
 Open access Proceedings Article DOI:10.1109/IJCNN.2002.1005527

Heterogeneous adaptive systems — Source link

Włodzisław Duch, Krzysztof Grabczewski

Published on: 07 Aug 2002 - International Joint Conference on Neural Network

Topics: Decision tree, Decision tree learning, Decision tree model, Inductive bias and Time delay neural network

Related papers:

 Computational intelligence methods for rule-based data understanding

 Machine Learning: Neural and Statistical Classification

 Entropy nets: from decision trees to neural networks

 On the solution of the XOR problem using the decision tree-based neural network

 Layered neural net design through decision trees

Share this paper:

View more about this paper here: https://typeset.io/papers/heterogeneous-adaptive-systems-
366i16ay6e

https://typeset.io/
https://www.doi.org/10.1109/IJCNN.2002.1005527
https://typeset.io/papers/heterogeneous-adaptive-systems-366i16ay6e
https://typeset.io/authors/wlodzislaw-duch-3u4vajcdjh
https://typeset.io/authors/krzysztof-grabczewski-39jxk7vosa
https://typeset.io/conferences/international-joint-conference-on-neural-network-n297w0nd
https://typeset.io/topics/decision-tree-3sspb381
https://typeset.io/topics/decision-tree-learning-2ib4jme6
https://typeset.io/topics/decision-tree-model-3tlnugkk
https://typeset.io/topics/inductive-bias-2149m8x6
https://typeset.io/topics/time-delay-neural-network-1y6lsoju
https://typeset.io/papers/computational-intelligence-methods-for-rule-based-data-1q6dzcumfw
https://typeset.io/papers/machine-learning-neural-and-statistical-classification-vwd9empk7x
https://typeset.io/papers/entropy-nets-from-decision-trees-to-neural-networks-htb9blihyb
https://typeset.io/papers/on-the-solution-of-the-xor-problem-using-the-decision-tree-47urxteukt
https://typeset.io/papers/layered-neural-net-design-through-decision-trees-4507rk98p0
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/heterogeneous-adaptive-systems-366i16ay6e
https://twitter.com/intent/tweet?text=Heterogeneous%20adaptive%20systems&url=https://typeset.io/papers/heterogeneous-adaptive-systems-366i16ay6e
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/heterogeneous-adaptive-systems-366i16ay6e
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/heterogeneous-adaptive-systems-366i16ay6e
https://typeset.io/papers/heterogeneous-adaptive-systems-366i16ay6e

Heterogeneous adaptive systems.
Włodzisław Duch and Krzysztof Gra̧bczewski

Department of Informatics, Nicholas Copernicus University,

Grudzia̧dzka 5, 87-100 Toruń, Poland; www.phys.uni.torun.pl/kmk

Abstract - Most adaptive systems are homogenous, i.e. they

are built from processing elements of the same type. MLP neu-

ral networks and decision trees use nodes that partition the input

space by hyperplanes. Other types of neural networks use nodes

that provide spherical or ellipsoidal decision borders. This may

not be the best inductive bias for a given data, frequently requir-

ing large number of processing elements even in cases when sim-

ple solutions exist. In heterogeneous adaptive systems (HAS) dif-

ferent types of decision borders are used at each stage, enabling

discovery of a most appropriate bias for the data. Neural, deci-

sion tree and similarity-based systems of this sort are described

here. Results from a novel heterogeneous decision tree algorithm

are presented as an example of this approach.

I. Introduction

There is no free lunch, no single method that will achieve

the best results in all cases [1]. This is due to a different in-

ductive bias that various types of data may require. Humans

seem to avoid this problem by focusing on different features

for different objects in the categorization process. A single

cortical column in the brain provides many types of micro-

circuits that respond in a qualitatively different way to the

incoming signals [2]. Other cortical columns may combine

these responses in a perceptron-like fashion to enable com-

plex discriminations. At the level of higher cognition brains

do not recognize all objects in the same feature space. Even

within the same sensory modality several complex features

are selected, allowing to distinguish one class of objects from

another.

