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Abstract The immune response in the brain has been widely
investigated and while many studies have focused on the
proinflammatory cytotoxic response, the brain’s innate im-
mune system demonstrates significant heterogeneity. Micro-
glia, like other tissue macrophages, participate in repair and
resolution processes after infection or injury to restore normal
tissue homeostasis. This review examines the mechanisms
that lead to reduction of self-toxicity and to repair and
restructuring of the damaged extracellular matrix in the brain.
Part of the resolution process involves switching macrophage
functional activation to include reduction of proinflammatory
mediators, increased production and release of anti-
inflammatory cytokines, and production of cytoactive factors
involved in repair and reconstruction of the damaged brain.
Two partially overlapping and complimentary functional
macrophage states have been identified and are called
alternative activation and acquired deactivation. The immu-
nosuppressive and repair processes of each of these states and
how alternative activation and acquired deactivation partici-
pate in chronic neuroinflammation in the brain are discussed.
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Introduction

The innate immune response in the brain has been extensively
studied for a number of years and its unique responses to

injury and infection have been well described. Many of the
published studies have focused on the ability of activated
microglia, the brain-specific tissue macrophage, to initiate
bystander injury by producing and releasing multiple cytoac-
tive factors. Since the brain is known to have limited
neuroregenerative potential, the loss of postmitotic neurons
through immune-mediated toxicity can have wide impact
throughout the body. In the past 10 years, studies on
macrophage function in peripheral tissues such as the lung
and liver have led the way to a renewed appreciation of
macrophage functional heterogeneity. After the initial “toxic”
phase of an innate immune response, immune-activated
macrophages orchestrate repair, reconstruction, and resolution
of tissue injury. This review will discuss the functional
phenotypes that underlie these equally important aspects of
macrophage function and the application of these concepts to
central nervous system (CNS) injury and recovery after injury.
The role of macrophage functional heterogeneity in chronic
inflammation of the brain, and in particular Alzheimer’s
disease (AD) will also be discussed.

Initiation of a tissue immune response

The body initiates an innate immune response when it
sustains nonsterile damage through exposure to toxins or
pathogens or sterile damage such as mechanical injury,
radiation, or autoimmunity. This response to injury is
inherent, preprogrammed, and characteristic of specific
immune cells within particular tissues. In the brain, the
primary cells in the innate immune response are microglia,
although astrocytes and neurons may also play an immune
role (Streit and Kincaid-Colton 1995). Like macrophages
elsewhere in the body, microglia recognize pathogens via
pattern recognition receptors (PRRs) that include specific
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toll-like receptors (TLRs), nucleotide-binding oligomeriza-
tion domain (NOD) proteins, and non-TLR receptors (e.g.,
C-type lectin receptors). These membrane and cytosolic
receptors interact with classes of pathogen-associated
molecular patterns (PAMPs) or with damage-associated
molecular patterns (DAMPs) in the environment to initiate
cellular defense mechanisms (Han and Ulevitch 2005;
Rubartelli and Lotze 2007; Serhan and Levy 2003; Sterka
and Marriott 2006). Downstream signaling events begin
with engagement of adaptor proteins (e.g., MyD88, Trif,
TRADD/TRAF) with surface pathogen receptors. Receptor-
associated kinases are recruited to the complex and, in turn,
activate a series of additional kinases that phosphorylate
transcription factors. The subsequent induction of genes
triggers a proinflammatory phase of macrophage activation
that typically results in the expression of tumor necrosis
factor alpha (TNF-α), interleukin (IL)-1β, and IL-12
proteins as well as chemokines, proteases, and redox
proteins that help defend the tissue. Rapid reinforcement
of the initial response by the action of released cytoactive
factors from both the macrophage itself and the surrounding
cells leads to classical activation. This important macro-
phage state is characterized by involvement of interferon
gamma (IFN-γ), a cytokine that coordinates induction
signals by initiation of the “killing” phase of macrophage
function (Adams and Hamilton 1987). Well known in the
periphery as a product of T cells, IFN-γ is most likely
produced by microglia (and astrocytes) on immune stimu-
lation with PAMPs (Suzuki et al. 2005) and is also a critical
component of the brain’s innate immune response.

The tissue defense mechanism initiated by classically
activated, or M1, macrophages is clearly beneficial for
survival of the organism. However, to resolve the infection
or injury and restore normal tissue homeostasis, the innate
immune response to injury requires replacement of lost and
damaged cells and restructuring of the damaged extracellu-
lar matrix (ECM). Thus, it is not surprising that mecha-
nisms to reduce the defense response and promote repair
and resolution of the wound are components of innate
immunity. Repair and resolution do not result simply from
passive decay of the initiating signals. Reducing bacteria
levels at the wound site and increasing catabolism of
proinflammatory mediators will decrease both activation of
the pattern recognition receptors and bystander injury
caused by proinflammatory cytokines. However, wound
healing represents a second stage of the innate immune
response that generally arises from the initial immune
stimulus.

Table 1 lists mechanisms that can curb macrophage
classical activation and thus limits the proinflammatory
state. Although many of these mechanisms might be used
in the brain’s innate immune response, tissue-specific
differences are likely. For example, tissue invasion of

monocytic cells in the periphery is important for reducing
the proinflammatory signal during the second stage of the
immune response. After infiltration into injury sites, these
newly recruited macrophages phagocytose dead or dying
immune cells (van Rossum et al. 2008) then exit the tissue
via the lymphatic system and are rapidly dispersed
throughout the vasculature and eventually removed from
circulation. Removal of the proinflammatory immune cells
then allows the “injured” tissue to slowly return to its
previous state. Movement of cells and solutes from blood
vessels to the brain parenchyma across the blood–brain
barrier takes place differently than it does across peripheral
blood vessels. Under physiological conditions, the restric-
tion of paracellular flux by endothelial cell tight junctions
not only reduces solute transfer but also restricts movement
of cells, such as circulating monocytes and lymphocytes,
across the blood–brain barrier (Abbott et al. 2006). Injury
and disease, however, may alter blood–brain barrier
function and increase peripheral cell invasion (Soulet and
Rivest 2008). Despite cerebral ischemia that is known to
damage the blood–brain barrier, Denker et al. (2007) and
Schilling et al. (2005) have independently shown that
resident microglia and not infiltrating macrophages are the
predominant cell type at the ischemic injury site. Other
entry sites for blood-borne cells such as the choroid plexus,
however, may also be a factor during brain injury (Reboldi
et al. 2009). One point of caution, recent studies by Mildner
et al. (2007) and Ajami et al. (2007) have shown that the
techniques commonly used to study this phenomenon can
be flawed, making interpretation of disparate data more

Table 1 General mechanisms that promote resolution of an innate
immune response to injury or infection

Reduction in pathogen load

Catabolism of proinflammatory mediators

Disposal of activation immune cells

Apoptosis of macrophages

Clearance via lymphatic drainage or vasculature

Negative feedback control over activation pathways

Loss of TLR/other receptors

Ubiquitination and degradation

Decreased expression

Activity of negative regulatory proteins

Proteins tyrosine phosphatase family (CD45, PTEN, SHIP)

Inducible suppressions of cytokine signaling (SOCS)

NF-κB pathway inhibitors (A20, IKK phosphorylation)

Decoy and soluble receptors/ligands

Micro-RNAs

Neuronal factors (acetylcholine, NPY, norepinephrine)

Altered regulation of macrophage functional phenotype

Alternative activation

Acquired deactivation
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difficult. More detail on this highly controversial area of
research is provided in several excellent reviews (Pachter
et al. 2003; Soulet and Rivest 2008; Villoslada et al. 2008;
Schwartz et al. 2009).

