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Heterogeneity of interactions of 
microbial communities in regions of 
Taihu Lake with different nutrient 
loadings: A network analysis
Xinyi Cao1,2, Dayong Zhao1, Huimin Xu1,2, Rui Huang1,2, Jin Zeng2 & Zhongbo Yu1

To investigate the differences in the interactions of microbial communities in two regions in Taihu 
Lake with different nutrient loadings [Meiliang Bay (MLB) and Xukou Bay (XKB)], water samples were 
collected and both intra- and inter-kingdom microbial community interactions were examined with 

network analysis. It is demonstrated that all of the bacterioplankton, microeukaryotes and inter-
kingdom communities networks in Taihu Lake were non-random. For the networks of bacterioplankton 
and inter-kingdom community in XKB, higher clustering coefficient and average degree but lower 
average path length indexes were observed, indicating the nodes in XKB were more clustered and 
closely connected with plenty edges than those of MLB. The bacterioplankton and inter-kingdom 
networks were considerably larger and more complex with more module hubs and connectors in XKB 
compared with those of MLB, whereas the microeukaryotes networks were comparable and had 
no module hubs or connectors in the two lake zones. The phyla of Acidobacteria, Cyanobacteria and 

Planctomycetes maintained greater cooperation with other phyla in XKB, rather than competition. 
The relationships between microbial communities and environmental factors in MLB were weaker. 
Compared with the microbial community networks of XKB, less modules in networks of MLB were 
significantly correlated with total phosphorous and total nitrogen.

Microorganisms are crucial components of aquatic ecosystems, and play important roles in the ecological pro-
cesses in freshwater lakes1,2. Understanding the interactions of microbial communities as well as the relationships 
between microbial communities and environmental variables in the freshwater ecosystem is a longstanding chal-
lenge in microbial community ecology3.

In an ecological system, species interact with each other in various ways (such as competition and mutual-
ism), which leads to the formation of complicated networks3–6. An understanding of these interactions between 
taxa in bacterioplankton, microeukaryotes and the inter-kingdom (bacterioplankton and microeukaryotes com-
bined) communities may help us to clarify their functional roles or environmental niches in the ecosystem7–9. 
Co-occurrence is an ecologically important pattern that re�ects niche processes that drive coexistence and diver-
sity in biological communities10–12. �us, an analysis of the co-occurrence of microbial systems may help to char-
acterize the biogeography, functional distribution or ecological interactions of microbes.

�e composition and diversity of bacterioplankton are closely related to spatial13,14, temporal3,15–17 and envi-
ronmental factors, such as temperature, pH and nutrient concentrations14,18–22. �e composition of a microbial 
community di�ers throughout the water column in both natural habitats23,24 and manipulated mesocosms25–27 
under di�erent ecological states or regimes. It has also been observed that the community structure of bacterio-
plankton changes a�er nutrients are added to freshwater ecosystems28. High nutrient levels have indirect e�ects 
through changes in the composition of bacterioplankton, suggesting that the nutritional status of freshwater lakes 
may be an important factor that determines the structure of the bacterioplankton community14,24,27.
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Microeukaryotes are an extremely diverse group of organisms with a wide range of distinct morphologies 
and physiologies, as well as links to higher trophic levels29–31. Microeukaryotes di�er from bacterioplankton in 
many regards, such as individual size and use of nutrients32–34. Our previous study found that bacterioplank-
ton and microeukaryotes communities di�er with respect to composition and assembly processes in regions of 
Taihu Lake with di�erent nutrient loadings14. However, little is known about the relationships between microbial 
taxa and niches occupied by speci�c bacterioplankton/microeukaryotes in freshwater ecosystems. �e network 
and co-occurrence patterns of the bacterioplankton and microeukaryotes communities in regions with di�erent 
nutrient loading levels may be disparate, and it is important to understand how they are in�uenced by the nutri-
tional status. Furthermore, there is poor understanding of the inter-kingdom interactions based on the method of 
high-throughput sequencing and network analysis35 and it is essential to consider bacterioplankton and microeu-
karyotes communities together because they are closely functionally associated in organic matter-producing and 
-recycling processes35,36.

In this study, two regions of Lake Taihu [Meiliang Bay (MLB) and Xukou Bay (XKB)] were selected to assess 
the e�ect of di�erences between a high nutrient level and a low nutrient level, respectively, on the interactions 
among microbial taxa using a network analysis. We sought to answer the following questions: (1) Are the inter-
actions among microbial communities the same in regions with di�erent nutrient loading levels? (2) Are these 
interactions di�erent between bacterioplankton, microeukaryotes and inter-kingdom? (3) Are the relationships 
between environmental factors and the network of microbial communities di�erent between regions with di�er-
ent nutrient loading levels?