In contrast to human categorization most pattern recogni-

tion systems implicitly assume that classification is done using

the same features in all regions of the input space. Memory-

based techniques use single distance (or similarity) function

to distinguish all objects, statistical or neural methods pro-

vide hyperplanes (multilayer perceptrons) or Gaussian func-

tions (Radial Basis Function networks) for discrimination, but

rarely both. Decision trees are usually univariate, employing a

decision rule for the threshold value of a single feature, parti-

tioning the input space into hyperrectangles. Multivariate de-

cision trees provide several hyperplanes at high computational

cost. Support Vector Machines use one kernel globally opti-

mized for a given dataset [3]. All these systems may be called

“homogenous” since they search for a solution providing the

same type of elements, the same type of decision borders in

the whole feature space. Committees of the homogenous sys-

tems are frequently used to improve and stabilize results [4].

Combining systems of different types in a committee is a step

towards heterogeneous systems that use different types of de-

cision borders, but the model becomes quite complex and is

difficult to understand.

Although many adaptive homogenous systems are univer-

sal approximators [1] and may model all kinds of data ac-

curately they will not discover simple class structures. For

example, if a feature space is divided into two classes by a

hyperplane plus a sphere with a center placed on this hyper-

plane most of the computational intelligence (CI) systems will

model densities or classification probabilities using a large

number of processing elements. Simple descriptions are de-

sirable for two reasons. First, to understand the data, discover

class structure or type of sources that generate signals. Sec-

ond, because the Ockham razor principle gives simpler sys-

tems a better chance for good generalization. In this paper

we shall consider heterogeneous adaptive systems (HAS), i.e.

systems that use processing elements of qualitatively different

types. Such systems include: neural networks that use dif-

ferent types of transfer functions, selecting them from a pool

of different functions or optimizing flexible transfer functions

to discover the most appropriate bias in different regions of

the feature space; similarity-based methods that use different

similarity function associated with each reference vector; de-

cision trees that use several types of tests, providing quali-

tatively different decision borders. Heterogeneous elements

may also be created within homogenous systems by various

transformations of the input data.

II. Heterogeneous adaptive systems.

Many computational intelligence systems used for classifi-

cation and approximation are constructed from simple build-

ing blocks or processing elements (PE). Three examples of

homogenous systems, i.e. systems using one type of PE only,

include: feedforward neural networks (NN), with the same

type of transfer function realized by each node; decision trees

(DT), with the same type of test performed at each node to

split the data; similarity-based methods (SBM) with global

metric function used with reference vectors. Each process-

ing element contributes a discriminating function with spe-

cific decision region. The final decision regions are created

by selection or a (non)linear combination of results from in-

dividual nodes. In homogenous systems discriminating func-

tions (or basis functions) are always of the same type: hy-

perplanes in decision trees, perceptron networks and SVMs,

hyperellipsoids in SBM systems or in Radial Basis Function

(RBF) networks based on Gaussian functions, etc. Combina-

tions of simple decision regions create new, complex decision

borders of arbitrary shapes, but it may require large number of

parameters to achieve desired approximation accuracy. Com-

plex data models do not allow to understand the structure of

the data [5] and discovering inductive bias behind the process

that created the data.

Although homogeous systems may have universal approx-

imation properties, they may not be the most appropriate for

a given data even if many types of nodes are tried. In [6] we

have estimated the minimal number of parameters that a feed-

forward neural network needs to separate a single hyperspher-

ical data region in N dimensions. For Gaussian functions it is

of the order of O(N), while for sigmoidal functions (hyper-

planes) it is at least O(N2). On the other hand separation of

the area between the origin of the coordinate system and the

(1,1, ...1) plane from the area outside requires a single hyper-

plane, while any classifier based on Gaussian functions will

use O(N2) parameters offering rather poor approximation (a

single rotated large Gaussian is sufficient). Both data distribu-

tions are rather difficult for univariate decision trees or SBM

systems. Combination of these two cases, with the separating

hyperplane and the center of Gaussian function placed in its

center 1/N(1,1, ...1), is difficult for all homogenous classi-

fiers. To find the simplest solution a heterogeneous classifier,

using processing elements that provide different discriminat-

ing functions, is needed.