Likewise, phagocytic macrophages are unlikely to exit
the brain parenchyma via the lymphatic system. The limited
permeability of the blood–brain barrier reduces the tissue
pressure that favors fluid movement into the brain paren-
chyma. This situation contrasts with that of the periphery,
where bulk flow moves substantial amounts of fluid across
capillaries into tissues, and excess fluid gets removed via
lymphatic drainage and replaced into the vasculature. The
brain not only lacks a defined lymphatic system but has
very low levels of protein in the interstitial fluid, thus
limiting fluid movement into the brain (Abbott 2004;
Boulton et al. 1998; Weller et al. 2008). Drainage of some
brain interstitial fluid does occur in the perivascular spaces
between blood vessel walls and brain parenchyma (Carare
et al. 2008; Weller et al. 2008). This drainage depends on
cardiac output and allows fluid to exit the brain along the
surface of the basement membranes of the arterial system.
Proteins injected into the cerebral spinal fluid (CSF) of the
lateral ventricles also find their way out of the brain via
lymphatic drainage. Boulton et al. (1996) have shown that
ligating cervical and thoracic lymph nodes reduced
appearance of the protein tracer in the blood. Clearly,
interconnecting pathways between the CSF and lymph exist.
While soluble proteins may enter circulating blood via this
system, removal of macrophagic cells from the brain is
unlikely (Carare et al. 2008). Thus, reducing proinflammatory
microglia by apoptosis and engulfment via newly recruited
monocytes are unlikely to be important mechanisms for
inactivating the innate immune response in the brain.

Downregulation of classical activation: feedback
reduction of signaling pathways

Classical activation is also reduced in macrophages by
inherent feedback signals that regulate specific steps in the
activation process (Table 1). In some cases, these regulatory
proteins are made when the surface pattern recognition
receptors are activated, or they may be constitutively
expressed in the immune cell (Han and Ulevitch 2005;
Serhan and Levy 2003; Ulevitch et al. 2004). For example,
production of TRIAD3, which mediates ubiquitination and
subsequent degradation of TLRs, reduces TLR levels on
surface membranes (Chuang and Ulevitch 2004). Respon-
siveness of the immune cell to pathogens drops accordingly.
Competition between functional and nonfunctional adaptor
proteins such as MyD88 and a splice variant of MyD88
(MyD88s) has been shown to reduce TLR signaling, while
adaptor proteins such as Toll inhibitor protein, which

sequester a corresponding signaling protein, also down-
regulate proinflammatory signaling pathways (Zhang and
Ghosh 2002). Suppressor of cytokine signaling proteins is
an additional family of regulatory proteins that depress
the IFN-γ activation pathway at multiple points (see
review by Baetz et al. 2004). Interestingly, CD45, a
marker commonly used to identify “activated” microglia
in the brain, is a protein tyrosine phosphatase that inhibits
JAK family kinases (Townsend et al. 2004). Activation of
the CD45 phosphatase by cross-linking with an anti-CD45
antibody reduces lipopolysaccharide (LPS)-mediated
proinflammatory signaling in microglia (Tan et al. 2000).
However, studies with CD45 knockout mice have revealed
more complex actions of the tyrosine phosphatase that
may include sustaining inflammation under some circum-
stances by “resetting” kinases via removal of phosphate
groups (Abbas et al. 2002).

Recently, noncoding RNA oligonucleotides (microRNA
or miRNA) have been shown to regulate gene expression
by binding to 3′ untranslated regions of specific target
genes (Tili et al. 2007; Valencia-Sanchez et al. 2006).
Microarray analysis has detected significantly increased
expression of at least three miRNAs when macrophages are
stimulated with TNF-α, Poly I:C, or LPS (O’Connell et al.
2007). One of these, miR 146, has been shown to reduce
expression of TRAF6 and other proteins involved in
nuclear factor (NF)-κB signaling and to reduce the
production and release of NF-κB -regulated cytokines.
Though their mechanism of action is not yet clear, miRNAs
provide an interesting means to alter the extent and timing
of the proinflammatory phase of the innate immune
response (Tili et al. 2007).

Once proinflammatory mediators are produced and re-
leased into the extracellular environment, their effectiveness
and bioavailability can be altered to reduce the proinflamma-
tory response. For example, the IL-1 receptor family has
specific decoy receptors, expressed on the macrophage
surface or secreted into the local environment, that reduce
autocrine or paracrine feedback stimulation of the cells. In
macrophages, exposure to LPS or IL-1 upregulates levels of
IL-1RII, a nonfunctional receptor for IL-1α and IL-1β that
binds IL-1 but fails to trigger intracellular signaling (Han and
Ulevitch 2005;Pousset et al. 2001). IL-1RII exists in
membrane-bound and secreted forms, and recent data
suggest that alpha- (BACE1), beta- (BACE2), and gamma-
secretase activity contributes to production of the soluble
form (Kuhn et al. 2007). Garlind et al. (1999) have shown
that soluble IL-1RII levels are increased in the CSF of AD
patients compared to age-matched control individuals. IL
receptor antagonist (IL-1Ra) is a soluble nonfunctional
ligand of the IL-1 receptor family that also reduces IL-
1-mediated proinflammatory signaling (Pousset et al. 2001).
In addition, soluble receptors for other cytokines such as
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IL-6 and TNF-α are shed to the extracellular matrix where
they compete with the functional membrane receptor for
cytokine binding and effectively reduce cell signaling (Han
and Ulevitch 2005; Kariko et al. 2004; Pousset et al. 2001;
Serhan and Levy 2003).

Repair and resolution: changing the macrophage
activation state

A powerful way to stop the “killing” phase of classically
activated macrophages and to restore tissue homeostasis
after injury is to change the macrophage activation state
away from a proinflammatory gene profile to a gene profile
that supports repair and tissue reconstruction. The switch to
an alternatively activated state is induced by multiple
factors, including cytoactive agents released during the
classical response and/or by TH2 regulatory cells recruited
to the injury site. Anti-inflammatory cytokines are the
predominant induction signal (Hamilton et al. 1999;
Martinez et al. 2008; Sandler et al. 2003; Scotton et al.
2005). Derived primarily from studies in peripheral tissues,
four major anti-inflammatory cytokines have been identi-
fied: IL-4, IL-13, IL-10, and TGF-β (Bogdan et al. 1991;
Hamilton et al. 1999; Gordon and Taylor 2005; Martinez
et al. 2008; Mills et al. 2000). Stimulation of peripheral
macrophages with IL-4, IL-13, IL-10, or TGF-β antago-
nizes classical activation pathways and induces new genes
and proteins involved specifically in tissue repair and
reconstruction. Other cytoactive factors, such as glucocorti-
coids and type 1 interferons (interferon alpha; interferon
beta), also suppress proinflammatory gene induction. While
much is known about the source of anti-inflammatory
cytokines that initiate repair and resolution in the periphery,
less is known in the CNS. TH2 regulatory cells may not be
the common source. Instead, IL-4, IL-13, TGF-β, and
IL-10 are each produced within the brain and are released
by either microglia, astrocytes, or, in some cases, neurons
(Brodie et al. 1998; Finch et al. 1993; Glezer et al. 2007;
Grommes et al. 2008; Ledeboer et al. 2000; Morgan et al.
1993; Shin et al. 2004; Suzuki et al. 2005; Szczepanik et al.
2001). The signal for their production is thought to be the
original pathogens and/or secondary factors secreted as a
result of paracrine or autocrine activity. However, particu-
larly for IL-4 and IL-13 (Ponomarev et al. 2007),
messenger RNA (mRNA) and protein levels are highly
variable and they may be found only under specific types of
induction. Expression levels may also vary depending on
brain region. For example, microglia around the cerebro-
vasculature (perivascular microglia) may be exposed to
higher levels of IL-4 or IL-10 from encounters with
activated T cells or regulatory T cells that have traversed
the blood–brain barrier to enter the brain parenchyma

around the blood vessels (Perry et al. 2007; Schwartz et al.
2009; Tiemessen et al. 2007; Villoslada et al. 2008).

