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Abstract

Brain aging is a complex and heterogeneous process characterized by the selective loss

and preservation of brain functions. This study examines the normal aging effects on the

cerebral cortex by characterizing changes in functional connectivity using resting-state

fMRI data. Previous resting-state fMRI studies on normal aging have examined specific

networks of the brain, whereas few studies have examined cortical-cortical connectivities

across the entire brain. To characterize the effects of normal aging on the cerebral cortex,

we proposed the Pearson functional product-moment correlation coefficient for measuring

functional connectivity, which has advantages over the traditional correlation coefficient.

The distinct patterns of changes in functional connectivity within and among the four cere-

bral lobes clarified the effects of normal aging on cortical function. Besides, the advantages

of the proposed approach over other methods considered were demonstrated through sim-

ulation comparisons. The results showed heterogeneous changes in functional connectivity

in normal aging. Specifically, the elderly group exhibited enhanced inter-lobe connectivity

between the frontal lobe and the other lobes. Inter-lobe connectivity decreased between

the temporal and parietal lobes. The results support the frontal aging hypothesis proposed

in behavioral and structural MRI studies. In conclusion, functional correlation analysis

enables differentiation of changes in functional connectivities and characterizes the hetero-

geneous aging effects in different cortical regions.

Introduction

The blood-oxygenation-level-dependent (BOLD) signal measured through fMRI reflects

hemodynamic changes resulting from local neural activity [1, 2]. The neural activity interacts

with the surrounding vasculature, and the degree of hemodynamic response depends on the
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dynamic cerebral blood flow, metabolic rate of glucose, and neurovascular coupling [3]. In

addition to neuronal loss, studies have shown that the cerebrovascular system is also altered in

normal aging under the influence of multiple factors, and such alteration influences the hemo-

dynamic coupling [4, 5]. Therefore, the MRI-derived BOLD signal reflects the spatial pattern

of neural and vascular functions and reveals associated changes in the aging brain.

During the resting state, subjects are asked not to perform any explicit cognitive tasks. All

spatial patterns of neural activity observed through resting-state fMRI reflect internal activities

of the brain [6]. Fluctuations in the BOLD signal can be compared across brain regions [7] by

calculating functional connectivity, which indicates correlational strength between the regions

[8]. Resting-state fMRI data analysis involves evaluating coherent activity among brain regions

and characterizing the functional connectivity of brain networks [9, 10]. Evidence has increas-

ingly clarified that coherent or correlated fluctuation in the resting-state BOLD signal is a

steady characteristic of the human brain [11]. Consequently, functional connectivity has been

used to reveal intrinsic brain networks and pairwise relations of brain activities [12].

A widely used approach to functional connectivity analysis is to calculate the traditional cor-

relation coefficients (TCC) between a pair of pixels via

TCC ¼
PN

i¼1
ðfi � mf Þðri � mrÞ

h

PN

i¼1
ðfi � mf Þ

2
i1=2h

PN

i¼1
ðri � mrÞ

i1=2
; Eq 1

where fi and ri are the time-courses (TCs) in given pixels, and μf and μr are the average values

of the TC observations fi’s and ri’s [13, 14]. However, such calculations consider the TC signals

as a series of independent signals, overlooking that the TC signals are inter-dependent samples

of a continuous function. As a result, each TC is centered on its constant individual mean, and,

thus, relative magnitudes between the individual subjects are not relevant, and only the shapes

of the signal profiles matter.

It is natural to treat BOLD signal profiles of a brain region as realizations sampled from a

stochastic process, treating these measurements as a function of time. Under this sampling

frame, the TC signal recordings compose a set of functional data, where each random function

corresponds to a particular brain region. Functional data analysis (FDA) applies statistical

methods to data sampled from random functions. Following the line of functional data analy-

sis, this study proposes the functional correlation method to measure cortical-cortical func-

tional connectivity.

Using FDA approach to analyzing TC signal recordings has the advantage that it takes the

entire signal profile of a cortical region of interest (ROI) as the core unit for the statistical anal-

ysis and, thus, automatically takes into account temporal patterns of the signal profiles and cor-

relations between different ROIs. FDA has been extensively applied in such fields as

biomedicine, biology, engineering and environmental science. In particular, FDA in functional

brain imaging studies was discussed by Tian [15], and techniques for medical applications

were reviewed by Sørensen, Goldsmith [16]. FDA methods and applications were systemati-

cally reviewed by Ramsay and Silverman [17], Ferraty and Vieu [18], Horváth and Kokoszka

[19], Wang, Chiou and Müller [20].

It is worth noting that the BOLD signal profiles of different brain regions of the same subject

are mutually dependent. It is a statistical challenge to take into account the within-subject cor-

relations of the random functions of the signal profiles when investigating cortical-corticalcon-

nectivities of the entire brain. The set of simultaneously recorded region-specificBOLD signal

profiles of subjects intrinsically formed a set ofmultivariate functional data sampled from a set

ofmultivariate random functions. To deal with this issue, we used themultivariate functional
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data method, taking the advantage of the additional information of between-ROI correlations

within the same subject in the analysis of cortical-cortical connectivities of the brain. The pres-

ent study aimed to investigate the effects of aging on functional brain connectivity by correlat-

ing BOLD signals between the ROIs using functional data analysis.

Previous rsfMRI studies applied the graph theory to explore the change in network proper-

ties in the aging brain [21–24]. Here, we used the FDA methods to characterize aging-related

changes in resting-state brain activity by calculating cortical-cortical connectivities across the

whole brain, instead of focusing on specific networks. Such approach was never reported in

the rsfMRI literature. In particular, we performed the simulations to compare the proposed

method with other methods of measuring functional connectivity.We examined whether the

proposedmethod distinguishes the effects of aging in large-scale cortical-cortical connectivities

across the whole brain.

Material and Preprocessing

Participants

Forty young healthy adults and thirty elderly healthy adults were recruited (young group:

age = 19–41 years, mean age = 26.2 years, 16 males; elderly group: age = 60–90 years, mean

age = 68.6 years, 16 males; all right-handed). The experiment was approved by the Institutional

ReviewBoard of the National Taiwan University Hospital. All subjects were apprised of MRI

safety concerns and human rights. All subjects provided written informed consent. To ensure

cognitive intactness, all subjects in the elderly group were tested on a standardized battery of

neuropsychological tests. Elderly subjects with a current or past diagnosis of neurological or

psychiatric disorders, substance abuse, or head injury with loss of consciousness were

excluded.