Results and Discussion
Architecture of the networks in the two lake zones. Correlation-based species-species co-occurrence 
networks were constructed. �e degrees of distribution in the four resulting networks all showed a best �t with 
the truncated power law (Supplemental Fig. S1), indicating the existence of meaningful, non-random associations 
in networks in the two lake zones. �e degrees of distribution also show that, while most of the species were asso-
ciated with only a few connections, much fewer species had many connections (Supplemental Fig. S1).

Comparison of various indexes of the resulting network, including modularity (MD), clustering coe�cient 
(CC), average path length (APL), and network diameter (ND), to those of random networks using Z-tests indi-
cated that the bacterioplankton, microeukaryotes and the inter-kingdom networks in the two regions were 
non-random (P < 0.001) (Table 1). �ese properties of the observed network were all signi�cantly greater than 
those of a random network for bacterioplankton and the inter-kingdom network, suggesting that the observed 
network was more complex than a random network. However, APL and ND of the observed network were signif-
icantly lower than those of a random network for microeukaryotes (Table 1). Lower APL and ND of the observed 
network indicated that the nodes in microeukaryotes network are connected to everyone else through a very short 
path and facilitate the quick transfer of information more powerful than by chance. �e smaller system size (num-
ber of nodes and edges) of the microeukaryotes network than bacterioplankton network might lead to this case37.  

Objects
Lake 
zones Nodes

Empirical network Random network

Edges Modularity
Clustering 
coe�cient

Average 
path 
length

Network 
diameter

Average 
degree

Graph 
density

Modularity 
(SD)

Clustering 
coe�cient 
(SD)

Average 
path 
length 
(SD)

Network 
diameter 
(SD)

Bacteriop 
lankton

MLB 329b 436b 0.848a,b 0.405a,b 6.554a,b 15b 2.63b 0.008
0.652 
(0.010)

0.008 
(0.005)

5.737 
(0.138)

13.41 
(1.261)

XKB 353b 1443b 0.546a,b 0.472a,b 4.674a,b 12a,b 8.21b 0.023
0.314 
(0.005)

0.023 
(0.003)

3.017 
(0.005)

5.263 
(0.445)

Microeu 
karyotes

MLB 73b 73b 0.819a 0.535a 2.038a,b 5a,b 2b 0.028
0.658 
(0.028)

0.029 
(0.028)

5.134 
(0.568)

12.229 
(2.033)

XKB 85b 98b 0.813a 0.523a 2.556a,b 6a,b 2.31b 0.027
0.626 
(0.024)

0.026 
(0.021)

4.781 
(0.333)

11.217 
(1.523)

Inter- 
kingdom

MLB

Bacteriop 
lankton

287 b
Intra-
kingdom

326 
(31c)b

0.899a,b 0.327a,b 6.540a,b 17a,b 2.15b 0.006
0.735 
(0.013)

0.006 
(0.006)

6.961 
(0.296)

16.880 
(1.774)Microeu 

karyotes
63b Inter-

kingdom
51b

XKB

Bacteriop 
lankton

369b Intra-
kingdom

1449 
(96)b

0.579a,b 0.432a,b 5.227a,b 16a,b 7.43b 0.015
0.335 
(0.005)

0.015 
(0.002)

3.306 
(0.006)

6.049 
(0.266)Microeu 

karyotes
116 b

Inter-
kingdom

352b

Table 1. Topological properties of the empirical species-species networks of microbial communities in lake 

zones with di�erent nutrient loading levels and an associated random network. Random networks were 

generated by rewiring all of the links with the same numbers of nodes and edges to the corresponding empirical 

network. �e numbers in parentheses indicate the standard deviation (SD) of topological properties of 1000 

random networks. MLB, lake zone with high nutrient loading; XKB, lake zone with low nutrient loading. 
aSigni�cant di�erence (P < 0.001) between the empirical network and the random network (Z-test). bSigni�cant 

di�erence (P < 0.001) between network indexes for the two lake zones (Student t-test). cNumbers in parenthesis 

represent the number of microeukaryotes-microeukaryotes edge in the inter-kingdom network.
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For bacterioplankton, microeukaryotes and inter-kingdom communities, the networks in MLB and XKB had 
higher CC than those in random networks, indicating that there are more highly interconnected (clustered) 
nodes in the observed networks than in random networks. A small-world network means that most nodes can be 
reached from every other node by a small number of hops or steps38. �e clustering nodes in all networks (Fig. 1, 
Supplemental Fig. S2) and the remarkably high average degree (AD) (Table 1) suggested that these networks have 
‘small-world’ properties38,39, especially for the microbial community networks in XKB.