To distinguish the “repair/resolution” state of macro-
phages from the “killing” phase associated with classical
activation (also denoted as caΦ or M1 macrophages), the
term alternative activation (or aaMac) has been recently
adapted for peripheral macrophages. The term was origi-
nally derived from the association of this macrophage state
with the TH2 adaptive immune responses and, hence, the
term M2 has also been used to describe alternatively
activated macrophages (Edwards et al. 2006; Mantovani
et al. 2002; Mills et al. 2000; Mosser 2003). However,
recent studies have suggested that applying a single
nomenclature to macrophages exhibiting repair activation
states does not adequately describe the differences between
macrophages with this general functional phenotype. To
partially remedy this problem, Simon Gordon (2003;
Gordon and Taylor 2005) has proposed to restrict the use
of “alternative activation” to describe macrophages exposed
primarily to IL-4 or IL-13. Accordingly, a third subtype of
macrophage activation has been identified and has been
termed “acquired deactivation” by Gordon (2003; Gordon
and Taylor, 2005). The acquired deactivation subtype
incorporates a mixed-phenotype population that exhibits
immunosuppression and is associated with uptake of
apoptotic cells. Acquired deactivation is distinguished from
alternative activation by the type of induction agents and by
the functional changes associated with induction. In this
case, IL-10 by itself or in addition to TGF-β initiates cell
signaling pathways that result in the inhibition of proin-
flammatory cytokine production, increased expression of
scavenger receptors and further increased IL-10 production.
In addition, major histocompatibility complex (MHC) class
II antigens and their costimulatory proteins are suppressed,
making this macrophage subtype less effective at presenting
antigen to invading T cells (Gordon 2003; Williams et al.
1996). The signaling mechanisms for IL-10 require STAT3
and, for TGF-ß, Smad (Li et al. 2006; Ricchetti et al. 2004;
Williams et al. 2007). Acquired deactivation can also be
induced by the phagocytosis of apoptotic cells, which is
known to increase production of TGF-ß and IL-10 (Freire-de-
Lima et al. 2006; Gregory and Devitt 2004; Griffiths et al.
2009; Li et al. 2006). Although the above definitions of
alternative activation are not universally accepted, Table 2
provides known characteristics of each macrophage pheno-
type including induction agents, functions, and key genes
mediating those effects.

Alternative activation

Alternatively activated macrophages (aaMac) are character-
ized both by the absence and by the presence of specific
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genes whose expression levels change during the switch
from a proinflammatory to an anti-inflammatory state after
injury or infection. The cellular mechanisms that govern
this switching process are currently unknown, and redun-
dant mechanisms are likely, thus ensuring that resolution
and repair occurs. Interestingly, many parasitic organisms
have subverted alternative activation as a means to enhance
their survival within cells or tissues (Noel et al. 2004; Raes
et al. 2007; Vincendeau et al. 2003; Wynn et al. 2004).
Compared to classically activated macrophages, alterna-
tively activated macrophages do not express high levels of
proinflammatory cytokines. Instead, NOS2, IL-12, IL-1β,
IL-6, and TNF-α mRNA and protein levels in LPS-
stimulated microglia and mixed glial cultures are sup-
pressed by IL-4 and IL-13 (Colton et al. 2006a; Kitamura
et al. 2000; Ledeboer et al. 2000; Lee et al. 2002; Lyons
et al. 2007b; Ponomarev et al. 2007). In general, either IL-
13 or IL-4 stimulation of macrophages results in a similar
gene profile. Scotton et al. (2005) have provided a detailed
analysis of gene expression in IL-13-treated human mono-
cytes. Although their signaling pathways diverge, IL-13
and IL-4 share the IL-4 receptor α subchain (IL-4Rα).
Upon binding to the receptor, IL-13 or IL-4 activates the
JAK1 kinase, resulting in phosphorylation of the IL-4Rα
cytoplasmic tail. STAT6 is then recruited to the receptor
where it is phosphorylated and subsequently translocates to
the nucleus (Scotton et al. 2005). Like other STAT
proteins, STAT6 binds DNA and can rapidly transduce
membrane signals to gene induction during inflamma-
tion. The importance of STAT6 to the gene switch is
shown in studies on knockout mice where the genetic
removal of STAT6 results in lost responsiveness to IL-4
or IL-13 and failure to induce the alternative activation
state (Pfitzner et al. 2004; Zhu et al. 2001).

Again, the majority of studies on IL-4 and IL-13’s action
on macrophage functional states have used peripheral
macrophages while IL-4- and IL-13-mediated responses in
the brain have not been widely investigated and remain
poorly understood. IL-4 receptors are found on microglia
and astrocytes and are expressed at high density on multiple
types of glial tumors (Kawakami et al. 2001). IL-13
receptors are found in rat and human brain, suggesting that
IL-13 signaling is also observed in the brain (Lee et al.
2002; Wu et al. 2008). Our laboratory has shown that
microglia demonstrate an anti-inflammatory alternative
activation phenotype when stimulated with IL-4 or IL-13.
Treatment of IFN-γ-activated BV2 microglia or primary
mouse microglia in culture with IL-4 or IL-13 significantly
reduced NOS2 and TNF-α mRNA expression. Repair
genes, in contrast, were increased. IL-4 or IL-13 treatment
of microglia resulted in increased mRNA expression of
arginase 1 (AG1), mannose receptor (MRC1), found in
inflammatory zone 1 (FIZZ1), and Ym1 (Colton et al.
2006a; Lyons et al. 2007a). In addition, treatment with Aβ
peptides plus IL-4 increased microglial expression of AG1
by approximately 70% compared to IL-4 alone, suggesting
that Aβ may directly regulate some components of
alternative activation. Using Aβ peptides as the immune
stimulus, Lyons et al. (2007a) and Lee et al. (2002) have
shown that IL-4 reduces Aβ-mediated proinflammatory
gene expression in microglia in vitro and in vivo.

Just as proinflammatory genes are downregulated,
specific cytokine and growth factor genes are upregulated
in IL-4-treated macrophages. Increased mRNA expression
is found for IL-10, TGF-β, CD23 (the low-affinity IgE
receptor, FcεRII), insulin growth factor 1 (IGF-1), nerve
growth factor (NGF), and peroxisome proliferation activa-
tion receptor gamma (PPAR-γ; Brodie et al. 1998;

Table 2 Identifying features of microglial activation states

Activation
state

Specific
induction
agent

Primary
signaling
mediator

Identifying
antigens

Shared
antigens

General functions

Classical
activation

IFN-γ STAT1
(STAT4)

IL-12p40, MARCO TNF-α,
IL-6, IL-1b

MHCII, C-type lectins,
CAT2

Tissue defense, proinflammatory
cytokine production, NO
production

Alternative
activation

IL-4, IL-13 STAT6 MR, AG1, ym1/Chi3L1/L2,
lack of NOS2, DC-SIGN,
FIZZ1

MHCII, CD163, CD36,
C-type lectins, CAT2,
IL-1Ra

Tissue repair, anti-inflammatory
cytokine production, fibrosis,
ECM reconstruction

Acquired
deactivation

TGF-β, IL-
10, apoptotic
cells

STAT3
SMAD

sphk-1/2 IL-4Rα, high IL-10,
SOCS3, CCL18

CD163, CD36, C-type
lectins, low MHCII, IL-
1Ra

Immunosuppression, oxLDL and
apoptotic cell uptake

IFN-γ interferon γ, IL-12p40 interleukin 12 p40 subunit, TNF-α tumor necrosis factor α, IL-6 interleukin 6, IL-1β interleukin 1β, MHCII major
histocompatibility antigen II, CAT2 cationic amino acid transporter 2, NOS2 nitric oxide synthase 2, NO nitric oxide, TGF-β transforming growth
factor β, IL-10 interleukin 10, sphk sphingosine kinase, IL-4Rα interleukin 4 receptor α, SOCS3 suppressor of cytokine signaling 3, CCL-18
chemokine 18, IL-1Ra interleukin 1 receptor antagonist, IL-13 interleukin 13, MR mannose receptor, AG1 arginase 1, YM-1 mouse homolog
chitinase 3 like 1 (CHI3L1), DC-SIGN dendritic cell-specific intracellular adhesion molecule 3-grabbing integrin, FIZZ1 found in inflammatory
zone 1, ECM extracellular matrix, MARCO macrophage receptor with collagenous structure
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Kitamura et al. 2000; Odegaard et al. 2007; van Rossum
et al. 2008). These genes are generally associated with the
continued physiological requirements for repair and recon-
struction after injury, including adaptive immunity and
metabolism. The PPAR family contains PPAR-α, δ, and γ,
ligand-activated transcription factors whose distinct expres-
sion patterns and ligand specificities mediate different
biological functions through targeting of genes associated
with energy metabolism (Odegaard et al. 2007). PPAR-γ
upregulates expression of genes involved in high-density
lipoprotein metabolism, downregulates cholesterol esterifi-
cation, and inhibits the production of inflammatory mediators.
Although tissue-specific differences have been observed,
Odegaard et al. (2007) have recently shown that IL-4-
mediated upregulation of alternative activation genes
depends highly on PPAR-γ. Gene screens of IL-13-treated
cells have shown a threefold to fourfold increase in PPAR-γ
mRNA expression (Scotton et al. 2005). Upregulation of
IGF-1 and its insulin-like regulation of glucose during
alternative activation further couples metabolism to repair
(Rajpathak et al. 2009). Finally, IL-4 or IL-13 treatment
increases CD23 expression in human macrophages. While
CD23 deficiency leaves mice with higher circulating levels
of IgE, IL-4-induced CD23 overexpression is generally
believed to depress IgE levels and downregulate allergic-
type reactions during chronic disease (Ford et al. 2006).

