
(p < 0.001) than that induced from HSMCs. Interestingly,
in these experiments SP did not induce the metabolism of
arachidonic acid through the 5-lipoxygenase pathway (LTC4)
(Figure 2C) and the cyclooxygenase (PGD2) (Figure 2D) in all
types of mast cell examined.

Heterogeneous Effects of Morphine on
the Activation of HLMCs, HSMCs,
HHMCs, and HSyMCs
Opioid compounds bind to multiple receptors also present on
several cells of innate and adaptive immunity where they exert

immunomodulatory effects (Boland and Pockley, 2018; Plein
and Rittner, 2018). Recent evidence indicates that several opioid
compounds including morphine can activate the human LAD2
mast cell line through MRGPRX2 (Lansu et al., 2017). Figure 3
shows the results of several experiments comparing the effects of
increasing concentrations (10−5 to 3 × 10−4 M) of morphine on
mediator release from primary HLMCs, HSMCs, and HHMCs.
Morphine selectively induced histamine and tryptase release
from HSMCs but not from HLMCs and HHMCs. Interestingly,
morphine was an incomplete secretagogue because it did not
induce the production of both LTC4 and PGD2 from all types of
human mast cells.

DISCUSSION

The results of this study extends previous findings demonstrating
the functional heterogeneity of human primary mast cells
isolated from different anatomic sites with respect to FcεRI-
mediated activation (Schwartz et al., 1987; Casolaro et al.,
1989; Stellato et al., 1992a; Patella et al., 1998; Galli et al.,
2011; Motakis et al., 2014). No differences were found with
respect to anti-IgE-mediated release of preformed mediators
(histamine and tryptase) from human primary mast cells purified
from different anatomic sites. By contrast, striking differences
were demonstrated among different types of mast cells with

FIGURE 2 | Effects of increasing concentrations of substance P (5 × 10−7 M to 5 × 10−6 M) on the release of histamine (A), tryptase (B), and the de novo

synthesis of LTC4 (C), and PGD2 (D) from HLMCs, HSMCs, HHMCs, and HSyMCs. Each point represents the mean ± SEM of six experiments in duplicate.

Statistical significance was determined by ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001.
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FIGURE 3 | Effects of increasing concentrations of morphine (10−5 M to 3 × 10−4 M) on the release of histamine (A), tryptase (B) and the de novo synthesis of

LTC4 (C), and PGD2 (D) from HLMCs, HSMCs and HHMCs. Each point represents the mean ± SEM of six experiments in duplicate. Statistical significance was

determined by ∗∗p < 0.01; ∗∗∗∗p < 0.0001.

respect to the anti-IgE-induced de novo synthesis of LTC4 and
PGD2. Interestingly, LTC4 is not produced by anti-IgE-activated
HSMCs whereas these cells synthesize PGD2. Moreover, the IgE-
mediated production of both LTC4 and PGD2 from HLMCs was
higher than that of HHMCs and HSyMCs. Collectively, these
results suggest the existence of profound differences between the
biochemical mechanisms that regulate the secretion of preformed
mediators and the de novo production of lipid molecules among
different types of human primary mast cells.

Tatemoto and coworkers first demonstrated the presence
of MRGPRX2 mRNA in human skin and in human cord
blood mast cells (CBMCs) (Tatemoto et al., 2006). They also
found that several basic secretagogues, including SP, induced
mast cell degranulation. They suggested that MRGPRX2
receptor is highly expressed in MCTC compared to MT. Since
this initial observation several groups have demonstrated
that various neuropeptides (e.g., VIP), endogenous and
exogenous opioids (e.g., morphine), cationic drugs (e.g.,
icatibant, atracurium, ciprofloxacin), and 48/80 can activate
human mast cells via the MRGPRX2 receptor (McNeil et al.,
2015; Gaudenzio et al., 2016; Lansu et al., 2017; Okamura
et al., 2017; Alkanfari et al., 2018). Interestingly the group
of Theoharides has demonstrated that SP can synergistically
potentiate the production of several cytokines (e.g., TNF-α,

VEGF, IL-1β) by LAD2 mast cells (Theoharides et al., 2010;
Taracanova et al., 2017, 2018).

The activating property of MRGPRX2 agonists has been
evaluated in human LAD2 cell line (Guhl et al., 2005; Kulka
et al., 2008; Theoharides et al., 2010; McNeil et al., 2015),
human peripheral blood-derived cultured mast cells (PBCMCs)
(Gaudenzio et al., 2016), and human CBMCs (Tatemoto et al.,
2006). In the present study performed using primary mast cell
isolated and purified from different human tissues, we found that
twoMRGPRX2 agonists, SP andmorphine, selectively induce the
release of preformed mediators (histamine and tryptase) from
HSMCs, but not from HLMCs and HHMCs. These findings are
consistent with the observation that the MRGPRX2 receptor
is expressed in HSMCs but not in lung mast cells (Fujisawa
et al., 2014; Babina et al., 2018). We also found that high
concentrations of SP caused small but significant release of
histamine and tryptase from HSyMCs. This observation could
be of some interest because Okamura et al. have demonstrated
that SP activates HSyMCs to release histamine and to produce
PGD2 (Lee et al., 2013) through the activation of MRGPRX2
(Okamura et al., 2017). In our study SP caused some release
of preformed mediators (i.e., histamine and tryptase) from
HSyMCs, but not the de novo synthesis of both PGD2 and
LTC4. Several studies have suggested the involvement of SP
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in experimental arthritis (Levine et al., 1984; Ahmed et al.,
1995; Seegers et al., 2003) and in rheumatoid arthritis (Hernanz
et al., 1993; Menkes et al., 1993; Miller et al., 2000; Grimsholm
et al., 2005; Dirmeier et al., 2008). Further studies are needed
to clarify the SP-mediated production of proinflammatory and
immunomodulatory mediators from HSyMCs.