Although identical thresholds were used to de�ne the networks, the sizes of the networks in the two regions 
were di�erent (Table 1). �e network properties for bacterioplankton in MLB were closer to those of random 
networks (Table 1). Our previous study found that stochastic processes played non-negligible roles in controlling 
the assembly of both bacterioplankton and microeukaryotes communities in MLB14. �e higher nutrient loadings 
in MLB may account for the similarity to random networks in this region.

As shown in Figs 1 and S2, the network in XKB was signi�cantly larger and more complex than that in MLB for 
bacterioplankton and inter-kingdom, but the networks in the two regions were comparable for microeukaryotes. 
Signi�cant di�erences in all of the network indexes were observed between MLB and XKB for the bacterioplank-
ton as well as the inter-kingdom networks (Student’s t-test, P < 0.001) (Table 1). However, there were no signi�-
cant di�erences in MD or CC (P > 0.05) between the microeukaryotes networks in the two regions. �e greater 
complexity of the network in XKB (Fig. 1) may be due to the relatively lower nutrient loading level, which would 
lead to relatively stronger niche selection due to the greater competition for resources and less-diverse resources6. 
It has been suggested that bacterioplankton and microeukaryotes have similar cellular-mineral-environmental 
constraints40 and it is well known that bacterioplankton and microeukaryotes are very sensitive to environmental 
variations14,35. Although the lower nutrient loading and stronger environmental �ltering e�ects in XKB may lead 
to stronger niche selection, microeukaryotes are better able to adapt to environmental perturbations and compete 
with each other40, which contributes to the comparable microeukaryotes networks in MLB and XKB as well as the 
correlations between microeukaryotes and environmental variables (Supplemental Fig. S3).

Co-occurrence/co-exclusion patterns in the two regions. �e MD values of networks for bacterio-
plankton (MLB: 0.848, XKB: 0.546), microeukaryotes (MLB: 0.819, XKB: 0.813) and inter-kingdom (MLB: 0.899, 
XKB: 0.579) were all >0.50 (Table 1), and thus had modular structures17,41,42. �erefore, the species-species asso-
ciation networks were divided according to modules and obvious di�erences were found for the networks of 
bacterioplankton (Fig. 1) and inter-kingdom (Supplemental Fig. S2) in MLB and XKB.

�e network for XKB included more interactions (edges) (Table 1), and the APL and ND of the network for 
bacterioplankton and inter-kingdom were signi�cant lower in XKB than in MLB (Table 1). However, the average 
degree (AD), which is the most robust measure of network topology along with CC, of the network for bacterio-
plankton and inter-kingdom were signi�cant higher for the networks in XKB43. In general, there were higher CC 
and AD but lower APL and ND indexes for the network of XKB, which indicated that the nodes in the network 
of XKB were more clustered and closely connected with plenty edges for each point, thus the network in XKB 
was more complex than that for MLB43. It is also observed that the interaction of inter-kingdom network was 
markedly stronger in XKB (195 positive correlations and 157 negative correlations) than those of MLB (39 posi-
tive correlations and 12 negative correlations) (Supplemental Table S1). However, the species-species association 
networks for microeukaryotes communities were not as obviously di�erent as those for bacterioplankton between 
MLB (Fig. 1c) and XKB (Fig. 1d).

Environmental conditions would a�ect the interactions among microbial communities. It has been demon-
strated that species that share similar ecological niches may exhibit competition when resources are scarce, but 
may show positive interactions under resource-rich conditions3,44. In ecological systems, coexistence is supported 
by niche processes like environmental �ltering45–47. Species pairs that co-occur may share similar ecological char-
acteristics8,9,48, which can be used to infer life-history strategies49,50. Glöckner et al.51 found that bacterioplank-
ton and microeukaryotes showed signi�cant di�erences in the abundance and relationships among phyla under 
di�erent nutrient loading conditions. �e favorable nutrient state in MLB could weaken niche selection by pro-
viding more resources and reducing competition among species, which may explain the weak correlation and 
simple network28,52 in MLB. However, the microeukaryotes networks in the two regions were comparable. It has 
been demonstrated that, in pelagic ecosystems, microeukaryotes are the primary consumers of phytoplankton, 
heterotrophic bacteria and archaea34,53. In addition, they serve as important trophic links for transferring carbon 
between the microbial food web and the metazoan food web34. Furthermore, uncommonly delineated microeu-
karyotes species may contribute to the di�erence between networks for bacterioplankton, inter-kingdom com-
munity and microeukaryotes in the two lake zones14,54.