Data acquisition

Structural and functionalMRI data were acquired using a 3-Tesla MRI system (Tim Trio, Sie-

mens, Erlangen, Germany) with a 32-channel head coil. StructuralMRI included high-resolution

T1-weighted imaging and T2-weighted imaging for registration.High-resolution T1-weighted

imaging was performedusing a three-dimensionalmagnetization-prepared rapid gradient echo

sequence—repetition time (TR)/echo time (TE) = 2000 ms/3 ms, flip angle (FA) = 9°, acquisition

matrix = 256 × 192 × 208, and field of view (FOV) = 256 × 192 × 208 mm3—yielding an isotropic

spatial resolution of 1 mm3. T2-weighted imaging was performedusing a two-dimensional fast

spin-echo sequence: TR/TE = 9422 ms/101 ms, image matrix size = 256 × 256, FOV = 256 × 256

mm2, thickness = 3 mmwithout gap, and slices = 34. During the resting state, subjects were

asked to lay still with eyes closed and not to perform explicit cognitive tasks. A two-dimensional

gradient-echo planar imaging (GRE-EPI) sequencewas used to acquire resting-state fMRI data:

TR/TE = 2000 ms/24 ms, FA = 90°, thickness = 3 mm, FOV = 256 x 256 mm2, acquisition

matrix = 64 x 64, slices = 34, and number of measurements = 180. Resting-state fMRI scan time

was approximately 6 minutes.

Resting-state fMRI and preprocessing

Resting-state fMRI images were preprocessed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/,

Friston, 2007) and subsequently an in-house independent component analysis (ICA)-based

denoising algorithm [25]. Preprocessing proceeded as follows (Fig 1). The first three volumes

were discarded to avoid T1 equilibrium effects. The remaining images underwent slice-timing

correction, with the middle slice used as the reference frame for correcting acquisition time

Heterogeneous Aging Effects on Functional Connectivity in Different Cortical Regions

PLOSONE | DOI:10.1371/journal.pone.0162028 September 22, 2016 3 / 21

http://www.fil.ion.ucl.ac.uk/spm/


differences within the volume. The images were then realigned using a rigid-bodymodel. The

functional images were registered to the T1-weighted image of each subject. For enhanced nor-

malization, the T1-weighted image was segmented into gray matter, white matter, and cerebro-

spinal fluid (CSF) on the basis of SPM8’s tissue probability maps (TPMs). A voxel’s TPM

represented its probability being the gray matter, white matter, or CSF. The segmentation rou-

tine in SPM8 produced spatial normalization parameters by default. After segmentation, the

functional images and T1-weighted images were normalized to the standard MNI space by

using the normalization parameters and resliced to 2 × 2 × 2 mm3 in voxel size. To eliminate

low-frequency drift, the functional images were high-pass filtered at a cutoff frequency of 0.01

Hz and smoothed using a Gaussian kernel with a full-width at half-maximum of 6 mm.

The ICA-based denoising method was highly subjected to image quality; it worked well in

data with head motion no more than 1 mm in translation and 1 degree in rotation. We

obtained these parameters from the preprocessing steps in SPM8. After SPM8 preprocessing,

images of 40 out of 64 subjects in the young group and 30 out of 50 subjects in the elderly

group satisfied the criteria. The images that did not pass the criteria were excluded from the

Fig 1. Resting-state fMRI preprocessing.

doi:10.1371/journal.pone.0162028.g001
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ICA procedures. The in-house ICA-based denoising algorithmwas implemented as follows. It

followed Allen and Erhardt’s approach in which group ICA was performed [26]. Group spatial

ICA was applied to decompose data sets into 70 maximally independent spatial maps and their

corresponding TCs by using the infomax approach, which was repeated 20 times by using

GIFTv1.3 (Medical Image Analysis Lab; http://mialab.mrn.org/software/gift/index.html); the

results of group spatial ICA were sorted by time course spectral power estimates to determine

the RSNs [26]. The spectral power in our data ranged from 0.015 to 0.045 Hz. We used the low

frequency to high frequency power ratio of 4 as the cut point to differentiate the RSNs-related

from the nuisance signals, such as CSF and physiological noise. Denoising was performed on a

subject-by-subject basis by removing the noise-related components from the original BOLD

signals.

To explore the cortical regions activated during the resting state, we used ICA to obtain a

group activation map before applying our proposedmethod on the resting-state fMRI data.

Group spatial ICA was used to detect commonly revealed RSNs at the group level. The group-

level commonly revealed activated regions were our targets for further examination using

FDA.

Spatial ICA decomposed the preprocessed resting-state fMRI data sets of the 70 subjects

into maximally independent spatial maps and their corresponding TCs by using the infomax

approach [27] through GIFTv1.3i (http://mialab.mrn.org/software/gift/). The number of com-

ponents for decomposition was estimated using minimum description length criteria [28]. The

infomax ICA algorithm was repeated 20 times by using a bootstrapping algorithm.

T1W preprocessing and registering with rsfMRI images

T1 Atlas ‘aparc.a2005s.annot’ was chosen from FreeSurfer (http://surfer.nmr.mgh.harvard.

edu/), containing cortical anatomical label information of the whole brain with a total of 162

segmented regions. The group ICA maps and the segmented cortical regions from T1 Atlas

‘aparc.a2005s.annot’ were registered and normalized into the Montreal Neurological Institute

(MNI) structural template (http://imaging.mrc-cbu.cam.ac.uk/imaging/Templates) and over-

lapped to register the anatomical location of the activated regions during the resting-state.

Overall, 120 of 162 cortical ROIs were selected from the union of ICA activation maps of the

young and elderly groups. Removing limbic ROIs yielded 112 ROIs of the four cortical lobes.

The TCs of the 112 ROIs for the young and elderly groups were used as the FDA input. (The

ROIs in the T1 Atlas ‘aparc.a2005s.annot’were listed in S2 File.)

