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Abstract Expanding knowledge on the humoral immune
response in Staphylococcus aureus-infected patients is a
mandatory step in the development of vaccines and
immunotherapies. Here, we present novel insights into the
antibody responses following S. aureus bacteremia. Fifteen
bacteremic patients were followed extensively from diag-
nosis onwards (median 29 days, range 9–74). S. aureus
strains (median 3, range 1–6) and serial serum samples
(median 16, range 6–27) were collected. Strains were
genotyped by pulsed-field gel electrophoresis (PFGE) and
genes encoding 19 staphylococcal proteins were detected
by polymerase chain reaction (PCR). The levels of IgG,
IgA, and IgM directed to these proteins were determined
using bead-based flow cytometry. All strains isolated from
individual patients were PFGE-identical. The genes encod-
ing clumping factor (Clf) A, ClfB, and iron-responsive
surface-determinant (Isd) A were detected in all isolates.
Antigen-specific IgG levels increased more frequently than
IgA or IgM levels. In individual patients, different proteins
induced an immune response and the dynamics clearly
differed. Anti-ClfB, anti-IsdH, and anti-fibronectin-binding
protein A IgG levels increased in 7 of 13 adult patients (p<
0.05). The anti-IsdA IgG level increased in 12 patients
(initial to peak level: 1.13–10.72 fold; p<0.01). Peak level
was reached 7–37 days after diagnosis. In a bacteremic
5-day-old newborn, antistaphylococcal IgG levels declined

from diagnosis onwards. In conclusion, each bacteremic
patient develops a unique immune response directed to
different staphylococcal proteins. Therefore, vaccines
should be based on multiple components. IsdA is immu-
nogenic and, therefore, produced in nearly all bacteremic
patients. This suggests that IsdA might be a useful
component of a multivalent staphylococcal vaccine.

Introduction

Staphylococcus aureus is a leading cause of nosocomial
bloodstream infections [1]. Risk factors for these invasive
infections are intravascular catheters and nasal carriage [2].
Nasal carriers have a three- to four-fold increased risk of
acquiring a nosocomial bacteremia as compared to non-
carriers [3, 4]. Bacteremic patients can develop serious
complications, such as infective endocarditis, prosthetic
device infection, septic arthritis, deep tissue abscesses, and
vertebral osteomyelitis [5–8]. S. aureus bloodstream infec-
tions extend the length of hospital stay and increase
antibiotic usage, costs, and mortality; approximately 20–
30% of the patients die [1, 9, 10]. Worldwide, the increasing
resistance of S. aureus isolates to various antibiotics
complicates the treatment of bacteremia [11, 12]. Meanwhile,
the number of new approved antimicrobial agents has
decreased over the last several years [13]. Therefore,
alternative strategies to prevent and treat S. aureus bacter-
emia, such as vaccines and immunotherapy, are urgently
required [14]. For the development of these alternative
strategies, expanding knowledge on the humoral immune
response in S. aureus-infected patients is a mandatory step.
In this study, we generate novel insights in the antibody
responses following S. aureus bacteremia.

N. J. Verkaik (*) :H. A. Boelens :C. P. de Vogel :M. Tavakol :
L. G. M. Bode :H. A. Verbrugh :A. van Belkum :
W. J. B. van Wamel
Department of Medical Microbiology and Infectious Diseases,
Erasmus MC,
‘s Gravendijkwal 230,
3015 CE Rotterdam, The Netherlands
e-mail: n.j.verkaik@erasmusmc.nl

Eur J Clin Microbiol Infect Dis (2010) 29:509–518
DOI 10.1007/s10096-010-0888-0



Materials and methods

Patients, definitions, and setting

Fifteen patients (13 adults and two children, Table 1)
admitted to the Erasmus MC, Rotterdam, The Nether-
lands, from March to June 2008 were followed from the
diagnosis of S. aureus bacteremia until the end of hospital
stay (range 9–74 days, median 29 days). Bacteremia was
defined upon isolation of S. aureus from at least one blood
culture set. From these patients, a total of 44 methicillin-
susceptible S. aureus strains were collected for routine
culture. The median number of collected strains per
patient was 3 (range 1–6). The S. aureus strains were
isolated from blood, sites of infection, and, if applicable,
other sites. Furthermore, serial serum samples were
collected (leftover material). The median number of days
between the first positive blood culture and the first
sampling of serum was 1 day (range 0–20 days). From
each patient, at least 6 (median 16, range 6–27) serum
samples were collected, leading to a total of 232 serum
samples. The time between the first positive blood culture
and the first negative (control) blood culture ranged from
1–6 days (median 2 days; excluding one patient for whom
no additional blood culture was obtained).