Lectins and alternative activation—mannose receptor

Highly branched complex polysaccharides (e.g., mannose,
N-acetylglucosamine, or sialic acid) are frequently
expressed by pathogens such as bacteria and fungi or by
proteins such as lysosomal hydrolases released from dying
cells. These carbohydrate moieties are recognized by
specific lectin binding sites on the macrophage membrane
and, when bound, initiate signaling pathways within the
macrophage (Taylor et al. 2005b). Multiple subtypes of
lectin binding sites have been described (Taylor et al.
2005a) and include the mannose receptor (MR, MRC-1,
CD206). MR is a member of the C-type lectin family and
is not expressed on classically activated macrophages.
Instead, it is a characteristic antigen of the alternatively
activated state.

In general, binding of the macrophage MR to its ligand
initiates MR receptor cross-linking, followed by phagocy-
tosis of the ligand and activation of a typical anti-
inflammatory signaling pathway that results in decreased
IL-12 and TNF-α and increased IL-10 and IL-1Ra mRNA
and protein expression (Chieppa et al. 2003; Kerrigan and
Brown 2009; Pachter et al. 2003; Taylor et al. 2005a). MR
activation is also critical for upregulation of MHC II
expression and antigen presentation and helps to link innate

and adaptive immunity. Interestingly, Linehan et al. (1999,
2003) and Galea et al. (2005) have shown that MR
expression in the brain is found primarily on perivascular
microglia, a subtype of brain macrophages long known to
have unique characteristics (Perry and Gordon 1988). Their
location at the brain–vasculature interface implies that
enhancement of antigen presentation by MR activation at
this site may be important in brain disease. This location is
likely to be more accessible to T-regulatory cells or other
cells associated with the adaptive immune response (Soulet
and Rivest 2008). That perivascular microglia also express
high levels of CD163 (Fabriek et al. 2005), the membrane
scavenger receptor associated with uptake of hemoglobin/
haptoglobin complexes, also supports a role for this type of
microglia in brain disease, as it suggests that these cells
may be exposed to hemoglobin leaked from blood during
microhemorrhage. CD163 expression is increased by IL-10
(Fabriek et al. 2005; Schaer et al. 2002). Both MR and
CD163 are cleaved by metalloproteases and shed from the
surface membrane, which could make it difficult to see
changes in expression levels using immunocytochemistry,
particularly in disease states where levels of matrix metal-
lopeptidase 9 and other collagenases are increased.

Other lectins such as dectin 1 and 2 and DC-SIGN also
play important roles in macrophage activation (Kerrigan
and Brown 2009; Taylor et al. 2005c). The polysaccharide
ligands for these receptors are highly varied but can be
found in most tissues. For example, Lewis X trisaccharides,
a component of the lacto-N-fucopentose III glycan from
parasites such as Schistosoma, are extremely potent
inducers of alternative activation in macrophages (Atochina
et al. 2008). Similar glycan moieties are found in brain
fucolipids, which are glycosphingolipids containing fucose
(Taketomi et al. 1984). Chitin, an N-acetyl-B glucosamine-
based component of molting worms and insect exoskeletons,
initiates alternative activation of lung macrophages (Reese
et al. 2007) and accumulates around brain amyloid deposits
(Castellani et al. 2005; Sotgiu et al. 2008). Proteins
associated with chitin degradation (chitinase 3 like 1; see
below) are also upregulated in AD, but their role in the brain
remains largely unknown.

Of the many lectins found in the brain, dectin 1 is
particularly interesting because of its regulation by IL-4 and
IL-13. Dectin 1 was originally described as a dendritic cell
receptor but more recently has been found on membranes
of tissue macrophages, including microglia (Shah et al.
2008; Taylor et al. 2005c; Willment et al. 2003). In contrast,
dectin 2 is primarily found on dendritic cells and some
peripheral macrophages but not on brain microglia (Taylor
et al. 2005c). Similar to MR, dectins are a subtype of
C-type lectins and bind to beta 1,3 glucan, chitin, mannan
residues, and zymosan—pathogen moieties that are com-
monly associated with fungi, including yeast. Dectin 1
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mRNA and protein expressions on peripheral macrophages
are increased by treatment with IL-4 or IL-13 (Willment
et al. 2003). However, instead of a downregulatory
response typical of IL-4 stimulation, dectin 1 activation
by IL-4 leads to TNF-α production and a subsequent
proinflammatory secretory response that includes NADPH
oxidase-mediated production of superoxide anions (Shah
et al. 2008; Underhill 2007). On the other hand, beta-glucan-
mediated activation of dectin 1 on microglia produced an
abbreviated response without proinflammatory cytokine and
chemokine secretion (Shah et al. 2008), although production
of superoxide anion was still observed. It is not yet clear why
or how dectin 1 stimulation produces these tissue-specific
effects.

Arginase–NOS2 balance in alternative activation

Increased arginase The pattern of gene induction in
alternatively activated macrophages clearly indicates that
repair is a major function of this macrophage state. For
example, expression of arginase I (AG) is selectively
increased in aaMacs and can be used as a distinguishing
feature of alternative activation. Arginine is utilized in
multiple enzymatic pathways whose differential activation
in tissues throughout the body provides a cell-specific
system for arginine metabolism (Fig. 1; Morris 2004a, b,
2007). In the brain, the primary enzymes that require
arginine as the sole substrate are arginase and NOS,
although arginine is also used to produce agmatine via
arginine decarboxylase and for protein synthesis. The
enzymatic action of NOS to produce citrulline and NO
from the oxidation of arginine is now well-known (Marletta
1994; Moncada and Higgs 1991), and all three enzymes
that produce NO are found in the brain (Wiesinger 2001).
Arginase expression and activity in the brain are less well
known. Two isoforms of arginase are found: arginase I, an

inducible cytoplasmic form; and arginase II, a constitutively
expressed isoform believed to be localized to mitochondria
(Braissant et al. 1999; Cederbaum et al. 2004; Salimuddin
et al. 1999; Yu et al. 2001, 2003). Arginase I is robustly
expressed in the cerebellum, pons, medulla, and spinal cord
with lower expression in the hippocampus and the
entorhinal and temporal cortices, whereas arginase II
appears to be expressed throughout the brain at a low level
(Yu et al. 2003). The enzymatic product of both the
cytosolic and mitochondrial forms of arginase is ornithine.
In mitochondria, ornithine is metabolized by ornithine
aminotransferase and contributes to glutamate, proline,
and hydroxyproline formation. Hydroxyproline is an
essential component of collagen synthesis. In peripheral
tissues, collagen is a major component of ECM that helps
to physically strengthen the tissue but is also used for repair
at sites of injury. However, as discussed in more detail
below, collagen is not a dominant feature of the ECM in the
brain, as it is only found around the cerebrovasculature
(Busch and Silver 2007).

Arginase-induced ornithine production also leads to
increased polyamine levels. Polyamines (putrescine, sper-
midine, and spermine) are multivalent cations essential for
cell proliferation and differentiation (Thomas and Thomas
2001; Wallace et al. 1981; Wallace et al. 2003). For
example, polyamines interact with DNA to promote
stabilization and condensation and, consequently, cell
proliferation (Thomas and Thomas 2001). While general-
ized cell proliferation is not a major factor in brain repair
due to the postmitotic state of mature neurons, altered
neurogenesis in specific proliferative areas of the brain
contribute to the replacement of neurons. Polyamines have
recently been shown to stimulate neuronal progenitor
proliferation in the subgranular zone of the dentate gyrus
and subventricular zone (Malaterre et al. 2004). Finally,
spermine can help protect neurons injured by exposure to
proinflammatory cytokines by blocking NMDA channels

Fig. 1 Arginase–NOS2 balance.
Arginine is taken up by arginine
transporters where it is used by
both arginase 1 and nitric oxide
synthase. Arginase pathways
produce polyamines and ECM
while NOS pathways produce
N-hydroxy arginine (an inhibitor
of arginase (N-OH-arg)), nitric
oxide (NO), and citrulline
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and/or altering GluR1 and potassium (K) channel function
(Williams 1997).