Intra- and inter-phyla co-occurrence/co-exclusion patterns for bacterioplankton. �e O/R 
ratios (O: observed incidence of the co-occurrence of two taxa; R: random incidence of the co-occurrence of 
two taxa) for bacterioplankton were calculated to determine if OTUs from the same phylum/di�erent phyla 
tended to exhibit co-occurrence or co-exclusion. Few signi�cant O/R ratios in microeukaryotes networks 
were observed and the overwhelming majority of signi�cant O/R ratios in inter-kingdom network were the 
co-occurrence/co-exclusion patterns for bacterioplankton, thus neither of them was shown. An O/R value > 1 
means that the observed incidence of co-occurrence (O) of two taxa was higher than that expected at random. 
As shown in Supplemental Table S2, the O/R values were almost all signi�cantly higher than 1 in both XKB 
and MLB for positive interaction, indicating a very strong co-occurrence pattern for intra-phylum OTUs, 
especially in MLB (O/R values almost all > 3). However, the O/R values for negative intra-phylum inter-
action were almost 0 or NA, and not signi�cant in both XKB and MLB. Co-occurrence re�ects commonly 
preferred conditions or cooperative behaviors50; the higher nutrient loading in MLB provided more suitable 
environmental conditions for these phyla to live and co-occur. It has been demonstrated that strong ecological 
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intra-phyla linkages are due to synergistic relationships, and species from the same phylum tend to co-occur55. 
Phylogenetic signal analysis also revealed that closely related OTUs have similar habitat associations49,56, which 
is consistent with our results.

Figure 1. Species-species association network divided by module in MLB and XKB for bacterioplankton and 
microeukaryotes. Only correlations between species that were statistically signi�cant (P < 0.01, Q-value < 0.05) and 
strong (r ≥ 0.9) were shown. Red solid line means positive correlation and black lines mean negative correlation. 
Di�erent microbial phyla were represented with di�erent colors and the number on each node means the number 
of OTUs clustered at 97% similarity. �e circles consist of some nodes mean modules. Figure (a) and (b) represent 
bacterioplankton networks from MLB and XKB, respectively. Figure (c) and (d) represent microeukaryotes networks 
from MLB and XKB, respectively. Modules including less than 4 nodes are removed or abridged for concision.
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�e O/R values for inter-phyla interactions in XKB were more signi�cant than those in MLB for both pos-
itive and negative interactions. For example, Chloro�exi showed signi�cant and strong co-occurrence relation-
ships (O/R > 3, P < 0.01) with many phyla (Acidobacteria, Actinobacteria, Cyanobacteria, Gemmatimonadetes, 
Planctomycetes, Betaproteobacteria and unclassi�ed) in the bacterioplankton community of XKB, but showed no 
signi�cant co-occurrence patterns in MLB. Other phyla, such as Acidobacteria (with Actinobacteria, Chloro�exi, 
Cyanobacteria, Gemmatimonadetes and Planctomycetes), Cyanobacteria (with Acidobacteria, Bacteroidetes, 
Betaproteobacteria, Chloro�exi, Gammaproteobacteria, Gemmatimonadetes, Planctomycetes and unclassi�ed) and 
Planctomycetes (with Acidobacteria Actinobacteria, Bacteroidetes, Betaproteobacteria, Chloro�exi, Cyanobacteria, 
Firmicutes and Gemmatimonadetes and unclassi�ed), showed a similar di�erence in co-occurrence patterns as 
Chloro�exi in the two lake zones.

�e phyla of Acidobacteria, Cyanobacteria and Planctomycetes maintained strong relationships with other 
phyla in XKB (Supplemental Table S2), which may re�ect greater cooperation with other phyla, rather than com-
petition. �erefore, once in a suitable environment, bacterioplankton will live, and intra-phyla co-occurrence 
will usually occur. On the other hand, an unsuitable environment would dramatically increase inter-phyla rela-
tionships. �us, there were more relationships, such as symbiosis or competition, among species in XKB than in 
MLB, indicating that the networks between bacterioplankton may change with di�erent nutrient loading levels.