Methods

We define a functional correlation to measure the intensity of the pairwiseROI connectivity

based on BOLD signal profiles. The point of viewwe adopt in the correlation analysis is that

each observedBOLD signal profile is a realization of a random function. To define the pro-

posed functional correlation, let the random functionXgk(t) denote the measurements of

BOLD signals sampled at time t in an interval Ƭ for the kth ROI and the g-th group, k = 1, . . .,

K, and g = 1. . ., G. In this study, K = 112 for the total number of ROI and G = 2 for the total

number of groups with g being 1 for the young and 2 for the elderly groups.

We propose the Pearson Functional product-moment Correlation coefficient (PFCorr)

between two random functionsXgk and Xgl as a measure of functional connectivity by

ρPFC
gkl ¼

Eð
R

ƬfXgkðtÞ � μgk ðtÞgfXgl ðtÞ � μglðtÞgdtÞ
h

Eð
R

ƬfXgkðtÞ � μgkðtÞg
2

dtÞ
i1=2h

Eð
R

ƬfXglðtÞ � mglðtÞg
2
dtÞ

i1=2
; Eq 2

Heterogeneous Aging Effects on Functional Connectivity in Different Cortical Regions

PLOSONE | DOI:10.1371/journal.pone.0162028 September 22, 2016 5 / 21

http://mialab.mrn.org/software/gift/index.html
http://mialab.mrn.org/software/gift/
http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
http://imaging.mrc-cbu.cam.ac.uk/imaging/Templates


where μgk(t) = E{Xgk(t)} is the mean function of Xgk(t). The PFCorr represents the cross-corre-

lation between two random functions. Analogous to the classical cross-correlation coefficient

that measures the degree of association between two random variables in Euclidean space, the

proposed PFCorrmeasures the strength of association between two random functions in a

square-integrable Hilbert space.

The sample version of PFCorr can be obtained by the numerical approximations to the

means of the integration in Eq 2. However, the observedBOLD signals can be contaminated by

measurement errors and the random functions are not observeddirectly. Furthermore, the

BOLD signals from different brain regions of an individual subject are highly dependent.We

suggest a model-based approach to the estimation of PFCorr using the multivariate functional

principal component analysis [29]. This model-based approach not only takes into account

measurement errors of the signals but also borrows the strength of within-subject correlations

among different brain regions.

Review of multivariate functional principal component analysis

Let {Xgki(t); i = 1,. . .,ng} be a sample of independently and identically distributed random func-

tions with respect to the subject index i, which are sampled from the distribution of Xgk(t). To

take into account the within-subject correlations betweenROIs, let Xgi(t) = (Xg1i(t),. . .,XgKi(t))
T

be a vector of the multivariate random functions with the mean function μg(t) = (μg1(t),. . .,

μgK(t)) whose kth entry μgk(t) = E{Xgk(t)}, and the multivariate covariance functionGg(s,t) =

(Ggkl(s,t), 1� k,l� K) whose (k, l) entry is Ggkl(s,t) = cov(Xgk(s),Xgl(t)), which is the auto-

covariance function of Xgk(t) when k = l and the cross-covariance function betweenXgk(t) and

Xgl(t) when k 6¼ l. In consideration of possible measurement errors in practice, we consider the

model Ygij = Xgi(tj) + �gij, where �gij = (�g1ij,. . .,�gKij)
T are independently and identically distrib-

uted with respect to i and j with mean zero and variance s2
g ¼ ðs2

g1; . . . ; s
2
gKÞ

T
:Here, j = 1,. . .,J,

J = 177.

Using the multivariate functional principal component (mFPC) model [29] for the multi-

variate random functionXgi(t) by

XgiðtÞ ¼ mgðtÞ þ
P1

r¼1
xgriðDgφgrÞðtÞ; Eq 3

whereDg(t) = diag(vg1(t)
1/2,. . .,vgK(t)

1/2) is a diagonal matrix with elements vgk(t) = Ggkk(t,t) the

variance function of Xgk,φgr(t) = (φg1r(t),. . .,φgKr(t))
T is the vector of eigenfunctions satisfying

PK

k¼1
hφgkr;φgkr0i ¼

PK

k¼1

R

T
φgkrðtÞφgkr0ðtÞdt ¼ drr0 with drr0 ¼ 1 for r = r' and 0 otherwise.The

random coefficient xgri ¼
PK

k¼1
hv�1=2
gk ðXgki � mgkÞ;φgkri has the mean of zero and the variance

λgr, in non-ascending order in r. The realizations of the random coefficient ξgri are called the

rth mFPC scores for subject i. We assume the sequence of the variances {λgr; r� 1} decays rap-

idly so that the sum of the infinite series in Eq 4 can be well approximated by the sum of the

first Lg terms. Therefore, we have a truncated representation for the multivariate random func-

tions,

~X giðtÞ ¼ mgðtÞ þ
PLg

r¼1xgriðDgφgrÞðtÞ; Eq 4

The estimation of PFCorr is based on the model Eq 4. In practice, as in the conventional multi-

variate analysis, the number of components Lg can be chosen using the criterion of the propor-

tion of total variance explained by the leading components.

Examination of the gender effect. Gender effect has drawn attention in the literature

[30–34]. Since there were no participants aged between 20 and 40 in our study, we elaborated

the gender effect at the young/elderly group level. We considered a two-sample test of the
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mean BOLD signal profiles betweenmale and female within each group. Instead of directly

using the BOLD signal profiles for two sample test of the means, we made use of the mFPC

scores as the proxies of the BOLD signal profiles to test the overall gender effect on the whole

brain at each group level. Thus, testing the gender effects on equality of two mean functions

reduced to a classical multivariate two-sample problem through the mFPC analysis. Here, we

applied the most widely used test of the means of two random vectors by the classical Hotel-

ling's T2 test under the multivariate normality assumption. Since the two-sample T2 test

became slightly conservative when the normality assumption was violated [35], we also imple-

mented the hypothesis test based on the bootstrap resampling method without any distribu-

tional assumption by the resampling procedure described in S1 File. Tables A and B in S1 File

summarize the outcome of the tests, with the corresponding value L such that the explained

variance is at least 80%. It fails to reject the null hypothesis in the elderly group while the p-

value is relatively small when L = 8 in the young group, which suggests that gender might sig-

nify certain degree of differences in resting state fMRI in some brain regions for young subjects,

even though it is not smaller than 0.05.