Decreased NOS2 Macrophages and other cell types (neu-
rons, endothelial cells, astrocytes) that coexpress NOS and
arginase demonstrate a reciprocal relationship between NO
production and ornithine production during the innate
immune response. The inverse association of arginase and
NOS is based on the requirement of these two enzyme
systems for arginine, the sole substrate of each enzyme
(Morris et al. 1998; Morris 2004b). Essentially, NOS and
arginase compete for available intracellular arginine. While
this does not seem likely based on Km values for the two
enzymes (Km NOS=3–10 μM; Km arginase=3–10 mM),
the time course of induction and the 1,500-fold greater
Vmax of arginase gives ornithine formation an advantage
over NO production. Thus, NO levels fall when arginase
activity is high. Alternative activation is also characterized
by IL-4- or IL-13-mediated reduction of NOS2 mRNA and
protein expression. Since NO-mediated nitrosylation, nitro-
sation, and nitration of bacterial proteins is an efficient way
to kill bacteria (Ogawa et al. 2001; Ren et al. 2008), loss of
NOS2 and NO reduces the effectiveness of the innate immune
response against bacteria and virus. However, NOS2 suppres-
sion and reduced NO production also limit self-damage
(bystander injury) caused by high localized levels of NO and
reactive nitrogen oxygen species (N2O3, NO2, ONOO−).
This action of NO is now well described and includes
induction of P53, damage to mitochondria, and oxidative and
nitrosative damage to multiple cell proteins (Ridnour et al.
2004; Thomas et al. 2008; Wink et al. 1996).

Despite the loss of NOS activity, utilization of arginine
by alternatively activated macrophages continues at a high
rate. This is due, in part, to the concomitant loss of an
endogenous inhibitor that regulates arginase activity, N-
OH-arginine, which is formed by an early oxidation step in
the conversion of arginine to citrulline (Buga et al. 1996;
Morris 2007; Fig. 1). In addition, cationic amino acid
transporters in the macrophage membrane that supply cells
with intracellular arginine are increased in number and
activity by LPS stimulation (Closs et al. 2006). Cationic
amino acid transporter 2 (CAT2; SLC7A2) expression is
significantly increased in both alternatively and classically
activated macrophages (Yeramian et al. 2006a, b). CAT1
(SLC7A1), the constitutive form of the arginine-selective
transporter family, has been reported to be downregulated
by TGF-β, insulin, and glucocorticoids in some cell types
and upregulated in others (Liu and Hatzoglou 1998;
Durante et al. 2001). Both microglia and astrocytes in
culture have been shown to express both inducible and
constitutive forms of arginine transporters (Czapiga and
Colton 2003; Manner et al. 2003). Furthermore, our
laboratory has shown that arginine transport by cultured

microglia can be modified by APOE genotype, such that
arginine uptake is greater in APOE4/4 microglia compared
to microglia cultured from APOE3/3 mice (Czapiga and
Colton 2003).

Extracellular matrix and alternative activation
of microglia

Components of the ECM have the capacity to regulate the
activation state of macrophages and microglia and bind to
the same PRRs that are used by pathogens (Morwood and
Nicholson 2006). ECM is composed of three types of
proteins, which include both protein-bound and unbound
glycosaminoglycans (known as proteoglycan and hyaluron,
respectively), fibrous proteins (e.g., collagens), and proteins
that provide elasticity to the matrix (e.g., fibronectin and
elastins). The brain ECM contains all three, but the levels
of these components are different than levels found in
peripheral tissues. For example, the amount of collagen in
the brain is lower than in other tissues, and its distribution
is restricted to special locations in the adult brain that
include the basement membranes around the cerebrovascu-
lature, the dura mater, and leptomeninges (Busch and Silver
2007; Galtrey and Fawcett 2007; Morwood and Nicholson
2006). The most abundant proteins in the brain’s ECM are
GAGs, particularly hyaluronan, which is composed of a
protein core with repeating units of disaccharides. Cross-
linked hyaluronan serves as a backbone for the perineuronal
net that surrounds neurons in specific brain regions (Galtrey
and Fawcett 2007).

Proteolytic cleavage fragments of ECM proteins serve
as ligands for PRRs and are produced during the initial
stages of injury by the action of multiple proteases,
including collagenases (also known as matrix metal-
loproteases). Although generally not considered as a
major factor in the innate immune response, ECM-based
ligands in all tissues can both upregulate and down-
regulate immune signaling (Morwood and Nicholson
2006; Taylor and Gallo 2006). Ebert et al. (2008) have
shown that treatment of BV2 or primary microglia with
varying concentrations of CSPG-DS (a disaccharide
degradation product of chondroitin sulfate proteoglycan)
blocked IFN-γ-mediated NO production and increased
phagocytosis of latex beads.

Induction of alternative activation after injury by
chondroitin-based proteoglycans may be important for
establishing repair processes. Two genes that can be used
to characterize the alternative activation state, FIZZ1 and
YM1, are associated with reconstruction of extracellular
matrix (Raes et al. 2002a, b). FIZZ1 encodes a 9.4-kDa
cysteine-rich protein that is induced by IL-4, IL-13, and IL-
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21, a newly described cytokine that shares significant
homology with IL-4 (Colton et al. 2006a; Raes et al.
2005; Stutz et al. 2003). FIZZ1 (also known as RELM-A)
is a member of a family of resistin-like molecules (RELM)
and increases collagen expression and myofibroblast
differentiation (Liu et al. 2004). It has also been linked to
an interaction between NGF and neurons in the lung, but its
role in the CNS injury response is unknown.

Ym1 (Chi3-L3) is a novel mammalian lectin that was
discovered as a secretory product of mouse peritoneal
macrophages in response to nematode infections (Hung et
al. 2002). However, multiple tissues including the brain
express Ym1 during an immune response. For example,
Ym1 expression was transiently induced in microglia over
3 days and was gone by day 6 after a stab wound (Hung et
al. 2002). Our studies have shown that Ym1 mRNA
increases in IL-4- or IL-13-stimulated BV2 cells in vitro
(Colton et al. 2006a). The functions of Ym1 are not well
known but are believed to involve its ability to bind heparin
sulfate. Heparin sulfate serves as a docking site for growth
factors in the ECM and is degraded by heparinases during
inflammation. By binding to heparin, Ym1 is believed to
slow the loss of growth factors that may be required for
rebuilding of the tissue (Raes et al. 2002a). Direct human
homologs have not been identified for Ym1, but two
closely related genes, CHI3L1 and CHI3L2, are found in
human tissues including the brain (Colton et al. 2006a;
Rehli et al. 1997). CHI3L1 (also known as HC-gp 39 or
YKL-40) and its close homolog, CHI3L2 (YKL-39), are
members of a large family of human chitinases that are
nonhydrolytic and thus do not function as enzymes (Rehli
et al. 1997). CHI3L1 and 2 are produced by macrophages
and are induced during an alternative activation state where
they are believed to participate in reconstruction of ECM
(Recklies et al. 2002). In brain, CHI3L1 is a characteristic
marker of glioblastoma (Junker et al. 2005), suggesting that
glial tumors, similar to some cancers in the periphery, may
be associated with alternatively activated macrophages.