There is increasing evidence that cardiac mast cells play a role
in several myocardial disorders (Patella et al., 1990, 1996, 1998;
Theoharides et al., 2011; Shi et al., 2015; Ngkelo et al., 2016;
Marino et al., 2017). It has been reported that SP induces adverse
myocardial remodeling (Melendez et al., 2011) and intraplaque
hemorrhage in atherosclerosis (Bot et al., 2010) via the activation
of mast cells. Azimi and collaborators have implicated mast
cell MRGPRX2 in human and experimental cardiometabolic
disorders (Azimi et al., 2017). However, the mechanism(s) of
SP-mediated vascular and cardiac mast cell activation remains
controversial (Shi et al., 2017). In our study SP and morphine
failed to induce the release of preformed and de novo synthesized
mediators from partially purified HHMCs. Interestingly, we have
previously demonstrated by immunoelectron microscopy the
presence of both tryptase and chymase in human cardiac mast
cells (Patella et al., 1995). Thus, although HHMCs contain both
serine proteases, similarly to HSMCs, they differ from the latter
in response to MRGPRX2 activators. Several explanations can
justify this intriguing observation: first, the possibility of the
existence of MRGPRX2 variants expressed in different types of
human mast cells (Alkanfari et al., 2018) cannot be excluded;
second, the complex enzymatic and mechanical procedure to
purify HHMCs might alter the expression and function of
MRGPRX2 both at the plasma membrane and intracellular
sites (Fujisawa et al., 2014). We are presently investigating the
surface and intracellular localization of MRGPRX2 in HHMCs
to explain the apparent lack of functional effects of SP and
morphine on these cells.

Increasing evidence supports the role of mast cells in
neurogenic inflammation (Skaper et al., 2014; Skaper et al.,
2017) leading to itch and pain (Vincent et al., 2013; Gupta
and Harvima, 2018; Yosipovitch et al., 2018). Nerve fibers
release proinflammatory and vasoactive neuropeptides such as
SP (Rosa and Fantozzi, 2013; Skaper et al., 2017), which can
activate mast cells. These cells release algogenic and pruritogenic
mediators such as tryptase and histamine (Yosipovitch et al.,
2018), which activate specific nociceptors on sensory nerve
fibers (Vergnolle et al., 2001; Rosa and Fantozzi, 2013). There
is increasing evidence that SP is linked to itch and pain
through activation of MRGPRX2 on mast cells and sensory
neurons (Azimi et al., 2016, 2017). We found that SP is a
potent activator of the release of both histamine and tryptase
from HSMCs that highly express MRGPRX2 (Fujisawa et al.,
2014). The role of tryptase is particularly relevant because
this protease activates the PAR2 receptor on nerve endings
(Vergnolle et al., 2001; Zhang et al., 2012) stimulating the
release of SP and other neuropeptides (Steinhoff et al., 2000)
that activate nociceptors on nerve terminals as well as mast
cells in a paracrine manner. Moreover, in vivo administration of
morphine can induce histamine release (Baldo and Pham, 2012;

Kumar and Singh, 2013) and itching in humans presumably via
MRGPRX2-mediated HSMC activation.

Our study has some limitations which have to be pointed
out. It was performed using primary mast cells isolated from
several tissues (i.e., lung, heart, synovial, skin) obtained from
different patients. Moreover, these mast cells might have different
characteristics from cells obtained from healthy donors. Finally,
the mechanical and enzymatic procedures to isolate mast cells
from different anatomic sites are quite different. We cannot
exclude the possibility that the techniques used to isolate and
purify mast cells from different tissues might explain, at least in
part, their different response to MRGPRX2 activation.

In conclusion, the results of this study demonstrate that
there is greater functional heterogeneity of primary human mast
cells across tissues than previously appreciated. First, we extend
previous findings demonstrating heterogeneity when different
types of human mast cells are activated via aggregation of FcεRI
by anti-IgE. Second, there is heterogeneity of de novo synthesized
mediators produced by different human mast cells activated by
IgE-cross-linking. Third, there is heterogeneity of human mast
cells with respect to MRGPRX2 activation. Additional studies are
needed to examine the intracellular and membrane expression of
MRGPRX2 in different types of primary human mast cells.
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