III. Heterogeneous neural networks

A survey of many functions [6] and a systematic taxonomy

of these functions [7] has been presented recently. Networks

based on rational functions, various spline functions, tensor

products, circular units, conical, ellipsoidal, Lorentzian func-

tions and many others were described in the literature (see

references in [6]). Support Vector Machines [3] are used with

different kernel functions. Both neural networks and SVMs

are wide margin classifiers. At least part of the SVM suc-

cess is due to the selection of the best kernel for a given

data, although for simple benchmark problems the differences

between results obtained with different kernels (or different

transfer functions) may be small.

All these systems are homogenous, using one type of ker-

nel or transfer function in a given architecture. Three basic

ways to create heterogeneous adaptive systems of the neural

network type (HAS-NN) exist.

• Construct neural network adding new basis functions se-

lected from a pool of candidate functions .

• Start with large network that uses different transfer func-

tions and prune it.

• Use highly flexible transfer functions containing internal

parameters that are optimized, evolving different transfer

functions as a result of training.

A constructive method that selects the most promising

functions from a pool of candidates in RBF-like architecture

and adds it to the growing network has been introduced in

[8]–[10]. Each candidate node using different transfer func-

tion should be trained and the most useful candidate is added

to the network. In effect several networks are created, trained

in parallel and evaluated. The Optimal Transfer Function

(OTF) network [8] is based on the incremental network (In-

cNet) network architecture [11]. It uses pruning techniques

and statistical criteria to determine which neurons should be

selected. For the XOR problem classical two-neuron solutions

were discovered using localized, Gaussian-type functions as

well as non-local, sigmoidal functions. With more complex

conical transfer functions [6] it has also discovered a single

neuron solution to the XOR problem; in this case Gaussian

output function was combined with inner product activation

function. The OTF network has also found optimal solutions

to the hyperplane plus sphere problem.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fig. 1. Hyperplane plus sphere data in two dimensions.

A heterogeneous version of the Feature Space Mapping

[12], a neurofuzzy ontogenic network that selects the type

of a separable localized transfer function for the next node

from a pool of several types of functions, has been applied to

the same artificial problems. This network has found an in-

teresting solution to the hyperplane-sphere problem, selecting

one rectangular function and one Gaussian function. Variance

was rather large and in 5-dimensional cases quite often Gaus-

sian functions were selected, although the simplest solution

has also appeared. This network applied to Wisconsin Breast

Cancer data [13] created a very simple solution, with 2 rect-

angular nodes only [9].

In the second approach starting from a network that already

contains several types of transfer functions pruning or regu-

larization techniques are used to reduce the final number of

functions [8]. Initially the network is too complex but at the

end only the functions that are best suited to solve the problem

are left. Many combinations of functions may create solutions

of similar complexity, therefore large variance of the results,

especially for small data, may be expected.

In the third approach neural transfer functions are taken

from families of functions parameterized for greatest flexibil-

ity. For example, an extension of the conic activation function

is defined by:

AC(X;W,R,B,α,β) = αI(X−R;W)+ βD(X;R,B) (1)

where I(X;W) = ∑N
j=0WjX j is the weighted activation func-

tion and D(X;R,B) is a distance function. Used with the sig-

moidal output function this function changes smoothly from

a localized Gaussian (with independent biases) to a soft hy-

perplane type. Several other functions of such type have been

presented in [6], [7], but so far they have not been tried in

practice. Sebald and Chellapilla [14] have used evolutionary

programming techniques to train a network with 3 types of

transfer functions, obtaining rapid convergence.