Alternative activation and phagocytosis

IL-4 and IL-13 regulate macrophage phagocytosis but can
result in either increased or decreased uptake depending on
the profile of “phagocytic” receptors expressed on the
macrophage membrane. For example, FcRI, FcRII, and
CD163 expression levels are reduced by IL-4 while MR,
complement receptor 3, and dectin 1 are increased (Gordon
2003; Nimmerjahn and Ravetch 2006;Schaer et al. 2002;
Willment et al. 2003). Costimulatory factors also affect the
level of phagocytosis observed in alternatively activated
macrophages. Gratchev et al. (2005) have shown that IL-4-
treated peripheral macrophages increase phagocytosis of

latex beads compared to IFN-γ treatment, which does not
promote phagocytosis. However, IL-4 in combination with
other cytoactive factors such as colony-stimulating factor
(CSF) or glucocorticoids (dexamethasone) reduces particle
uptake (Gratchev et al. 2005; Leidi et al. 2009). The
reduction of phagocytosis when IL-4 and dexamethasone
are both present is surprising since glucocorticoids dramat-
ically increase phagocytosis. Thus, IL-4 can apparently
bypass glucocorticoid’s actions on phagocytosis. While the
mechanism of this process is unknown, it may involve IL-
4-mediated suppression of specific phagocytic receptors.
Glucocorticoid-mediated stimulation of phagocytosis is
due, in part, to increased expression of MARCO, a
scavenger receptor from the SR-A family (Taylor et al.
2005b). Although constitutive expression has been found in
some tissues, MARCO is also highly upregulated by
activation of TLRs and by treatment with IFN-γ and is
thus associated with classical activation. Simultaneous
treatment of IL-4 plus dexamethasone reduced MARCO
expression but not back to the levels observed in macro-
phages treated with IL-4 alone (Gratchev et al. 2005).
Equivalent studies have not yet been done on microglia but
are extremely important to understanding how alternative
activation can affect uptake and removal of pathogens such
as amyloid deposits in the brain.

Acquired deactivation

Acquired deactivation is the second macrophage activation
state associated with an anti-inflammatory and repair
functional phenotype. Alternative activation and acquired
deactivation both downregulate innate immune responses
and, not surprisingly, demonstrate similar, but not identical,
gene profiles. As mentioned previously, many investigators
have merged alternative activation and acquired deactiva-
tion into a single category (most commonly called M2 or
alternative activation). However, the changes in macro-
phage activation state induced by IL-4 and IL-13 can be
distinguished from acquired deactivation. The most prom-
inent difference is that acquired deactivation is induced by
exposure of macrophages to apoptotic cells or to TGF-β
and/or IL-10. Specific characteristics of acquired deactiva-
tion are shown in Table 2 and, in general, shift the
macrophage activation profile to a strong immunosuppressive
state.

Uptake of apoptotic cells

Suppression of macrophages by exposure to apoptotic cells
is a well-described biological phenomenon that is observed
during development, during normal cell replacement
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throughout life, and during disease. The binding and
ingestion of apoptotic cells by macrophages have been
termed nonimmunogenic uptake, in contrast to the uptake
of pathogens such as bacteria or yeast that has been termed
immunogenic uptake. As noted by Erwig and Henson
(2007), this is a misnomer in both cases. While uptake of
pathogens via Fc receptors, complement receptors, or
lectins results in production of proinflammatory cytokines
and can be proinflammatory (i.e., “immunogenic”), patho-
gen uptake via Fc receptors can also inhibit inflammation
(Crocker et al. 2007; Hamerman and Lanier 2006; Long
2008; Underhill and Goodridge 2007; van Lookeren
Campagne et al. 2007). Likewise, the term “nonimmuno-
genic” implies a neutral or static effect on inflammation
when, in fact, apoptotic cell uptake strongly downregulates
macrophage activity. Active suppression of the innate
immune response has both beneficial effects (tissue is
preserved from self-damage) and damaging effects (the
invading organisms is not controlled) and plays an
important role in chronic diseases.

The removal of apoptotic cells in the brain is the primary
job of microglia although other cell types, most commonly
astrocytes, contribute to clearance (Griffiths et al. 2009).
While macrophages express a wide variety of receptors that
detect which dying cell is destined for uptake, cells
undergoing apoptosis signal loss of viability by a sparse
repertoire of mechanisms. As shown in Fig. 2, apoptotic
cells are primarily identified by redistribution of phospha-
tidylserine (PS) to the surface membrane and the appear-
ance of calreticulin (CRT) on the cell surface (Gardai et al.
2005; Gregory and Devitt 2004; Hume 2008; Wu et al.
2006). In some cases, complement component, C1q,
binding to membrane blebs on apoptotic cells may also
serve as a signal to phagocytes (Maderna and Godson
2003). Microglia and other macrophages express PS
receptors that bind directly to PS on the apoptotic cell and
initiate phagocytosis. Alternatively, macrophages produce

and secrete specialized linker (adaptor) proteins that are
also called opsonins. Grommes et al. (2008) have recently
described the role of one of the linker proteins, growth
arrest specific 6 (GAS-6), in microglial phagocytosis. GAS-
6 links PS on the apoptotic cell surface with the Axl/Mer
family of receptor tyrosine kinases on the microglia,
mediating uptake of apoptotic cells. Grommes showed that
simply adding GAS-6 to BV2 microglia in culture
enhanced binding of microspheres to the microglial
membrane and reduced IL-1β and NOS2 gene induction
in LPS-treated cells. Additional proteins such as milk fat
globule factor E8 (MFG-E8) may be required for the final
phagocytosis step. Fuller and Van Eldik (2008) have shown
that dominant negative forms of MFG-E8 block phagocy-
tosis, suggesting an integral role for MFG-E8 in the
multistep uptake of apoptotic neurons by microglia.
Immunosuppression has also been demonstrated in micro-
glia by Minghetti and Pocchiari (2007) who have shown
that exposure of cultured microglia to either apoptotic cells
or to phosphotidyl serine-laden liposomes decreased TNF-α
and NOS2 mRNA and their gene products. These data
demonstrate that the microglial mechanisms for uptake of
apoptotic cells are tightly linked to suppression of proin-
flammatory cytokine induction. Potential mechanisms for this
immunosuppression of macrophage function have been
reviewed by Birge and Ucker (2008).

TGF-β and IL-10 in acquired deactivation

TGF-β and IL-10 are known induction agents for acquired
deactivation and are released by multiple cell types in the
brain including astrocytes (Fadok et al. 1998; Finch et al.
1993; Pratt and McPherson 1997). Microglia are a major
source of brain TGF-β and uptake of apoptotic cells
increases the production and release of both TGF-β and
IL-10 by microglia (De Simone et al. 2004; Minghetti et al.

 

Fig. 2 Acquired deactivation
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2005). In addition to these anti-inflammatory cytokines,
treatment of microglia with apoptotic cells increases mRNA
and protein levels for prostaglandin E2, cyclooxygenase 2,
and NGF (Minghetti and Pocchiari 2007). Xiao et al.
(2008) have further shown in macrophage cell lines that
contact with apoptotic cells increases translation and
transcription of TGF-β. Both TGF-β and IL-10 inhibit
immune-stimulated IL-1β, IL-6, IL-12, IL-18, and TNF-α
production, decrease levels of chemokines, and decrease
expression of MHC II and its costimulatory proteins (Fadok
et al. 1998; Lodge and Sriram 1996; Martinez et al. 2008;
Minghetti et al. 2005; Takahashi et al. 2005; Wei and
Jonakait 1999). IL-10 and TGF-β have growth factor
properties and promote survival of neurons or other cells
via actions on Bcl2 and Bcl-XL (Finch et al. 1993; Kiefer et
al. 1995; Vivien and Ali 2006; Weis et al. 2009; Zocchia et
al. 1997). Additionally, TGF-β and IL-10 both affect the
cerebrovasculature by increasing tight junctions at the
blood–brain barrier (Oshima et al. 2001; Ronaldson et al.
2009; Wu et al. 2008). In adult mice, TGF-β knockout
leads to vascular defects and loss of brain–blood barrier
integrity (Basu et al. 2002). Makwana et al. (2007) showed
that MHCII expression and the number of perivascular
microglia significantly increased in TGF-β-deficient mice.
However, the resulting localized proinflammatory state was
not associated with increased invasion of circulating
granulocytes into the brain, suggesting that despite the
accumulation of perivascular microglia, the blood–brain
barrier had not broken down.