Detection of the topological roles of nodes for bacterioplankton and inter-kingdom net-
work. �e topological roles of the OTUs identi�ed in these four networks are shown as a Zi-Pi plot (Fig. 2). 
�e detection of the topological roles for microeukaryotes was omitted because there was neither module hub nor 
connector in the microeukaryotes network. It was observed that most of the OTUs (98.8% and 97.7% for MLB 
and XKB, bacterioplankton, respectively; 100% and 99.38% for MLB and XKB, inter-kingdom, respectively) were 
peripherals, with most of their links inside their modules. Furthermore, among these peripherals, most OTUs 
(91.7% and 67.8% for MLB and XKB, bacterioplankton, respectively; 92.71% and 82.08% for MLB and XKB, 
inter-kingdom, respectively) had no links outside their own modules (Pi = 0). For the network of bacterioplank-
ton, 4 (1.2%) OTUs were identi�ed as module hubs network of MLB, 3 (1.4%) and 5 (0.9%) OTUs were identi�ed 
as module hubs and connectors in the network of XKB respectively (Fig. 2a and Table 2). For the network of 
inter-kingdom, 2 (0.41%) and 1 (0.21%) OTUs were identi�ed as module hubs and connectors in the network of 
XKB respectively (Fig. 2c and Table 2), no connectors or module hubs were observed in the network of MLB for 
inter-kingdom (Fig. 2c and Table 2). It is worth mentioning that OTUE00117 (phylum-Archaeplastida) was iden-
ti�ed as module hubs in the network of XKB for inter-kingdom (Table 2), showing the important component of 
microeukaryotes in the whole ecosystem35,36. It is reported that the Archaeplastida are a major group of microeu-
karyotes, which may be the reason why it was the module hubs of the network57. Furthermore, no network hubs 
were observed in all of the networks in two lake zones (Fig. 2). Table 2 shows that all of the module hubs were 
from di�erent modules (BM1, BM2, BM3 and BM6 for bacterioplankton; X3, X4, X12 for inter-kingdom) in 
the network of MLB for bacterioplankton and both lake zones for inter-kingdom. However, for bacterioplank-
ton in XKB, module hubs were mostly from module BX3 while the connectors were mostly derived from mod-
ule BX2 and were classi�ed into di�erent phyla (Planctomycetes, Actinobacteria and unclassi�ed). �e other two 
connectors from modules BX7 and BX4 were classi�ed as Gammaproteobacteria and Cyanobacteria (Table 2). 
Furthermore, Table 2 shows that all of the module hubs and connectors were from di�erent phyla in the speci-
�ed region (Bacteroidetes, Alphaproteobacteria, Actinobacteria and Gemmatimonadetes for MLB, Actinobacteria, 
Alphaproteobacteria and Betaproteobacteria for XKB) and Alphaproteobacteria and Actinobacteria appeared to be 
module hubs in both MLB and XKB. Members of the Actinobacteria and Alphaproteobacteria were widely present 
in both MLB and XKB (Fig. 1). Hub OTUs in the co-occurrence network mostly belonged to Actinobacteria and 
Alphaproteobacteria (Table 2), suggesting that some OTUs of Actinobacteria and Alphaproteobacteria play impor-
tant roles in the networks in the two regions. Associations among bacterioplankton are usually established by a 
cluster of multiple highly interacting species with similar ecological niches or cooperation28. Actinobacteria play 
an important role in the decomposition of organic materials and the production of secondary metabolites with 
very diverse activities28,58, which may result in their in�uential status. It has been reported that Alphaproteobacteria 
isolates can either promote or inhibit the growth of coexisting blooming Cyanobacteria in freshwater lakes, which 
implies a strong functional interaction3. In other studies, Alphaproteobacteria were prominent members of mod-
ules at all time points and co-occurred with Actinobacteria and other phyla59, which may explain the module-hub 
role of Alphaproteobacteria. Module hubs in the MLB bacterioplankton community network ensured that species 
within a module were linked more tightly, which explains why the MLB network had much higher modularity 
than XKB (Table 1). Similarly, connectors in the XKB network made much tighter interactions among modules 
than those in MLB, which also con�rmed that the network structures in the two regions were di�erent.

Relationships between modules and environmental factors. To explore the e�ects of environ-
mental factors on species-species association networks, environmental factors were added to these networks 
(Supplemental Figs S3 and S4, in which red lines signify positive correlations and black lines signify negative 
correlations). Compared with the environmental variables in MLB, those in XKB had greater e�ects on these 
modules (Supplemental Figs S3 and S4). Most nodes in modules BX1, BX2 and BX4 for bacterioplankton 
(Supplemental Fig. S3) and modules X1 and X2 for inter-kingdom (Supplemental Fig. S4) network were positively 
correlated with total phosphorous (TP) and total nitrogen (TN) (Supplemental Table S3).

An eigengene analysis60 was performed for modules that were positively or negatively associated with environ-
mental variables to quantitatively describe the relationships between modules and environmental variables. �e 
eigengene network analysis was omitted for microeukaryotes and inter-kingdom since the module of microeu-
karyotes and inter-kingdom (MLB) had only a very few signi�cant correlations with environmental variables 
(Supplemental Table S3). �e results of the eigengene analysis on the modules of bacterioplankton networks 
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are shown in Supplemental Fig. S5. Figure 3 shows the relationships between eigengenes in the MLB and XKB 
networks and environmental variables for bacterioplankton, and represents the �rst evidence that environmen-
tal factors have positive or negative e�ects on particular bacterioplankton modules. In MLB, module BM7 had 
signi�cant positive correlations with TN and TP, module BM8 had a signi�cant positive correlation with NO2, 
module BM9 had a signi�cant positive correlation with NH4