IV. Heterogeneous similarity-based methods

In the similarity-based methods (SBM) [15] a set of ref-

erence vectors and a procedure to estimate similarity are de-

fined. In homogenous SBM models similarity or dissimilar-

ity of objects is estimated using a global distance function

D(X,Y). The number of reference (prototype) vectors R that

should be included in calculation of p(C i|X;M) may be fixed

(as in the k-nearest neighbor method), or a specific weight

function may be imposed around X, for example a Gaussian

function.

Heterogeneous SBM models use local functions optimized

differently in different regions of space. A set of local sim-

ilarity functions DR(X,R) should be defined, associated for

example with the reference vectors. For example, using

Minkovski’s Lα distance with the scaling factors defined as:

DR(X,R;s)β =
N

∑
j

s
j
R|X j −R j|

α; s
j
R ≥ 0 (2)

and optimizing the scaling factors s
j
R, allows each proto-

type R to “pay attention” to different features of the input

around different prototypes. In the most common version of

the similarity-based methods, such as the k-nearest-neighbor

method or LVQ method, decision borders are piecewise lin-

ear. Here generalized Minkowski’s metric involves two pa-

rameters, exponents α and β, and the scaling factors s j. This

enables feature selection and provides very flexible shapes of

decision borders. If all contributions s i|Ai−Bi| for some input

feature i are small the feature may be eliminated.

Although all functions in RBF networks are usually of the

same type, they are attached to local centers. Optimization of

individual dispersions corresponds to the scaling factors s
j
R in

the distance functions. In case of RBF networks with Gaus-

sian functions similarity functions are related to the squared

Euclidean distance functions (X−R)T Σ−1(X−R) via expo-

nential transformation exp(−DR(X,R)), while probabilities

p(Ci|X;M) are calculated taking linear combination of sim-

ilarities. The heterogeneous SBM models are more general,

allowing different local similarity functions to be attached to

different nodes. Various methods may also be used to com-

bine contributions from each node to calculations of probabil-

ities. This is a generalization of the class-dependent distance

functions sometimes used in the k-NN method [16]. Except

for typical distance functions and correlation based functions

data-dependent distances may be used, such as the Modified

Value Difference Metric (MVDM) [17].

Adapting the similarity function to minimize in-class dis-

tance variance and maximize between-class variance, a non-

linear version of Fishers discrimination analysis is obtained.

Optimal parameterization DX(X,R) may be learned for train-

ing an MLP neural network to provide small DX(X,R) output

values for input vectors (X,R) that are of the same class, and

larger values otherwise. Another way is to replace the differ-

ence |Xi−Ri| by a function d(Xi,Ri) evaluating contributions

to the distance in 2.

Ideas discussed above provide a rich framework for con-

struction of hetereogenous similarity-based systems. Selec-

tion of the prototype vectors, creation of the codebook vec-

tors using Learning Vector Quantization techniqes [18] or

instance-based learning algorithms [19] are relatively inex-

pensive procedures that may be combined with optimization

of local distance functions.

V. Input transformations

The hidden layer of a neural network maps the inputs into

an image space trying to simplify the task of the percep-

tron output node, for example by creating linearly separable

data clusters. Instead of the hidden layer transfer functions

that contain some adaptive parameters one could use arbitrary

multivariate functions to transform inputs, trying to achieve

similar result. In the functional link (FL) networks of Pao

[20] combination of various functions, such as polynomial,

periodic, sigmoidal and Gaussian functions is used. These

networks were never popular and little is known about their

properties. The use of products of pairs x ix j or of higher order

products is not very practical for high-dimensional inputs be-

cause the number of such products grows rapidly. Functional

link networks use such products and other functions, and than

pass the results as inputs to an MLP. These pre-processing

functions should be regarded rather as filter functions than

transfer functions. Adding standard neurons connected to pre-

processed inputs is equivalent to using processing elements

that are heterogeneous.