Sera from four non-S. aureus bacteremic patients were
used as controls. These four patients were diagnosed with a
Klebsiella pneumoniae, Proteus mirabilis, coagulase-
negative staphylococcus (CNS), or Enterococcus faecium
bacteremia. The number of days between the first positive
blood culture and the first sample ranged from 0 to 2 days.
Per patient, 12–26 (median 16) serum samples were
collected. The follow-up time ranged from 22 to 50 days
(median 29 days).

Patients were treated with antibiotics according to
hospital guidelines under the supervision of Infectious
Disease consultants. Catheters were removed if they were
the suspected origin of the bacteremia. The Medical Ethics
Committee of the Erasmus MC, Rotterdam, The Nether-
lands, approved the study (MEC 2007-106, addendum 2).

S. aureus identification, detection of virulence genes,
and genotyping

S. aureus was identified based on colony and microscopic
morphology and Slidex Staph Plus agglutination testing
(bioMérieux). The identification of S. aureus was confirmed
by spa polymerase chain reaction (PCR) [15]. The isolates
were screened for genes encoding important staphylococcal
proteins: the microbial surface components recognizing

Table 1 Characteristics of the patients and their bacteremia

Patient no. Sex Age (years) Underlying disease Origin of S. aureus
bacteremiaa

Outcome No. of
samples

1 F 21 Kidney transplantation Catheter related Survived 27

2 M 71 B-cell non-Hodgkin lymphoma Catheter related Survived 8

3 M 21 HIV positive Pyomyositis Survived 14

4 F 74 DM II, cortisol-producing tumor
of the adrenal gland

Abscess hand
(catheter related)

Survived 26

5 M 60 DM II and cardiovascular disease Unknown Deceasedb 9

6 M 75 DM II and cardiovascular disease Diabetic foot Survived 19

7 M 63 Cardiovascular disease Osteomyelitis sternum
(after CABG)

Survived 23

8 M 69 Esophageal carcinoma Cellulitis knee Survived 7

9 M 37 Myocarditis Infected thrombus
(catheter related)

Survived 18

10 M 64 Bronchus carcinoma Unknown Survived 22

11 M 63 None Spondylodiscitis
(dental origin)

Survived 8

12 F 64 Mamma carcinoma T-cell lymphoma Catheter related Survived 16

13 F 47 IV drug abuse Hepatitis C Chronic osteomyelitis arm Deceased (MOF
by sepsis)

9

14 M 5 days Congenital disorders Infected head wound
(catheter related)

Survived 20

15 M 2 years 11 months Medulloblastoma Catheter related Deceasedb 6

M, male; F, female; DM, diabetes mellitus; CABG, coronary artery bypass graft; MOF, multiple organ failure
a The origin of the bacteremia was recorded on the medical charts by the Infectious Disease consultant
b Cause of death not related to bacteremia according to post-mortem examination
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adhesive matrix molecules (MSCRAMMs), staphylococcal
enterotoxins (SEs), and immunomodulatory proteins [16–
20]. Sequences specific for clumping factor A and B (ClfA
and ClfB), S. aureus surface protein G (SasG), iron-
responsive surface determinant A and H (IsdA and IsdH),
fibronectin-binding protein A and B (FnbpA and FnbpB),
serine-aspartate dipeptide repeat protein D and E (SdrD and
SdrE), SEA, SEB, SEI, SEM, SEO, SEQ, toxic shock
syndrome toxin (TSST-1), staphylococcal complement inhib-
itor (SCIN), extracellular fibrinogen-binding protein (Efb),

and chemotaxis inhibitory protein of S. aureus (CHIPS) were
detected. Primers for isdA (Fw, CTGCGTCAGCTAATGTA
GGA; Rv, TGGCTCTTCAGAGAAGTCAC), isdH (Fw,
TCTGCTGGTGGATACTGTTG; Rv, TGCCAGTGAGAC
TTGTATCG), sasG (Fw, GGCCACTTGGATGAGTTGGT;
Rv, CGAAGAGCCAGTGGATGATG), sdrD (Fw, CGGA
GCTGGTCAAGAAGTAT; Rv, TGCCATCTGCGTC
TGTTGTA), and efb (Fw, GAAGGATACGGTCCAAGA
GA; Rv, TGTGGACGTGCACCATATTC) were newly
designed. Other genes were detected by PCR as described