+-N and a negative correlation with pH, modules 
BM11 and BM13 had signi�cant negative correlations with TN and TP, and module BM14 had a signi�cant posi-
tive correlation with dissolved organic carbon (DOC) (Fig. 3a). In XKB, modules BX1, BX2, BX4, BX5 and BX10 
had signi�cant positive correlations with environmental variables including TN, TP and pH, whereas modules 
BX6 and BX7 had signi�cant negative correlations with these variables (Fig. 3b). �e results regarding the corre-
lations between the module eigengenes and environmental variables in the two regions for bacterioplankton and 
microeukaryotes networks are shown in Supplemental Table S3.

In our previous study, both nutrient variables (TN, TP) and pH signi�cantly a�ected the compositions of both 
the bacterioplankton and microeukaryotes communities in XKB (P < 0.05), whereas environmental factors were 
not signi�cantly related to the composition of the microbial communities in MLB, except for a weak correlation 
between DOC and the microeukaryotes community14. Strom61 found that the functional traits of microorganisms 
are products of multiple populations within these communities rather than those of a single population. All of 
the results of our previous study are fairly consistent with those shown in Fig. 3, and proved that the modules are 
composed of bacterial clusters with similar ecological niches.

Figure 2. Zi-Pi plot showing the distribution of OTUs based on their topological roles. Each symbol represents 
an OTU in MLB (red) or XKB (blue) for bacterioplankton (a) microeukaryotes (b) and inter-kingdom (c). �e 
topological role of each OTU was determined according to the scatter plot of within-module connectivity (Zi) 
and among-module connectivity (Pi). �e module hubs and connectors are labeled with numbers.
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�e relationships between OTUs and ecological relatedness are complicated, and depend on individual micro-
bial groups, as well as environmental conditions28,61,62. For instance, nutrient loading had a very strong e�ect on 
the modules in both MLB and XKB. Meanwhile, environmental factors a�ected each module di�erently (Fig. 3). 
�e node composition is substantially di�erent among di�erent modules in the two regions, since they have 
di�erent nutrient loadings. �e di�erent nutrient loadings suggest di�erent extents of environment stress, which 
would in�uence the composition and turnover of the microbial communities6. �erefore, it is reasonable that the 

Objects
Lake 
zones Type of points Node OTU ID Module

Mean 
abundance 
(%) Kingdom Phylum/Subphylum Lowest taxonomic rank

Bacterioplankton

MLB Module Hubs

1 Otu000400 BM3 0.58 Bacterioplankton Bacteroidetes c_Bacteroidetesa

2 Otu000032 BM1 2.14 Bacterioplankton Alphaproteobacteria f_Rhizobiales

3 Otu000005 BM2 5.62 Bacterioplankton Actinobacteria f_Actinomycetales

4 Otu000266 BM6 0.69 Bacterioplankton Gemmatimonadetes g_Gemmatimonadaceae

XKB

Module Hubs

5 Otu000110 BX2 0.92 Bacterioplankton Actinobacteria f_Actinomycetales

6 Otu000011 BX3 3.2 Bacterioplankton Alphaproteobacteria g_Candidatus_Pelagibacter

7 Otu000094 BX3 0.93 Bacterioplankton Betaproteobacteria g_Comamonadaceae

Connectors

8 Otu000191 BX2 0.85 Bacterioplankton Planctomycetes g_Planctomycetaceae

9 Otu000173 BX2 0.81 Bacterioplankton Actinobacteria g_Acidimicrobiaceae

10 Otu000361 BX2 0.53 Bacterioplankton unclassi�ed p_Bacteria

11 Otu000052 BX7 1.23 Bacterioplankton Gammaproteobacteria g_Xanthomonadaceae

12 Otu000186 BX4 0.82 Bacterioplankton Cyanobacteria g_GpIIa

Inter-kingdom XKB
Module Hubs

1 OtuB00005b X4 2.64 Bacterioplankton Actinobacteria f_Actinomycetales

2 OtuE00117 X3 0.40 Microeukaryotes Archaeplastida g_Chlorophyceae

Connectors 3 OtuB00167 X12 0.64 Bacterioplankton Actinobacteria o_Actinobacteria

Table 2. Module hubs and connectors in the species-species association networks for bacterioplankton and 

inter-kingdom community. ap_, c_, o_, f_ and g_ represent phylum, class, order, family and genus, respectively. 

MLB, Meiliang Bay; XKB, Xukou Bay. bOtuB represents the OTU in bacterioplankton network. OtuE represents 

the OTU in the microeukaryotes network. Other ID of OTUs are in line with this case.