Pre-processing may be done independently of the network

by basis functions Φ(X) (acting on the whole input vector X

or on a few features only) if they do not involve adaptive pa-

rameters. The network usually performs a weighted combina-

tion of enhanced inputs. However, filter functions that have

adaptive parameters should be a part of the network. To avoid

excessive number of inputs one could form a candidate input

node and evaluate its information content using some feature-

evaluation techniques before adding new dimension to the in-

put space.

Except for adding filtered inputs to the existing inputs

one may renormalize all input vectors, for example using

Minkovsky’s metric. Such input renormalization has dramatic

influence on network decision borders [21]. Adding a new

feature based on sum of squares Φ(X) =
√

||X||2max −∑i X2
i

creates circular contours of constant value Φ(X)=const

and renormalizes all enhanced vectors to ||(X,Φ(X))|| =
||X||max. If renormalization using Minkovsky’s metric is de-

sired then Φ(X)α = ||X||αmax−∑i |Xi|
α, where ||X|| is now the

Minkovsky’s norm. Adding one extra input normalized in a

different way for each hidden node will change the decision

borders realized by this node, making the whole network het-

erogeneous. So far such systems have not yet been imple-

mented in practice.

VI. Heterogeneous decision trees

Heterogeneous decision trees may be created in several

ways. A rather obvious, although computationally expensive

way, is to place a whole new classifier, such as a neural net-

work, in new node, creating a neural decision tree [22]. Al-

though decision regions may be of different type in fact neu-

ral trees are still composed of a combination of simple per-

ceptrons with half-spaces as decision regions and thus are not

able to discover the simplest description of the data. The same

concerns Fisher and kernel-based decision trees [23].

The simplest approach to create heterogeneous decision

trees is to provide new tests at each node. Decision trees select

the best feature and its threshold value, differing in functions

that are used to evaluate the amount of information gained by

splitting the node [1]. The test for continuous or ordered val-

ues are usually of the same form:

Xi < θk or ∑
i

WiXi < θk (3)

for univariate and multivariate trees, respectively. θ k is the

selected threshold value for the node k. Decision regions are

in this case half-spaces, either perpendicular to the axis or of

arbitrary orientation. Replacing thresholds by intervals X i ∈

[θk,θk] does not change the type of decision borders. Adding

a distance-based test with the Minkovsky’s Lα norm:

||X−R||α = ∑
i

(|Xi −Ri|
α)1/α < θR (4)

where R is the reference vector, provides new type of decision

regions. In particular for L2 (Euclidean distance) spherical de-

cision regions are obtained, while for L1 (Manhattan distance)

decision regions are romboidal, and for L∞ cuboidal. In the

last case decision rules performed by the tree nodes are equiv-

alent to standard crisp logic rules.

A general way to provide a new set of features is to intro-

duce Φ(X;R) functions, measuring similarity of X to some

reference objects R using one of the selected distance func-

tions. A decision tree using such features selects the best

one, in effect using quite different decision regions for par-

titioning the input space. In particular adding L2 norm with

R = 1/N(1,1, ...1) allows to discover the simplest tree solv-

ing the problem with half-plane and Gaussian distributions.

There is a tradeoff between the complexity of the tests one

can consider in a finite time and the complexity of the final

decision tree.

SSV is a general criterion that can be applied to many dif-

ferent problems. The best split value is the one that separates

the largest number of pairs of objects from different classes.

The split value (or cut-off point) is defined differently for tests

returning continuous and discrete values. In the case of con-

tinuous tests the split value is a real number, in other cases it

is a subset of the set of alternative values of the feature. In all

cases we can define left side (LS) and right side (RS) of a split

value s of feature f for given dataset D:

LS(s,T,D) =

{

{X ∈ D : T (X) < s} if T (X) is cont.