Fig. 1 Dendogram of the
pulsed-field gel electrophoresis
(PFGE) data of 44 Staphylococ-
cus aureus strains isolated from
15 bacteremic patients. Strains
isolated from individual patients
are clonally related

Eur J Clin Microbiol Infect Dis (2010) 29:509–518 511
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previously [21–26]. Furthermore, S. aureus strains were
genotyped by pulsed-field gel electrophoresis (PFGE) [27].

Measurement of antistaphylococcal antibodies

The levels of IgG, IgA, and IgM in the serum of the
patients directed against the MSCRAMMs, SEs, and
immunomodulatory proteins were quantified using a
bead-based flow cytometry technique (xMAP, Luminex
Corporation). This technique allows for the quantification
of antibodies in small serum volumes to 19 antigens
simultaneously. For IgG and IgA measurement, sera were
diluted 1:100. For IgM measurement, sera were diluted
1:25. The methods were as described previously [16, 28,
29]. Tests were performed in independent duplicates and
the median fluorescence intensity (MFI) values, reflecting
antibody levels, were averaged. In each experiment,
control beads (no protein coupled) were included to
determine non-specific antibody binding. In case of non-
specific binding, these non-specific MFI values were
subtracted from the antigen-specific results. Human
pooled serum (HPS) was used as a standard.

Statistical analysis

Statistical analyses were performed with SPSS version 15.0.
To compare the initial antibody level with the peak antibody
level, theWilcoxon matched-pairs signed-ranks test was used.
p<0.05 was considered as statistically significant.

Results

PFGE analysis

PFGE analysis was performed for all S. aureus strains
isolated. A dendogram of the PFGE data (Fig. 1) shows
the overall lack of relatedness among the strains from
different patients, with the exception of patients 4 and 5.
There was no epidemiological relationship between these
two patients. All S. aureus strains isolated from an
individual patient were genotypically indiscriminate
(>95% relatedness) and clustered in the dendogram; only
in the case of patient 9 were the PFGE patterns of the
strains slightly different.

Detection of virulence genes

Based on PCR analyses, clfA, clfB, and isdAwere ubiquitous
in all 44 isolates obtained from the 15 bacteremic patients.
scn, efb, fnbA, and isdH were detected in >90% of the
isolates. sdrD, sdrE, sasG, sei, seo, sem, chp, and fnbB were
detected in 35 (80%), 33 (75%), 30 (68%), 28 (64%), 28T
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(64%), 23 (52%), 23 (52%), and 14 (32%) of the isolates,
respectively. Less than 20% of the isolates harbored sea, seb,
seq, and tst-1. Overall, all strains isolated from a single
patient (PFGE-identical) harbored the same virulence genes,
with two exceptions. In patient 6, scn was detected only in
the strain isolated from foot tissue, but not in the strains
isolated from blood and the superficially cultured wound of
the foot. In patient 15, sasG was detected only in the strain
isolated from catheter-drawn blood, but not in the strain
isolated from peripheral blood or bone marrow (Fig. 1). An
overview of the presence of virulence genes in S. aureus
strains per patient is shown in Table 2.

Antistaphylococcal antibodies

The levels of IgG, IgA, and IgM directed to 19 S. aureus
proteins were measured from diagnosis bacteremia on-
wards. In Fig. 2, the changes in antistaphylococcal IgG,
IgA, and IgM levels after diagnosis bacteremia are shown
for one patient (patient 4). For all patients, the course of the
antibody response was determined. If there was an increase
in antibody level in the consecutive serum samples, the fold
increase from initial antibody level (as measured in the first
obtained serum sample) to peak level was calculated. An
overview for the 13 adult patients is shown in Table 2. In

each patient, increases in antistaphylococcal antibody levels
directed to different S. aureus proteins were observed.
Antibody responses were directed mainly to the immuno-
modulatory proteins and MSCRAMMs. An increase in
anti-IsdA IgG level was detectable in 12 out of 13 (92%)
adult bacteremic patients (Fig. 3; with the exception of
patient 12). Some patients showed a small decline in anti-
IsdA IgG level before the increase. The median increase
from initial to peak level was 1.71-fold (range 1.13–10.70-
fold, p<0.01). The number of days to reach anti-IsdA IgG
peak levels ranged between 7 and 37 days (median 21 days).
It appeared that patients with a site of infection other than
catheter-related (patients 6, 7, 8, 11, and 13) reached higher
levels, but the anti-IsdA IgG peak level was high in patient
2 as well (Fig. 3). In Table 3, the dynamics of the IgG
responses directed against all immunomodulatory proteins
and MSCRAMMs are summarized per S. aureus protein.