Although overlapping, the effects of IL-10 and TGF-β
are not identical. Exposure to IL-10 increases the expres-
sion of IL-4Rα, a receptor variant for IL-4 and IL-13, thus
increasing the sensitivity of the macrophage for these
alternative activation stimuli (Andrews et al. 2006). As a
result, the combination of IL-4 and IL-10 acts synergisti-
cally to alter macrophage function. Lang et al. (2002) have
shown that arginase 1 mRNA and protein expression by
macrophages is increased by IL-4 treatment but dramati-
cally increases more when both IL-10 and IL-4 are present
than IL-4 alone. IL-10 also helps to offset the inhibitory
effect of LPS on IL-4-mediated induction of arginase 1. IL-
10’s protective effects are mediated, in part, by heme
oxygenase 1 (HO-1; Lee and Chau 2002; Weis et al. 2009).
HO-1 catalyzes the degradation of intracellular heme-
containing proteins to produce carbon monoxide and
bilirubin/biliverdin. HO-1 activation has been shown to
provide strong antiapoptotic actions (Weis et al. 2009).
Importantly, the mechanisms by which TGF-β and IL-10
achieve immunosuppression are different. Immunosuppres-
sion by IL-10 requires STAT3 and macrophages from
STAT3-deficient mice fail to respond to IL-10 (Lang et al.
2002) while TGF-β signaling is mediated by both Smad-
dependent and Smad-independent pathways (Li et al.

2006). The signaling pathways involved in TGF-β-
mediated immunosuppression have been extensively
reviewed by Li et al. (2006) and for IL-10 by Mosser and
Zhang (2008).

Apoptotic cell uptake and sphingosine
1 phosphate kinase

Recently, sphingosine-1-phosphate (S1P) has been impli-
cated as an endogenous switch for acquired deactivation in
macrophages (Weigert et al. 2007). Sphingolipids are
ubiquitous components of membranes that can be metabo-
lized into three biologically active components, ceramide,
sphingosine, and S1P (Maceyka et al. 2002). In most cells,
the formation of ceramide or sphingosine by activated
sphingomyelinases and their accumulation within the cell is
linked to induction of apoptosis. In contrast, when ceramide
and sphingosine levels are decreased by the production of
S1P, cell growth and survival mechanisms are initiated. The
increase in S1P levels is due to increased expression and
activity of sphingosine kinase (SphK), the enzyme that
catalyzes the phosphorylation of sphingosine at the 1-OH
site. Two isoforms of SphK have been found (Sphk1;
SphK2) and both are activated by growth factors and
cytokines (Maceyka et al. 2002). Mouse macrophages
predominantly express SphK2 while human cells express
both. Weigert et al. (2007) have shown that S1P released
from apoptotic cells initiates acquired deactivation in
macrophages. This effect was not observed in SphK
knockout mice and was dependent on S1P receptors
(Hughes et al. 2008;Weigert et al. 2007). Edwards et al.
(2006) have also shown that apoptotic cells can induce
SphK production within macrophages and has identified
this gene family as a marker for the acquired deactivation
state.

Alternative activation and acquired deactivation
in neurodegenerative disease

Immunosuppressive mechanisms are used to facilitate
wound resolution and the return to tissue homeostasis in
all diseases or in tissue injury. However, abnormal
prolongation of the same immunosuppressive and repair
mechanisms is also associated with chronic disease. Wynn
et al. (2004) have defined chronic inflammation as the
coexpression of alternative activation and classical activa-
tion. This paradigm is clearly observed in some parasitic or
bacterial infections where both alternative activation and
acquired deactivation of macrophage function promote the
long-term “escape” of persistent parasites or pathogens
from immune-mediated killing. Consequently, a low-grade
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low-pathology but chronic infection is maintained (Bogdan
2008; Couper et al. 2008; Raes et al. 2007; Wynn et al.
2004). In parasitic diseases such as schistosomiasis, the
balance between classical activation and alternative activa-
tion/acquired deactivation states is of “benefit” to host and
to parasite. The host benefits from reduced self-tissue
damage caused by an exuberant proinflammatory response
against the parasite while the downregulated macrophage
response allows the parasite to survive within the host.

Similar mechanisms likely occur in chronic neurodegen-
erative diseases such as AD. In AD, the primary persistent
immune stimulus is most likely Aβ peptides, either as
monomers, oligomers, and/or fibers. While Aβ may initiate
a proinflammatory classical activation state in microglia,
binding of Aβ peptides and fibers to microglial receptors
associated with alternatively activated states, including SR-
A, CD36, CD47, integrins, and multiple lectins, may
initiate immunosuppression and repair mechanisms. A
detailed list of proteins that interact with Aβ has been
provided in the excellent review on AD by Bharadwaj et al.
(2009). In vivo, microglial responses to Aβ show an
interesting complexity that might reflect the heterogenous
state of microglial activation. For example, in a two-photon
imaging study, Meyer-Luehmann et al. (2008) observed the
rapid accumulation of microglia at newly born amyloid
plaques. However, plaque size did not change over the time
course of study in the presence of microglia. This in vivo
finding was confirmed by Bolmont et al. (2008) in mice
that coexpress mutated human amyloid precursor protein
(APP) and mutated human presenilin 1 (PS-1; also called
APP/PS1 mice). While these data do not provide a direct
view of microglial function during “activation” in response
to a plaque, the data imply that microglia prevent plaque
expansion. Also, using APP/PS1 mice, Jimenez et al.
(2008) showed that microglia surrounding amyloid plaques
in young mice (4–6 months) express some IL-1β immuno-
reactivity but do not express other typical classical
activation markers. Instead, the gene profile reflected
alternative activation since immunoreactivity for YM-1
(the mouse homolog for human chitinase 3-like-1) was
high. In addition, regional IL-4 mRNA levels increased
while IL-4 immunopositive astrocytes were observed in
similar locations. Maier et al. (2008) have also shown that
complement factor C3 regulates brain IL-4 brain levels in
mice expressing the APPsw (K670N, M671L), IN (V717F)
transgene. Collectively, these data confirm our data from
APP Tg2576 mouse brain and autopsied brain samples
from humans with AD where expression levels for genes
characteristic of alternative activation were significantly
increased in AD compared to age-matched controls (Colton
et al. 2006a). Higher levels were found for arginase 1,
chitinase 3-like 1, and chitinase 3-like 2. TNF-α mRNA
levels were also increased but IL-1β and NOS2 mRNA

levels remained unchanged compared to age-matched
normal controls. Mannose receptor increased but did not
reach significant values due to the large population
variability. (Table 3 provides a “working” list of alternative
activation and acquired deactivation genes/proteins and
corresponding antibodies that may be of use when studying
mouse models of AD.) Interestingly, IL-4 and IL-10 are
higher in CSF from humans with prion disease (Creutzfeld-
Jacob) and mice models of prion disease also show elevated
mRNA and protein levels for TGF-β, associated with
depressed levels of NOS2 and IL-1β (Cunningham et al.
2002; Perry et al. 2002; Stoeck et al. 2005).

It is not yet known if microglia can simultaneously
express receptors or other factors associated with different
activation states or if distinct microglial populations express
only alternative or only classical activation gene profiles.
Clearly, different types of pathogen-recognition receptors
including TLRs, NODs, and dectin 1 are coexpressed by
macrophages. When activated during an immune response,
these receptors work in an additive or synergistic manner to
upregulate classical activation (Underhill 2007). We also do
not know if microglial activation states are functionally
plastic. Once polarized to a specific state, can polarized
microglia respond in an appropriate manner to a new
incoming signal or to the same signal, repeated? To answer
these questions, Gratchev et al. (2006) polarized human
monocyte-derived macrophages to a classically activated
state and then switched the polarization to alternative
activation by treatment with IL-4. While the qualitative
ability to respond to the new alternative activation signal
was preserved, the quantitative response, at least in vitro,
was reduced. These interesting studies suggest that repeated
signaling or changed signaling during chronic neurodegen-
eration may produce as yet unknown downregulatory
events. Age also affects microglial polarization and func-
tion (Conde and Streit 2006). Jimenez et al. (2008) have
shown that microglia from 18-month-old APP/PS1 mice
increased expression of TNF-α mRNA and protein (clas-
sical activation) while IL-4 and Ym-1 expression (alterna-
tive activation) decreased compared to young mice. Levels
of phagocytic receptors (CD36, SRA, and RAGE) were
also decreased in old APP/PS1 mice. Finally, microglial
immune polarization may vary by brain region during
chronic neuroinflammation. Astrocytes and microglia
around brain blood vessels display unique characteristics
compared to microglia found in the brain parenchyma. For
example, MR and CD163 proteins are upregulated in
perivascular microglia, suggesting alternative activation
(Galea et al. 2005).