{X ∈ D : T (X) �∈ s} otherwise

RS(s,T,D) = D−LS(s,T,D)
(5)

where T (X) is the test applied to the data vector X; in partic-

ular the test may select a single feature value that is compared

with the threshold s. The separability of a split value s is de-

fined as:

SSV(s) = 2∗ ∑
c∈C

|LS(s,T,D)∩Dc| ∗ |RS(s,T,D)∩ (D−Dc)|

− ∑
c∈C

min(|LS(s,T,D)∩Dc|, |RS(s,T,D)∩Dc|) (6)

where C is the set of classes and Dc is the set of data vectors

from D which belong to class c.

The best split value separates the maximal number of pairs

of vectors from different classes, and among all the split val-

ues which satisfy this condition, the best one separates the

smallest number of pairs of vectors belonging to the same

class. For every dataset containing vectors which belong to

at least two different classes, for each feature which has at

least two different values, there exists a split value of maxi-

mal separability.

Some test may include a linear combination of inputs,

trying to determine best separating hyperplane; in this case

Linear Discriminant Analysis (LDA) or Fisher Discriminant

Analysis (FDA) methods [1] may be used to find best com-

binations, leading to LDA and FDA trees. Simple tests may

also be based on distances ||X−R|| < θR from the data vec-

tors X to reference points R in the feature space, providing

non-linear decision borders, depending on the type of the dis-

tance function. The heterogeneous SSV (h-SSV) algorithm

has 3 main steps:

• calculate the value of the test T (X) for all the data vectors

in the dataset;

• sort the data vectors according to the values of test func-

tion;

• analyze each candidate split value and choose the one

with the highest SSV value.

The computational complexity of this algorithm is equal to

the complexity of sorting (i.e. nlog(n), because new feature

calculation and analysis of candidate splits require only nk

and n operations, if the new feature is the distance to a refer-

ence point (n is the number of data vectors in the dataset and

k is the number of features describing the data). In the case

of distance-based tests there are some possibilities of “natu-

ral” restrictions on selections of reference vectors for the best

test. The training data vectors are good candidates for ref-

erence vectors R that will be used in calculation of the test

TR(X) = D(X,R). The value of the test TR(X) may be re-

garded as a new feature characterizing vector X. To speed up

evaluation of such tests one may pre-select a small number of

reference vectors covering large regions of the feature space

(i.e. vectors relatively far from each other). After finding the

best candidate mode detailed search may be done in its neigh-

borhood.

Another simplification is to search for candidates among

the training data vectors that belong to the current tree node

that is being expanded. This leads to more comprehensive

split decisions, selecting a neighborhood of the reference vec-

tor as one of the subsets, and the rest of the space as the other

subset. The reference vector is than treated as a prototype, giv-

ing an understandable logical rule based on similarity to this

prototype. The best reference vector does not need to be one

of the data vectors. A better reference can be found through

a minimization process. To avoid higher computational costs

only selection has been used in initial implementation of the

h-SSV algorithm.

Because different distance measures give very different de-

cision borders such enhancement in decision tree methods

leads to heterogeneous systems that have the chance to dis-

cover simple class structures. To avoid complex tests and

minimize overall complexity of the decision tree model some

penalty of using complex tests may be added to the SSV cri-

terion. The simplest tests are based on cutoff for single fea-

tures; linear combinations should be used only if the gain in

accuracy justifies additional parameters, and novel distance

functions are even more complex, requiring determination of

the reference vector and the parameters of the distance func-

tion. The best model selection approach for the heterogeneous

trees is an open question. Below a few preliminary results are

presented to show the potential of this approach.

VII. Some results

Artificial data that are difficult for decision trees and other

computational intelligence systems have been used first. The

plane shown in Fig. 1 has been rotated by 45 degrees and

no tests using linear combinations were allowed. 2000 data

points have been generated. As a result the SSV decision tree

gave:

• 44 rules, 99.7% accuracy without distance-based tests;

• 21 rules, 99.8% accuracy, with distance-based tests se-

lecting only reference vectors from the node vectors;

• 15 rules, 99.85% accuracy with distance-based tests se-

lecting from all vectors.