Figure 3. Environmental eigengene networks uncovered relationships between modules (based on the MLB (a) 
and XKB (b) network) and environmental variables for bacterioplankton. Only correlations that are statistically 
signi�cant (P < 0.05) are shown. �e line thickness is proportional to the absolute value of the Spearman’s 
correlation coe�cient. Node labels stand for environmental variables or the eigengene of a module. �e red 
solid line signi�es a positive correlation, and the black line signi�es a negative correlation. Environmental 
variables: TN, total nitrogen; TP, total phosphorus; NH4, ammonia nitrogen; NO2, nitrite; DOC, dissolved 
organic carbon.
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relationships between the microbial communities and environmental factors in MLB are weaker than those in 
XKB, since niche selection in the former was weakened by reduced competition.

Conclusions
�e results of the present study demonstrated that the network structure and co-occurrence patterns were sig-
ni�cantly di�erent between the MLB and XKB regions of Taihu Lake for bacterioplankton, microeukaryotes and 
inter-kingdom community. �e properties of the obtained networks were signi�cantly di�erent from those of 
random networks, indicating that the assembly of microbial communities in these lake zones was non-random. 
�e region with lower nutrient loading (XKB), and stronger environmental �ltering e�ects, maintained a higher 
complexity for the whole network and more complex co-occurrence pattern compared with those in MLB for 
bacterioplankton and inter-kingdom community. It is also observed that the inter-kingdom interactions were 
stronger in XKB than those of MLB, whereas the networks for the two regions were comparable for microeu-
karyotes. Non-random co-occurrence of taxonomically related bacterioplankton was also observed, and OTUs 
from the same phylum tended to co-occur in both lake zones. �e relationships between microbial communities 
and environmental factors in MLB were weaker than those in XKB for bacterioplankton, microeukaryotes and 
inter-kingdom community, and environmental factors a�ected each module di�erently. �is study was limited 
in that it considered only two lake zones; a wider range of study areas will be needed to determine the impacts 
of environmental factors on the interactions among microbial communities under distinct nutrient conditions.

Materials and Methods
Sample collection, Illumina second-generation sequencing and analysis. Ten water samples were 
collected from two regions of Taihu Lake (Meiliang Bay and Xukou Bay, which represent di�erent nutrient load-
ings) in October 2015, respectively (Supplemental Table S4). Physicochemical characteristics of the water samples 
(including the salinity, temperature, oxidation reduction potential (ORP), pH, and conductivity) were measured 
in situ using a calibrated multifunction water-quality sonde (YSI 6600, Yellow Springs, OH, USA). Other environ-
mental factors (including the TN, TP, NH4

+-N, NO3
−-N, and NO2

−-N) were measured in laboratory as described 
by Zhao et al.14. �e sample used in the present study were the same as our previous study and the methods of 
DNA extraction, ampli�cation, pyrosequencing and data analysis have been described14. �e total OTU richness 
was 3247 and 2059 at 97% similarity cuto� for all the rare�ed samples for the 16S rRNA and 18S rRNA, respec-
tively. �e raw reads were deposited into the NCBI Sequence Read Archive (SRA) database (Accession Number: 
SRP090623).

The computational procedures for network construction. All samples were divided into two groups 
[Meiliang Bay (MLB) and Xukou Bay (XKB)] representing higher (MLB) and lower (XKB) nutrient loading lev-
els. To improve the network reliability, only OTUs that appeared in at least 8 samples in each group were con-
sidered63. �e relative proportions of sequence numbers were used for the following correlation analysis, since 
the sequence numbers of individual OTUs signi�cantly varied among the samples58. In each group, a correlation 
matrix was constructed according to the relative abundance of the OTUs in each sample. Both the correlation 
matrix (R matrix) and the signi�cance matrix (P matrix) were calculated using the ‘Hmsic’ package in R by calcu-
lating all possible pairwise Spearman rank correlations between all OTUs64. Only robust (Spearman correlation 
coe�cient ≥0.9 (or ≤−0.9)) and statistically signi�cant (P < 0.01) correlations were considered65. �e corre-
lation approach was justi�ed by the analysis for the sampling e�ectuated according to Weiss et al.66 and then 
improved by Q-value as described below. �e possibility of obtaining false results was reduced by calculating a 
Q-value, which represented the fraction of false positives or negatives if a given pair was identi�ed to be signi�-
cant (Q-values < 0.05), using the ‘qvalue’ package in R7. �e node degree (i.e., number of edges connected to the 
node) was plotted against the probability P(k) that a node would have that degree in the network. �ree methods 
(Power law, Exponential law and Truncated law) of power law-�tting of the degree distribution in networks in 
the two regions were applied65. �e existence of meaningful, non-random associations in the networks of the 
two regions was demonstrated by the structural similarity among these ecological networks, in comparison to a 
Gaussian connectivity distribution predicted by an expectation of randomness.