Estimation of the function correlation. Under the mFPCmodel in Eq 4, PFCorr in Eq 2

can be obtained based on the following expression,

~rPFCmgkl ¼
PLg

r¼1 lgrhv1=2gk φgkr; v
1=2
gl φglri

n

PLg
r¼1 lgrkv1=2gk φgkrk

2
o1=2n

PLg
r¼1 lgrkv1=2gl φglrk

2
o1=2

Eq 5

Here, the parameters λgr, Vgk and φgkr in Eq 5 are unknown and the value Lg is to be deter-

mined. The nonparametric estimation procedure of the parameter estimates is based on the

observationsYgij, which we refer to Chiou, Chen and Yang [29] for the details. These lead to

the predicted individual BOLD signal trajectory

X̂ giðtÞ ¼ m̂gðtÞ þ
PLg

r¼1x̂griðD̂giφ̂grÞðtÞ; Eq 6

and a sample version of PFCorr Eq 5,

rPFCmgkl ¼
PLg

r¼1 l̂grhv̂
1=2
gk φ̂gkr; v̂

1=2
gl φ̂glri

n

PLg
r¼1 l̂grkv̂

1=2
gk φ̂gkrk

2
o1=2n

PLg
r¼1 l̂grkv̂

1=2
gl φ̂glrk

2
o1=2

: Eq 7

m̂g ; D̂g ; φ̂gr; l̂gr and x̂gri represent the estimates of the corresponding terms and the number of

components Lg is chosen data-adaptively by

Lg ¼ argminM

n

PM

r¼1
l̂gr=

P1
r¼1

l̂gr1fl̂gr>0g > d
o

Eq 8

for a fixed 0< δ < 1, indicating that the Lg leading components explain at least 100δ% of the

total variance of the multivariate functional data. Here, we choose δ = 0.90, which works rea-

sonably well in this study.

Inference for the aging effects on functional connectivity. To investigate the normal

aging effect on functional connectivity, we evaluate the statistical significance of the paired

PFCorr differences between the young and the elderly groups by testing the hypotheses below.

Hðk;lÞ
0 : rPFC

1kl ¼ rPFC
2kl vs: Hðk;lÞ

a : rPFC
1kl 6¼ rPFC

2kl ; 1 � k � l � K: Eq 9

The null hypothesis indicates the functional correlations of the (k,l)ROI pair between the

young and the elderly group are not significantly different. The test statistics is constructed

based on the estimate of PFCorr. We propose to test the hypotheses in Eq 9 based on the
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bootstrap resampling method [36] to obtain the null distribution of ðrPFCm
2kl � rPFCm

1kl Þ. The boot-

strap testing procedure is summarized as follows.

1. Combine the observations of the young and the elderly groups to form Zij for i = 1, . . ., n,

where n = n1 + n2.

2. Perform the mFPC analysis on Zij and obtain the model component estimates m̂, x̂ri, D̂, and

φ̂r of the μ, ξri. D, and φr in Eq 4. Let x̂i ¼ ðx̂1i; . . . ; x̂MiÞT, whereM is chosen by the crite-

rion of the proportion of total variance explained as in Eq 7.

3. Resample fx̂i; Zij; j ¼ 1; . . . ; Jg by the subject indices i 2 {1,. . .,n} with replacement n

times to form the bootstrap samples fx̂bi ; Zbij; j ¼ 1; . . . ; jg of size n, where b is the replicate

index of the bootstrap samples, b = 1, . . .., B. We set B = 1000 as the total number of boot-

strap samples.

4. To form the bootstrap sample for each group, take the ng observations in the order of i from

fx̂bi g and fZbijg to form fx̂bgig and fY bgijg, g = 1, 2. Obtain the estimates l̂bgr by the sample var-

iance of fx̂bi g and the variance function vbgk(t) using the local polynomial smoothing on the

squared residuals of Y bgkij (see [37]).

5. Calculate the function correlations rPFCm;bgkl as in Eq 7 for each of the bootstrap samples,

b = 1, . . ., B, by

rPFCm;bgkl ¼
PLg

r¼1l̂
b
grhðv̂bgkÞ

1=2
φ̂gkr; ðv̂bglÞ

1=2
φ̂glri

n

PLg
r¼1l̂

b
grkððv̂bgkÞ

1=2
φ̂gkrk

2
o1=2n

PLg
r¼1l̂

b
grkðv̂bglÞ

1=2
φ̂glrk

2
o1=2

:

6. For each (k, l) pair, 1� k,l� K, calculate the group difference in functional correlations,

Ubkl ¼ ðrPFCm;b2kl � rPFCm;b1kl Þ, and compute the unadjusted p-value under null hypothesisH0

by Pkl ¼ B�1
PB
b¼11ðjUbklj > jUkljÞ, whereUkl ¼ ðrPFCm1kl � rPFCm2kl Þ and 1ðjUbklj > jUkljÞ is

the indicator functionwith the value 1 when ðjUbklj > jUkljÞ and 0 otherwise.

7. Order the p-value {Pkl; 1� k,l� K} associate with fH ðk;lÞ
0 ; 1 � k; l � Kg denoted as P(1)

� P(2) � � � � � P(m) with the associated hypothesesH0(1),H0(2),. . .,H0(m), whereH0(r) is the

hypothesis corresponding to someH ðk;lÞ
0 : rPFC1kl ¼ rPFC2kl for some pair (k, l), k 6¼ l, 1� r

�m, andm = K(K − 1)/2 is the amount of hypotheses to be tested. Reject allH0(q) for

q = 1,. . .,Q, withQ ¼ q m̂0ð Þ ¼ max q : PðqÞ � q
m̂0

abPm
q¼1q�1c�1 j m̂0

n o

, at the significant

level α = 0.05, where m̂0 ¼ maxfL : L � m� qðLÞg.