For the Iris dataset [13] searching for distance-based tests

has been done with Euclidean distance only, and all training

data vectors as candidates for reference vectors. A set of rules

with 96.7% accuracy (5 errors overall) has been created:

• if petal length < 2.45 then class 1

• if petal length > 2.45 and ||X−R15|| < 4.02 then class 2

• if petal length > 2.45 and ||X−R15|| > 4.02 then class 3

Here ||X − R15|| is the Euclidean distance to the vector

R15. The restriction to search reference points among the data

falling into the tree node gives the same set of rules that can

be found without distance based premises (96% accuracy, 6

errors):

• if petal length < 2.45 then class 1

• if petal length > 2.45 and petal width < 1.65 then class 2

• if petal length > 2.45 and petal width > 1.65 then class 3

For the Wisconsin breast cancer dataset (699 cases, 9 fea-

tures, 2 classes, [13]) the following decision rule has been

found:

if ||X−R303|| > 20.27 then benign else malignant

This rule makes 18 classification errors (97.4% accuracy).

It seems to be the simplest rule discovered for this dataset so

far. In a cross validation process multiple sets of rules with

very similar or equal accuracy can be found. For instance:

if ||X−R279|| > 19.57 then benign else malignant

if ||X−R612|| > 20.10 then benign else malignant

VIII. Discussion

Heterogeneous Adaptive Systems have several advantages

over other types of adaptive systems. First, they may dis-

cover simplest structures generating the data. Imagine two

sources of signals with different distributions imposed on the

background signal, sampled by multidimensional measure-

ments. Homogenous classifiers have no chance to discover

the structure of such data while HAS should have no prob-

lem if appropriate transfer functions, similarity functions or

tests functions are provided. This enables simple interpreta-

tion of the data structure. The quality of simple HAS solution

should be higher than quality provided by more complex sys-

tems. HAS methods provide an interesting alternative to ker-

nel based methods and support vector machines. Neurofuzzy

systems with nodes based on different membership function

and T or S-norms also belong to this category.

There is an obvious tradeoff between the flexibility of rep-

resentation by a single element and the number of elements

needed to accurately model all data. The goal is to optimize

overall complexity of the system. On the other hand sys-

tems that are very general, based on higher-order logic knowl-

edge representation formalism, are very inefficient. Several

training methods have been described here but finding opti-

mal training method for each heterogeneous system requires

further investigation and empirical comparison. Our imple-

mentation of HAS decision tree, although still containing only

very few options, has already found the simplest rule for the

Wisconsin Breast Cancer data.

Finding the best HAS model is related to a more general

idea of searching in the model space for the best model appro-

priate for a given data, recently introduced within the frame-

work of the similarity based methods [24]. Both approaches

have similar goals, although different biases. HAS finds het-

erogeneous models of a given type, such as neural networks,

while our version of the search in the model space creates dif-

ferent models within a common similarity-based framework.

A meta-learning approach could search in a space of all mod-

els, including HAS models, for most appropriate model ac-

counting for the data, but it remains to be seen whether effec-

tive searching/learning algorithms for such general approach

exist.

Acknowledgments

Support by the Polish Committee for Scientific Research,

grant 8T11C 006 19, is gratefully acknowledged.

References

[1] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2nd Ed, John

Wiley & Sons, New York 2001

[2] W. Maass, T. Natschläger and H. Markram, “Real-time computing with-

out stable states: A new framework for neural computation based on

perturbations” (preprint, Technische Universität Gratz, 2001)

[3] N. Christianini and J. Shawe-Taylor, An Introduction to Support Vector

Machines and other Kernel-Based Learning Methods. Cambridge Uni-

versity Press 2000.

[4] L. Breiman, “Bias-Variance, regularization, instability and stabiliza-

tion”. In: C. Bishop, ed. Neural Networks and Machine Learning.