Network characterization. �e resulting correlation matrix was transformed into a Cytoscape dataset in 
R. Cytoscape v2.8.2 was then used67 for network visualization and topological analysis. Other information regard-
ing nodes (OTUs), taxonomy, module, edge, weights, and positive and negative correlations, was also imported 
into Cytoscape.

Each network was separated into modules using the fast greedy modularity optimization68. Various indexes, 
including modularity (MD), clustering coe�cient (CC), average path length (APL), network diameter (ND), 
average degree (AD) and graph density (GD), were used to describe the properties and the overall topologies or 
structures of the networks. Most of these parameters were calculated using the ‘igraph’ packages in R69. Random 
networks were also generated using the ‘igraph’ packages in R. For each network in this study, 1000 random 
networks were generated, and all of the network indexes were calculated individually. �e average and standard 
deviation for each index of all of the random networks were then obtained. �e statistical Z-test was used to test 
the signi�cance of di�erences between the indexes of the observed and random networks. Student’s t test was used 
to test the signi�cance of di�erences between the indexes of the networks in MLB and XKB for bacterioplankton, 
microeukaryotes and inter-kingdom communities.

Patterns of co-occurrence and co-exclusion. An R script was developed to check the observed (O) 
and random (R) incidences of the microbial patterns of co-occurrence and co-exclusion. �e O/R ratio has been 
used as a benchmark for checking non-random assembly patterns in complex bacterial communities17. Here, we 
calculated the observed incidence of the co-occurrence (O) of two taxa as the relative percentage of the number 
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of observed edges between them, whereas the random incidence of co-occurrence (R) was calculated as the mean 
value of the observed incidence of co-occurrence for 1000 random networks. Hence, the degree of disagreement 
between the O and R incidences of co-occurrence may be used as a benchmark for exploring non-random assem-
bly patterns in complex microbial communities51. In this study, the observed (O) and mean value of the random 
(R) incidences of co-occurrence and their signi�cance levels were calculated according to Zhao et al.3. �e R code 
for calculating the O/R has been attached in the supplementary information (Supplemental R code 1).

Topological roles of individual nodes. Visualization of the topological roles of individual nodes reveals 
the e�ects of the nutrient loading level on key microbial populations. Topologically, di�erent OTUs (nodes) play 
distinct roles in the network70. �e topological roles of di�erent OTUs can be described by two parameters: 
within-module connectivity (Zi), which describes how well a node is connected to other nodes within its own 
module, and connectivity among modules (Pi), which re�ects how well a node connects to di�erent modules69,71. 
Zi and Pi are calculated as described by Guimera and Amaral71. �e R code for calculating the Pi and Zi has been 
attached in the supplementary information (Supplemental R code 2). According to the simpli�ed classi�cation 
used in networks72, the nodes in a network are divided into four subcategories: (i) peripheral nodes (Zi ≤ 2.5, 
Pi ≤ 0.62), which have low Z and P values (i.e., they have only a few links and almost always to species within their 
modules); (ii) connectors (Zi ≤ 2.5, Pi > 0.62), which have a low Z but a high P value (i.e., these nodes are highly 
linked to several modules); (iii) module hubs (Zi > 2.5, Pi ≤ 0.62), which have a high Z but a low P value (i.e., they 
are highly connected to many species in their own modules); and (iv) network hubs (Zi > 2.5, Pi > 0.62), which 
have high Z and P values (i.e., they act as both module hubs and connectors)58,71.

Relationships between modules and environmental variables in the networks of bacterioplank-
ton and microeukaryotes in two lake zones. To investigate the relationships between the distribution of 
nodes in networks and environmental variables, environmental variables were integrated into the networks. Only 
correlations between environmental variables and species that were statistically signi�cant (P < 0.05) and strong 
(r ≥ 0.6 or r ≤ −0.6) were considered. In addition, to quantitatively describe the relationships between modules 
and environmental variables, an eigengene network analysis was performed. In this approach, each module was 
decomposed into a single representative abundance pro�le called the module eigengene. �e molecular ecological 
network consisted of many nodes and edges. It was di�cult to retrieve information intuitively, but the network 
could be simpli�ed using various methods, such as module partitioning. Modules can be treated as single units for 
biologically motivated data reduction73. First, all of the nodes in module i were selected, and their eigengene values 
were calculated using the ‘WGCNA’ packages in R74. Second, the Spearman correlations were calculated between 
each eigengene and the environmental variables3. �e calculations were performed as described by Zhao et al.3.
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