The final step of the bootstrap test procedure is a modifiedBenjamini-Hochberg procedure,

taking into account the dependencyof multiple hypotheses and controlling the FDR (False Dis-

covery Rate) [38]. Fig 2 illustrates the uncorrected (top panel) and the corrected (bottom) p-

values for the pairwise hypothesis test of the mean functions. By comparison, the uncorrected

p -values tend to conclude many insignificant pairs, while the corrected p -values identify 173

ROI pairs that are significantly different.
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Fig 2. The uncorrected (top panel) and corrected (bottom) p-values (upper triangular matrix) of
testing the paired difference of the Pearson Functional Correlations between the young and the

elderly groups, r
PFCm
2kl � r

PFCm
1kl (elderly–young). The ROI pairs with significant difference are marked in blue

for negative values and in red for positive values in the lower triangular matrix.

doi:10.1371/journal.pone.0162028.g002
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Results

Among the 112 cortical ROIs, 6216 functional correlations were observed.The strengths of the

functional correlations were presented in the Cortical-CorticalConnectivity (CCC)matrix. Fig

3 shows the matrices of the CCC for the young and elderly groups. These two matrices can

reveal whether the CCC across the cortex is homogeneous or heterogeneous. In other words,

the patterns of the CCC among and within the four cortical lobes can reveal the aging charac-

teristics of the cortex. The most evident finding was the heterogeneous patterns of both inter-

lobe and intra-lobe connectivities.Compared with the young group, the elderly group generally

exhibited decreased functional correlations in both inter-lobe and intra-lobe connectivities

among the posterior lobes, namely the temporal, parietal, and occipital lobes.

To investigate effects of normal aging on functional connectivity, we evaluated the differ-

ences in the CCCmatrix by subtracting PFCorr of the young group from those of the elderly

group. Significant group differences were classified into two aging effects: positive and negative

(Fig 4). A positive aging effect indicated that the functional connectivity strength increased

with age, whereas a negative aging effect indicated that the strength of functional connectivity

decreasedwith age. Of 6216 correlations, 173 showed a significant aging effect; 39 exhibited

positive and 134 exhibited negative effects.

Because 50% of the differences in the functional correlation coefficientswith significant

aging effects exceeded 0.45, we selected 85 connectivitieswith absolute differences exceeding

0.45 for further analysis. These selected connectivities belonged to the intra-lobe connectivities

of the occipital lobes and the inter-lobe connectivities between the frontal and temporal lobes,

between the temporal and occipital lobes, between the temporal and parietal lobes, and

between the parietal and occipital lobes. By contrast, the connectivities between the frontal and

parietal lobes and those between the frontal and occipital lobes showed no evident aging effects;

all differences were less than 0.45.

Four types of aging-related changes were observed in the selected connectivities: two posi-

tive and two negative aging effects. In the first type of the positive aging effect, the connectivity

revealed negative correlations in the young group but positive correlations in the elderly group.

In the second type, the connectivity exhibited positive correlations in the young group and

stronger positive correlations in the elderly group. In the first type of the negative aging effect,

the connectivity revealed positive correlations in the young group and less positive correlations

in the elderly group. In the second type, the connectivity showed positive correlations in the

young group but negative correlations in the elderly group. No positive aging effect showed

negative correlations in the young group and weaker negative correlations in the elderly group.

Similarly, no negative aging effect showed negative correlations in the young group and stron-

ger negative correlations in the elderly group.

The spatial patterns of the aging effect can be divided into two main groups: the inter-lobe

connectivity of the frontal lobe (Connectivity 1 in Fig 5) and the inter-lobe connectivities

among the posterior lobes (Connectivities 4, 5, and 6 in Fig 5). The inter-lobe connectivities of

the frontal lobe with a positive aging effect were those between the frontal and temporal lobes,

which showed negative correlations in the young group but positive correlations in the elderly

group (Connectivity 1 in Fig 5). The inter-lobe connectivities among the posterior lobes with a

positive aging effect were those between the temporal and occipital lobes, which exhibited posi-

tive correlations in the young group and strong positive correlations in the elderly group (Con-

nectivity 4 in Fig 5). Only the inter-lobe connectivities among the posterior lobes showed a

negative aging effect: the inter-lobe connectivities between the temporal and occipital lobes,

between the parietal and occipital lobes, and between the temporal and parietal lobes, all of

which revealed positive correlations in the young group and weaker positive correlations in the

Heterogeneous Aging Effects on Functional Connectivity in Different Cortical Regions
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Fig 3. Cortical-Cortical Connectivity (CCC) matrices for the young (top) and the elderly (bottom)
groups. The colors on the upper triangular matrices indicate the PFCorr connectivity intensity of the ROI
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elderly group (Connectivities 4, 5, and 6 in Fig 5).The inter-lobe connectivities between the

temporal and parietal lobes showed another type of negative aging effect in which the connec-

tivities exhibited positive correlations in the young group but negative correlations in the

elderly group (Connectivity 6 in Fig 5).

Fig 6 shows the significant aging effects of inter-lobe connectivities of the frontal and poste-

rior lobes. Positive and negative aging effects on the inter-lobe functional connectivitieswere

observed.The inter-lobe functional connectivity of the frontal lobe showed a positive aging

pairs. The gray spots on the lower triangular matrices indicate ROI pairs with statistically significant nonzero
correlations.

doi:10.1371/journal.pone.0162028.g003

Fig 4. Paired differences of the brain connectivity matrices between the young and the elderly groups (r
PFCm
2kl � r

PFCm
1kl ). The colors on the upper

triangular matrix indicate the PFCorr difference of the ROI pairs. The significantly different ROI pairs are shown on the lower triangular matrix, with
negative values marked in blue and positive values marked in red.

doi:10.1371/journal.pone.0162028.g004
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effect, whereas that of the posterior lobes showed positive and negative aging effects. The

inter-lobe functional connectivity between the temporal and occipital lobes showed a positive

aging effect. The inter-lobe functional connectivities of the posterior lobes, particularly the

connectivities between the temporal and parietal lobes, exhibited a dominant negative aging

effect.