An increase in antigen-specific IgA was detected less
frequently than an increase in IgG. In 7 out of 13
patients with a gene-positive isolate, the anti-IsdA, anti-
SCIN, and anti-Efb IgA level increased. Peak levels were
reached between 6 and 34 days. In not a single patient
was a rise in anti-FnbpB, SasG, SEA, SEB, SEO, or
SEQ IgA level detected. Increases in IgM were detected
the least often out of the three antibody isotypes

Fig. 2 Course of IgG, IgA, and IgM levels directed to 19 S. aureus
proteins following bacteremia. The results are shown for patient 4.
Each bar represents a serum sample on a separate day. The time period

between the first and last serum sample is 58 days. *The
corresponding gene was not detected in the S. aureus isolate

514 Eur J Clin Microbiol Infect Dis (2010) 29:509–518



(Table 2). For patients 9 and 11, most antigen-specific
IgM levels showed a decrease.

In the two children, the antibody responses were quite
different from the antibody responses in adults. In the
5-day-old newborn (patient 14), a continuous decline in
antigen-specific (maternal) IgG for 18 out of 19 proteins
was seen from the moment of diagnosis. This could be due
to the extensive consumption of maternal antibodies in the
absence of de novo antibody synthesis (Fig. 4). The level of
IgM increased for CHIPS (isolate chp-negative), SCIN,
SasG, SdrD, SdrE, SEM, SEO, and SEQ (seq-negative).
The level of IgA was around zero. In the 2-year-old child
(patient 15), an increase was noted for IgG directed to IsdA
and CHIPS only. IgM increased for SCIN, ClfA, SdrD,

SdrE (isolate sdrD- and sdrE-negative), SEI, SEM, SEO,
and TSST-1 (tst-negative).

In the four control patients who did not suffer from an S.
aureus bacteremia, the CNS-infected patient showed a 1.2-
fold increase in anti-CHIPS IgG level (from MFI 13333 to
MFI 16002), and the K. pneumoniae-infected patient
showed a 1.4-fold increase in anti-ClfB IgG level (from
MFI 5647 to MFI 8058). Furthermore, no increases in
antistaphylococcal antibody levels were noted. This shows
that there is little inter-species cross-reactivity. However, in
the patients suffering from an S. aureus bacteremia, a rise in
antibody level while the corresponding gene was not
present in the S. aureus isolate was observed in 23 of 179
increases (12.8%; Table 2).

Fig. 3 Course of anti-IsdA IgG
levels following S. aureus
bacteremia in different adult
patients

Eur J Clin Microbiol Infect Dis (2010) 29:509–518 515



Discussion

By using multiple, longitudinally collected serum samples,
we were able to show that each bacteremic patient develops
a unique S. aureus-specific immune response after infec-
tion. In each bacteremic patient, the S. aureus proteins to
which the antibody response was directed differed and the
height and number of days to reach peak antibody level
differed. Therefore, it seems unlikely that a vaccine based
on a single staphylococcal component will be effective.
There are several possible explanations for the variability of
the antistaphylococcal immune response in bacteremic
patients. First, it may be the result of the genetic diversity
of the S. aureus strains which caused the bacteremia [30].
Secondly, the variability might be due to different staphy-
lococcal protein expression and/or selective protein recog-
nition by the immune system in different patients. By way
of illustration, although patients 4 and 5 were infected with
PFGE-identical S. aureus strains with similar virulence

genes, the antibody responses were very different (Fig. 1
and Table 2). The observed variability in antibody response
might also be caused by the difference in the time of onset
of the bacteremia, which is difficult to determine accurately
for patients with an origin of bacteremia other than catheter-
related. Finally, colonization, the number and severity of
preceding infections, the level of immunity, and the ability
to mount an immune response probably also contribute to
the development of the antistaphylococcal humoral immune
response after bacteremia [31].