Springer 1998

[5] W. Duch, R. Adamczak and K. Gra̧bczewski, “Methodology of ex-

traction, optimization and application of crisp and fuzzy logical rules.”

IEEE Transactions on Neural Networks, Vol. 12, pp. 277-306, 2001

[6] W. Duch and N. Jankowski, “Survey of neural transfer functions”. Neu-

ral Computing Surveys, Vol. 2, pp. 163-213, 1999

[7] W. Duch and N. Jankowski, “Taxonomy of neural transfer functions”,

International Joint Conference on Neural Networks (IJCNN), Vol. 3, pp.

477-484, 2000

[8] N. Jankowski and W. Duch, “Optimal transfer function neural net-

works.” 9th European Symposium on Artificial Neural Networks

(ESANN), Brugge 2001. De-facto publications, pp. 101-106

[9] W. Duch, R. Adamczak and G.H.F. Diercksen, “Constructive den-

sity estimation network based on several different separable transfer

functions.” 9th European Symposium on Artificial Neural Networks

(ESANN), Brugge 2001. De-facto publications, pp. 107-112

[10] W. Duch and N. Jankowski, “Transfer functions: hidden possibilities for

better neural networks.” 9th European Symposium on Artificial Neural

Networks (ESANN), Brugge 2001. De-facto publications, pp. 81-94

[11] N. Jankowski and V. Kadirkamanathan, “Statistical Control of RBF-

like Networks for Classification, 7th Int. Conf. on Artificial Neural Net-

works (ICANN), Springer-Verlag, pp. 385-390, 1997

[12] W. Duch and GHF Diercksen, “Feature Space Mapping as a univer-

sal adaptive system”. Computer Physics Communications, Vol. 87, pp.

341-371, 1995

[13] C.J. Mertz, P.M. Murphy, UCI repository of machine learning

databases, http://www.ics.uci.edu/pub/machine-learning-data-bases.

[14] A Sebald and K. Chellapilla, “On Making Problems Evolutionarily

Friendly: Evolving the Most Convenient Representations.” 7th Int.

Conf. on Evolutionary Programming, EP98, Mar 25-27, 1998, Mission

Valley Marriott, San Diego, CA.

[15] W. Duch, “Similarity-Based Methods”. Control and Cybernetics 4, pp.

937-968, 2000

[16] B.V. Dasarathy, ed. Nearest neighbor norms: NN Pattern Classification

Techniques. Los Alamitos, California: IEEE Computer Society Press

1990

[17] D.L. Waltz, “Memory-based reasoning”. In: M. A. Arbib, ed, The

Handbook of Brain Theory and Neural Networks. MIT Press, pp. 568-

570, 1995

[18] T. Kohonen, Self-organizing maps. Berlin, Springer-Verlag 1995

[19] D.W. Aha, D. Kibler and M.K. Albert, “Instance-Based Learning Algo-

rithms.” Machine Learning, vol. 6, pp. 37-66, (1991)

[20] Y-H. Pao, Adaptive pattern recognition and neural networks. Addison-

Wesley, Readnig, MA 1989

[21] Duch W, Adamczak R, Diercksen GHF. Neural Networks in non-

Euclidean spaces. Neural Processing Letters 10 (1999) 201-210

[22] J. A. Sirat and J.-P. Nadal, “Neural Trees: a New Tool for Classifica-

tion”. Network, Vol. 1, pp. 423-438, 1990

[23] S. Mika, G. Rätsch, J. Weston, B. Schölkopf and K.-R. Müller. “Fisher

discriminant analysis with kernels”. In: Y.-H. Hu et al. , eds, IEEE

Neural Networks for Signal Processing IX, pp. 41–48, 1999.

[24] W. Duch and K. Grudziński, “Meta-learning: searching in the model

space”. Proc. of the Int. Conf. on Neural Information Processing

(ICONIP), Shanghai 2001, Vol. I, pp. 235-240