Fig 5. The distinguished normal ageing effects across the cortical lobes. E: elderly group; Y: young group; E-Y: ageing effects (elderly group
subtracts young group). Connectivity 1 denotes the connectivity from the frontal lobe to posterior lobes; Connectivity 4, 5, 6 are the interlobe connectivities
among the posterior lobes: Connectivity 4 connects the temporal and occipital lobes, Connectivity 5 connects the parietal and occipital lobes, and
Connectivity 6 connects the temporal and parietal lobes.

doi:10.1371/journal.pone.0162028.g005
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Comparison via simulation study

We define the pairwisePearson functional correlation Eq 2 using the functional data method,

taking TC signal profiles as samples of random functions. The multivariate FPCA approach to

the estimate of the functional correlation. Eq 2 further takes the advantages of within-subject

correlations of the multivariate random functions corresponding to signal profiles of different

brain regions.We compare the proposedmethod with other estimations, the naïve functional

correlation estimate (PFCo) and PFCorr estimate based on univariate FPCA (PFCu). In addi-

tion, we compare the methods with the traditional correlation coefficient (TCC) in Eq 1 as

mentioned in the Introduction.

• Native functional correlation estimation (PFCo) In estimation of the functional correlation

PFCorr in Eq 2, a possible naïve estimate rPFC0 can be obtained by replacing Xgki with obser-

vations {Ygkij}, coupled with numerical integrations. In contrast to the model-based estimate

rPFCm in Eq 6, this naïve estimate does not consider random measurement errors, and may

not work well when observations are sparsely sampled in the time points.

• Pearson product-moment correlation coefficient estimation based on univariate FPCA (PFCu)

In contrast to the mFPCA-basedmethod to estimate PFCorr, it is also possible to estimate

the proposed functional correlation by the conventional univariate FPCA (uFPCA)method

to express the individual random functions. This approach does not make use of the depen-

dent information between the ROIs within the same subject.

• Traditional Correlation Coefficient (TCC)Here, we take the average of traditional correlation

coefficients over all subjects as mentioned in Eq 1 in the Introduction as the correlation

Fig 6. Histograms of the normal aging effects on inter-lobe functional connectivities. The distribution curves indicate that inter-lobe connectivities of
the frontal lobe tend to increase with age, whereas those among posterior lobes tend to decrease with age.

doi:10.1371/journal.pone.0162028.g006
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measure (TCC). TCC is defined in the way that individual profile trajectories are centering

on their averages of the individual trajectories, and, thus, relative magnitudes between the

profiles are not relevant and only the shapes matters.

We perform simulation comparisons to examine the finite sample performance of the pro-

posed estimate rPFCm, and the estimates rPFC
0

, rPFCu, and rTCC as defined above. For simulation

comparisons, we setK = 2,G = 1 and generate the observations based on the mFPCmodel Eq 4

with the number of components Lg = 20. The recording time points tj are equally spaced on [0,1]

withm = 51. We generate 200 simulation replicates, with each simulation dataset of size n = 100.

We set μ(t) = (t − 2.25, cos(t))T and v(t)¼ ð1:25;
ffiffi

t
p

þ 5ÞT and the measurement error �kij fol-

lowing a normal distributionwith mean zero and variance s2
k , where s2

1
= 1 and s2

2
= 4.We con-

struct the correlation functionC(s,t) = {Ckl(s,t); k,l = 1,2} by Bessel correlation function of the

first kind and Matérn correlation functionwith parameter (1, 1) in Scenario 1 and (0.8, 0.75) in

Scenario 2 [29]. The mFPC scores {ξri} are generated fromN (0, λr), where λr is the eigenvalue of
C. Then, we obtain the observationsYiðtjÞ ¼ XiðtjÞ þ �i ¼

P20

r¼1
xrifDFrgðtjÞ þ �ij; for t ¼ tj,

where X(tj) = (X1(tj),X2(tj))
T, D tj

� �

¼ v
1
2 tj

� �

, and �ij = (�1ij,�2ij)
T.

The simulation results, summarized in Table 1 via the sample bias, standard error, and the

mean square errors, indicate that the proposedmethod outperforms the others. The proposed

method performs better than PFCo that does not take into account of random measurement

errors. It performs better than PFCu as our method takes the advantages of within-subject cor-

relations of the multivariate random functions corresponding to the signal profiles of different

brain regions. The TCC does not performwell since the individually centered functional corre-

lation focuses on the similarity of profile shapes and ignores the relative magnitudes between

the signal profiles.

Besides applying TCC to the resting-state fMRI data, we obtain the CCCmatrices of all ROI

pairs for the young and the elderly groups as shown in Fig 7. The correlations of all ROI pairs

are all positive and larger than 0.4 in both groups, which appears to be unusual. We conclude

that the proposed pairwise Pearson functional correlation using mFPCA as estimate provides a

useful correlation measure for the strength of functional connectivity.

Discussion and Conclusion

To our knowledge, this is the first report on the effects of aging on cortical-cortical functional

connectivity. The effects were studied using novel PFCorr statistics-based functional connectiv-

ity definitions. Our results showed that the connectivities between the frontal and posterior

lobes increased in the elderly group, particularly the connectivity between the frontal and tem-

poral lobe. By contrast, the inter-lobe connectivities among the posterior lobes decreased in the

elderly group. The connectivity between the temporal and parietal lobes displayed the strongest

negative aging effect. These findings suggest that the aging effect on cortical-cortical functional

connectivity is heterogeneous across the lobes.

Table 1. Performance comparison of the estimated functional correlations based on bias, standard error andmean square error for Scenario 1
and Scenario 2.

Scenario 1 Scenario 2

rPFCm rTCC rPFCu rPFC0 rPFCm rTCC rPFCu rPFC0

bias 0.014 -0.556 0.300 -0.245 -0.029 0.097 0.037 0.128

stderr(× 10−3) 2.715 2.067 2.234 2.138 1.786 1.670 4.811 1.900

MSE 0.002 0.310 0.091 0.061 0.002 0.010 0.006 0.017

doi:10.1371/journal.pone.0162028.t001
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The essential question regarding the effects of aging on the brain is whether the aging pat-

terns are heterogeneous across the lobes. From MRI data, scholars have reached a consensus

on the aging effect that the effect of aging on the cerebral cortex and white matter is heteroge-

neous [39–41]. These studies examined the structural changes of the gray and white matter by

using T1-weighted and diffusion tensor MRI images, respectively. The structure of the cerebral

cortex gradually degenerates with age but those of the lobes degenerate at different rates. More-

over, age-related microstructural changes in the white matter vary regionally in the brain. Such

heterogeneous characteristics in both the gray and white matter may reflect specific histological

changes in the neuronal structures. The present study further examined resting-state cortical-

cortical functional connectivity to investigate whether the heterogeneous characteristics are

also exhibited by the dynamic cortical connection; the results demonstrated that the aging

effect was heterogeneous across the cortical lobes.