The simultaneous presence of multiple immune activa-
tion states in the brain during AD is consistent with chronic
inflammation and with Aβ peptides as a persistent immune
stimulus. Using chronic inflammation associated with
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parasitic infections as an analogy, polarization of microglial
function to alternative activation in AD may facilitate
amyloid deposits while fostering protection of the surround-
ing tissue from immune damage. Conversely, classical
activation may be associated with removal of Aβ. Herber
et al. (2007) have recently shown that injection of LPS into
brains of APP Tg2576 mice resulted in clearance of Aβ
from the brain. Cotreatment with LPS and dexamethasone—
to block classical activation—prevented Aβ removal. Similar
to schistosomiasis, these data strongly suggest that some level
of classical activation may be required to limit the brain levels
of Aβ, despite the risk of self-tissue damage including
neuronal death.

While demonstrating neuroinflammatory profiles remi-
niscent of humans with AD, mouse models of AD show
minimal neuronal loss even when levels of toxic Aβ
species are high (Lesne et al. 2006; Jimenez et al. 2008;
Radde et al. 2008). This puzzling observation suggests that
immune-mediated damage in amyloid-mediated chronic
neuroinflammation in mice is different from humans with

AD where neuronal damage is prominent and/or that factors
other than inflammation contribute to disease progression
from amyloid to tau pathology and to neuronal loss. Our
laboratory has now shown that disease progression in the
presence of Aβ peptides can be achieved by altering a
component of the immune environment in mice. We have
generated two different mouse models that express mutated
human APP on a mouse NOS2 knockout background, thus
altering integrated NO levels in these mice. The resultant
phenotype is highly reminiscent of AD including (1)
parenchymal and cerebrovascular amyloid deposits, (2)
hyperphosphorylated and aggregated normal mouse tau in
the somatodendritic neuronal compartment, (3) neurode-
generation and significant neuronal loss, including loss of
interneurons, and (4) robust cognitive deficits (Colton et al.
2006b; Wilcock et al. 2008). These pathologies are not seen
in NOS2−/− or APP alone, rather, it is the combination of
both that creates the AD-like pathological changes. Sup-
pression of NOS2 is also observed in alternative activation
and in acquired deactivation, both of which are found in

Table 3 Genes and antibodies used for profiling of alternative activation and acquired deactivation

Mouse
gene

RefSeq Mouse antigen Antibody

Arg1 NM_007482 Arginase 1 (A1, Arg1, liver arginase) WB-Imgenex (IMG30305); IHC-BD Biosystems
(#610709)

Arg2 NM_009705 Arginase 2 (A2, Arg2) WB-AbCam (ab21776)

Cd163 NM_053094 Hemoglobin scavenger receptor WB, IHC-Human only AbCam (ab17051); WB, IF-Santa
Cruz Biotechnology (sc-18796)

Cd209a NM_133238 DC-SIGN (dendritic cell-specific intracellular ad-
hesion molecule 3-grabbing integrin; SIGN-R1-
murine homolog)

WB-E-Biosciences (clone 5H-10, 14-2091); WB, IHC-
AbD Serotec (clone ER-TR9, MCA2394)

Chi3l3 NM_009892 Ym1 (Chitinase-3-Like-3) WB-Stem Cell Technologies (#01404)

Chia NM_023186 AMCase (acidic mammalian chitinase family) WB; IF-Santa Cruz Biotechnology (#sc49355)

CLEC7a NM_020008 Dectin-1 (C-type lectin domain family 7, member a) WB-Santa Cruz Biotechnology (clone 15Y9, sc-73897);
AbD Serotec (MCA2289T); IF-Cell Sciences (clone
2A11 HM1067)

IL1RN NM_031167 IL-1 receptor antagonist WB, ELISA-R&D Systems (AF 480NA)

Il4ra NM_001008700 Interleukin 4 receptor alpha (CD124) WB, ELISA-R&D Systems (clone 129801, mab530)

IL12p40 NM_008352 Interleukin 12 p40 WB, IF, ELISA, IHC-AbD Serotec (clone C15.6,
MCA4689)

Marco NM_010766 Macrophage receptor with collagenous structure
(MARCO)

ICH, IF-AbD Serotec (clone ED31, MCA1849)

Mrc1 Nm_008625 Mannose receptor (MR; CD206; MMR; CLEC13D) WB, IHC-AbD Serotec (MR5D3, MCA2235); WB,IHC-
AbCam (clone 15-2, ab8918)

Nos2 NM_010927 Inducible nitric oxide synthase WB, IHC-BD Biosystems (Clone 54, 610600); WB, IHC-
R&D Systems (clone 2D2-B2, mab9502)

Retnia NM_020509 Found in inflammatory zone 1 (FIZZ1) or resistin-
like molecule A (RelmA)

WB, IHC-AbCam (ab39626)

Sphk2 NM_203280 Sphingosine kinase 1/2 WB,IHC-ExAlpha (Phospho sphk1 X1882P); WB, IHC-
AbCam (Ab71700)

CD36 NM_007643 Thrombospondin receptor; type B scavenger
receptor

WB, AbCam (ab36977) WB, IF- Santa Cruz Biotech-
nology (clone H-300, sc-9154)

WB Western blot, IHC immunohistochemistry, IF immunofluorescence
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AD. Furthermore, induction of NOS2 shows strong species-
specific differences. Significant differences in the gene
promoter in human NOS2 compared to mouse NOS2 result
in the production of different NO levels by human micro-
glia or peripheral macrophages compared to rodents
(Colton et al. 1996; Ganster et al. 2001; Mestas and
Hughes 2004; Snell et al. 1997; Weinberg et al. 1995).

How reduced levels of NO synergize with Aß to promote
disease progression in these models is currently unknown,
but the effect is likely to include nonimmune actions of NO.
The role of NO in pathogen “killing” has been well
described. Less appreciated, however, are the complex
and critical roles of NO in cell signaling, cell survival, and
regulation of redox processes. One of the primary functions
of NO in any tissue is to serve as an antioxidant (Ridnour et
al. 2004; Wink et al. 1993, 2001). Reduction in the
integrated tissue levels of NO by lack of NO production,
by increased scavenging of NO, or by chemical interactions
of NO with cellular constituents promotes prooxidative
conditions. Thomas et al. (2008) have provided an elegant
study using cultured cells that clearly demonstrates this
concept. Oxidative stress is one of the immutable features
of AD and while the exact sources of oxidizing radicals are
controversial, they are likely to include activation of the
NADPH oxidase (NOX2; gp91phox, also known as the
respiratory burst oxidase) and iron- or copper-mediated
Fenton chemistry generated by the abundant redox active
metals in AD brain compared to normal individuals. Our
laboratory and others showed a number of years ago that
Aβ treatment of microglia increased superoxide anion
production (Colton et al. 2000; Van Muiswinkel et al.
1996). Recently, Wilkinson et al. (2006) have shown that
Aβ interaction with microglial membranes is mediated by
CD36, CD47, and α6β1 integrin. Formation of the cross-
linked receptor complex on the membrane initiates a
signaling pathway resulting in the production of superoxide
anion by the NADPH oxidase. Furthermore, Shimohama et
al. (2000) have shown that NADPH oxidase expression is
upregulated in AD brain. Thus, as suggested by the
APPSw/NOS2−/− and the APPSwDI/NOS2−/− mice, altered
levels of NO produced by genetic removal of NOS2, by
chronic immunosuppression and by high levels of NO
scavengers may facilitate a shift in redox state to favor
oxidative stress and to promote AD-like disease progression
in mice.

In summary, chronic neuroinflammation clearly differs
from acute inflammation in the brain and studies that focus on
short-term assessment of the proinflammatory status of the
innate immune response may provide only a partial view of
the impact of immune activity on brain function as it relates to
chronic diseases. The combination of alternative activation
states with classical activation states more closely mimics the
complexity of persistent chronic disease and suggests an

uneasy balance between the opposite poles of proinflamma-
tion and increased self-toxicity and anti-inflammation and
longer tissue survival but with maintained infection. Ideally,
understanding how to shift these states to promote successful
repair and the return to tissue homeostasis while ridding the
brain of the immune stimulus is a major goal of successful
treatment of neurodegenerative diseases.
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