Although the antistaphylococcal immune response after
infection is a unique personal characteristic, IsdA is
immunogenic and, therefore, produced by S. aureus in
nearly all bacteremic patients. IsdA interacts with and binds
to fibrinogen and fibronectin of human cells [32], and is
involved in the adherence of S. aureus to human desqua-
mated nasal epithelial cells [33]. Furthermore, IsdA is
required for nasal colonization in the cotton rat model [33].
Antibodies reactive to IsdA enhanced the killing of S.

Table 3 Dynamics of the antistaphylococcal IgG response during bacteremia

Protein No. of adult patients with
gene-positive isolates (%)

No. of adult patients with
increase in IgG level (%)

Median fold increase from
initial to peak level (range)a

Median no. of days to
reach peak level (range)a

p-valued

CHIPS 9/13 (69%) 4/9 (44%) 2.9 (1.1–41.3) 25 (11–27) −
SCIN 13/13 (100%) 5/13 (38%) 1.3 (1.1–22.5) 21 (5–42) <0.05

Efb 12/13 (92%) 6/12 (50%) 1.7 (1.5–2.1) 24 (14–44) <0.05

ClfA 13/13 (100%) 6/13 (46%) 1.9 (1.1–55.8) 19 (10–40) <0.05

ClfB 13/13 (100%) 7/13 (54%) 1.5 (1.2–13.7) 28 (11–50) <0.05

FnbpA 11/13 (85%) 7/11 (64%) 1.6 (1.4–2.0) 27 (11–42) <0.05

FnbpB 4/13 (31%) 1/4 (25%) 1.8b 23c −
IsdA 13/13 (100%) 12/13 (92%) 1.7 (1.1–10.7) 21 (7–35) <0.01

IsdH 12/13 (92%) 7/12 (58%) 4.7 (1.5–114.9) 15 (7–34) <0.05

SasG 6/13 (46%) 4/6 (67%) 2.1 (1.2–64.7) 23 (11–42) −
SdrD 10/13 (77%) 5/10 (50%) 4.7 (2.0–19.4) 22 (11–27) <0.05

SdrE 10/13 (77%) 3/10 (30%) 2.0, 2.5b 11, 21c −

a Peak IgG level was not reached for FnbpA in patient 2, FnbpA and IsdA in patient 5, Efb in patient 11, and Efb, ClfB, SdrD, and SdrE in patient
13; therefore, these data were excluded
b Absolute fold increase in IgG level
c Absolute number of days until peak level
d p-values<0.05 (by the Wilcoxon matched-pairs signed-rank test) were considered to be statistically significant

Fig. 4 Course of IgG levels directed to 19 S. aureus proteins in a 5-day-old bacteremic newborn (patient 14). Each bar represents a serum sample
on a separate day. The time period between the first and last serum sample is 32 days
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aureus by the antimicrobial peptide apolactoferrin in vitro
[34]. Since vaccines should contain multiple components
that are expressed in vivo in many, if not all, patients, it
seems that IsdA is an interesting target for inclusion in a
multicomponent vaccine [35].

In 23 of 179 (12.8%) observed increases, a rise in the
antistaphylococcal antibody level was found while the
corresponding gene was not detected in the S. aureus
isolate. Increasing anti-TSST-1, anti-SEB, and anti-FnbpB
antibody levels in the absence of tst, seb, and fnbB genes
were documented most frequently (Table 2). This might be
the result of immunological cross-reactivity. In earlier
studies, it was shown that anti-SEB cross-reacts with anti-
SEC1 [36, 37]. Furthermore, it was shown that anti-TSST-1
also has cross-inhibitory activity against SEA and SEB [38,
39]. However, the relative binding affinity was 1,000-fold
lower for SEA than for TSST-1 and, therefore, this does not
seem to be clinically relevant. Another explanation might
be that the antibodies are secreted by plasma cells that are
mobilized from their survival niche in the bone marrow by
competition with newly generated plasma blasts [40].
Knowledge on non-specific antibody binding should be
increased, however.

In summary, bacteremic patients usually carry a PFGE-
identical S. aureus strain at multiple sites. Each bacteremic
patient develops a unique immune response directed against
different S. aureus proteins. Therefore, a vaccine based on a
single antigenic component is not likely to be effective. The
surface protein IsdA is immunogenic and, therefore,
produced by S. aureus in nearly all bacteremic patients.
This suggests that IsdA might be a useful component of a
multivalent staphylococcal vaccine.
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