Researchers have proposed brain plasticity and compensation to explain the changes in nor-

mal aging [5, 42]. According to the compensatory hypothesis, during a cognitive task, elderly

people express more activities in certain brain regions than young people do [43]. Many studies

have observed that elderly people express more activities in the prefrontal cortex (PFC) [5, 42]

and have suggested a compensatory role of the PFC in maintaining normal cognitive function-

ing. These findings affirm the frontal-aging hypothesis, which states that elderly adults tend to

have strong activities in the PFC during task conditions to compensate for reduced activities in

other brain regions. Further research can elucidate whether the compensatory aging effect of

the PFC also occurs during the resting state of the brain. By demonstrating increased inter-lobe

connectivity between the frontal and temporal lobes, our resting-state findings support the

compensatory role of the frontal lobe.

The present study demonstrated that the aging effects on inter-lobe functional connectivity

can be classified into two main effects: namely the positive (increased) aging effect and the neg-

ative (decreased) aging effect. The aging patterns of the frontal and posterior lobes substantially

differ. Inter-lobe functional connectivity among the posterior lobes showed a predominantly

negative aging effect. By contrast, inter-lobe functional connectivity between the frontal and

posterior lobes presented a predominantly positive aging effect, possibly because of the

enhanced connectivity of the frontal lobe necessary for maintaining normal brain function in

elderly adults. Our finding demonstrated that in the absence of a specific cognitive function,

the frontal lobe exhibited strong dynamic cortical-cortical connections. In other words, the

age-related changes in resting-state connectivity support the frontal-aging hypothesis.

This study has some limitations. First, this was a cross-sectional comparison study between

two age groups. A longitudinal study observing life-long aging effects on the same subjects will

be more accurate; however, performing such a study is difficult. Second, this study focused on

the functional connectivity of only the cerebral cortex. The aging effects on the functional con-

nectivity of the limbic system and subcortical regions were not studied. Third, given the limited

sample size (70 in total) we can only divide the subjects into two groups, i.e. 40 subjects in the

young group and 30 subjects in the old group, to achieve statistical power. Future studies could

explore a division into a greater number of age groups by acquiringmuch larger datasets across

the lifespan; this could give us greater resolution to identify differences between specific ages.

Fourth, our data includes elderly brains which were atrophy. The normalization of the atrophy

brain to the template has been a technical issue in the neuroimaging filed. The normalization

Fig 7. Cortical-Cortical Connectivity (CCC) matrices for the young (top) and the elderly (bottom)
groups. The colors on the upper triangular matrices indicate the average individual-centered functional
connectivity intensity of the ROI pairs. The gray square elements on the lower triangular matrices indicate
ROI pairs with statistically significant nonzero correlations.

doi:10.1371/journal.pone.0162028.g007
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process mainly relies on the segmentation and spatial normalization via different algorithms.

SPM, DARTEL, and FSL tools are the most frequently used. The previous comparative study

indicated that the unified segmentation/normalization of SPM8 revealed the largest age-related

differences and may overestimate the aging effect on the brain volume [44]. This will lead to

increased uncertainty of the BOLD signal extracted from the data of the elderly group, and of

the resulting functional connectivity. In this regard, our results may not be the ground truth

under the influence of such issue.

In conclusion, we propose a novel functional correlation approach for measuring cortical-

cortical functional connectivity. Using this approach, we characterized the heterogeneous

aging effects on functional connectivities of the cerebral cortex. Given the characteristic pat-

terns in a normal aging brain, the proposed approach is potentially useful for investigating cor-

tical-cortical functional connectivities in age-associated brain diseases, such as Alzheimer's

disease and Parkinson's disease.
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19. Horváth L, Kokoszka P. Inference for functional data with applications. New York: Springer; 2012.

20. Wang JL, Chiou JM, Müller HG. Functional data analysis. Annual Review of Statistics and Its Applica-
tion. 2016; 3:To appear.

21. Betzel RF, Byrge L, He Y, Goni J, Zuo XN, Sporns O. Changes in structural and functional connectivity
among resting-state networks across the human lifespan. Neuroimage. 2014; 102 Pt 2:345–57. doi:
10.1016/j.neuroimage.2014.07.067 PMID: 25109530.

Heterogeneous Aging Effects on Functional Connectivity in Different Cortical Regions

PLOSONE | DOI:10.1371/journal.pone.0162028 September 22, 2016 19 / 21

http://www.ncbi.nlm.nih.gov/pubmed/11449264
http://www.ncbi.nlm.nih.gov/pubmed/16081741
http://www.ncbi.nlm.nih.gov/pubmed/11099707
http://dx.doi.org/10.1038/nrn1246
http://www.ncbi.nlm.nih.gov/pubmed/14595398
http://dx.doi.org/10.1038/nrn3256
http://www.ncbi.nlm.nih.gov/pubmed/22714020
http://dx.doi.org/10.1196/annals.1440.011
http://www.ncbi.nlm.nih.gov/pubmed/18400922
http://dx.doi.org/10.1073/pnas.0504136102
http://www.ncbi.nlm.nih.gov/pubmed/15976020
http://dx.doi.org/10.1016/j.neubiorev.2013.01.017
http://dx.doi.org/10.1038/mp.2011.81
http://www.ncbi.nlm.nih.gov/pubmed/21727896
http://dx.doi.org/10.1038/nrn2201
http://www.ncbi.nlm.nih.gov/pubmed/17704812
http://dx.doi.org/10.1002/hbm.20737
http://www.ncbi.nlm.nih.gov/pubmed/19235882
http://dx.doi.org/10.1016/j.neuroimage.2011.10.064
http://www.ncbi.nlm.nih.gov/pubmed/22051223
http://dx.doi.org/10.3389/fpsyg.2010.00035
http://www.ncbi.nlm.nih.gov/pubmed/21833205
http://dx.doi.org/10.1016/j.neuroimage.2014.07.067
http://www.ncbi.nlm.nih.gov/pubmed/25109530


22. CaoM, Wang JH, Dai ZJ, Cao XY, Jiang LL, Fan FM, et al. Topological organization of the human
brain functional connectome across the lifespan. Developmental cognitive neuroscience. 2014; 7:76–
93. doi: 10.1016/j.dcn.2013.11.004 PMID: 24333927.

23. Chan MY, Park DC, Savalia NK, Petersen SE, Wig GS. Decreased segregation of brain systems
across the healthy adult lifespan. Proceedings of the National Academy of Sciences of the United
States of America. 2014; 111(46):E4997–5006. doi: 10.1073/pnas.1415122111 PMID: 25368199;
PubMed Central PMCID: PMC4246293.

24. Sporns O, Betzel RF. Modular Brain Networks. Annual review of psychology. 2016; 67:613–40. doi:
10.1146/annurev-psych-122414-033634 PMID: 26393868; PubMed Central PMCID: PMC4782188.

25. Hsieh HL, Chen PY, He J.W., Shih YC, Jaw FS, TsengWY, editors. An Objective Autoselection of
Resting-State networks based on time course correlation. International Society For Magnetic Reso-
nance In Medicine; 2012; Melbourne, Australia.

26. Allen EA, Erhardt EB, Damaraju E, Gruner W, Segall JM, Silva RF, et al. A baseline for the multivariate
comparison of resting-state networks. Frontiers in systems neuroscience. 2011; 5:2. doi: 10.3389/
fnsys.2011.00002 PMID: 21442040; PubMed Central PMCID: PMC3051178.

27. Bell AJ, Sejnowski TJ. An information-maximization approach to blind separation and blind deconvolu-
tion. Neural Computation. 1995; 7:1129–59. PMID: 7584893

28. Li YO, Adali T, Calhoun VD. Estimating the number of independent components for functional mag-
netic resonance imaging data. Human brain mapping. 2007; 28(11):1251–66. Epub 2007/02/03. doi:
10.1002/hbm.20359 PMID: 17274023.

29. Chiou J-M, Chen Y-T, Yang Y-F. Multivariate functional principal component analysis: A normalization
approach. Stat Sinica. 2014; 24(4):1571–96.

30. Hjelmervik H, HausmannM, Osnes B, Westerhausen R, Specht K. Resting states are resting traits—
an FMRI study of sex differences and menstrual cycle effects in resting state cognitive control net-
works. PloS one. 2014; 9(7):e103492. doi: 10.1371/journal.pone.0103492 PMID: 25057823; PubMed
Central PMCID: PMC4110030.

31. Filippi M, Valsasina P, Misci P, Falini A, Comi G, Rocca MA. The organization of intrinsic brain activity
differs between genders: a resting-state fMRI study in a large cohort of young healthy subjects. Human
brain mapping. 2013; 34(6):1330–43. doi: 10.1002/hbm.21514 PMID: 22359372.

32. Lopez-Larson MP, Anderson JS, Ferguson MA, Yurgelun-Todd D. Local brain connectivity and associ-
ations with gender and age. Developmental cognitive neuroscience. 2011; 1(2):187–97. doi: 10.1016/j.
dcn.2010.10.001 PMID: 21516202; PubMed Central PMCID: PMC3079272.

33. Weissman-Fogel I, Moayedi M, Taylor KS, Pope G, Davis KD. Cognitive and default-mode resting
state networks: do male and female brains "rest" differently? Human brain mapping. 2010; 31
(11):1713–26. doi: 10.1002/hbm.20968 PMID: 20725910.

34. Scheinost D, Finn ES, Tokoglu F, Shen X, Papademetris X, Hampson M, et al. Sex differences in nor-
mal age trajectories of functional brain networks. Human brain mapping. 2015; 36(4):1524–35. doi: 10.
1002/hbm.22720 PMID: 25523617.

35. Everitt B. A Monte Carlo investigation of the robustness of Hotelling’s one-and-two-sample T
2 tests.

Journal of the American Statistical Association. 1979; 74(365):48–51.

36. Efron B, Tibshirani RJ. An Introduction to the Bootstrap.: Chapman & Hall/CRC; 1994.

37. Chiou J-M, Müller H-G. Nonparametric Quasi-likelihood. The Annals of Statistics. 1999; 27(1):36–64.

38. Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency.
Ann Statist. 2001; 29(4):1165–88.

39. Hogstrom LJ, Westlye LT, Walhovd KB, Fjell AM. The Structure of the Cerebral Cortex Across Adult
Life: Age-Related Patterns of Surface Area, Thickness, and Gyrification. Cerebral cortex. 2012; 23
(11):2521–30. doi: 10.1093/cercor/bhs231 PMID: 22892423

40. Lebel C, Gee M, Camicioli R, Wieler M, Martin W, Beaulieu C. Diffusion tensor imaging of white matter
tract evolution over the lifespan. Neuroimage. 2012; 60(1):340–52. doi: 10.1016/j.neuroimage.2011.
11.094 PMID: 22178809.

41. Lemaitre H, Goldman AL, Sambataro F, Verchinski BA, Meyer-Lindenberg A, Weinberger DR, et al.
Normal age-related brain morphometric changes: nonuniformity across cortical thickness, surface
area and gray matter volume? Neurobiology of aging. 2012; 33(3):617 e1-9. doi: 10.1016/j.
neurobiolaging.2010.07.013 PMID: 20739099; PubMed Central PMCID: PMC3026893.

42. Cabeza R, Anderson ND, Locantore JK, McIntosh AR. Aging Gracefully: Compensatory Brain Activity
in High-Performing Older Adults. NeuroImage. 2002; 17(3):1394–402. doi: 10.1006/nimg.2002.1280
PMID: 12414279

43. Reuter-Lorenz PA, Cappell KA. Neurocognitive Aging and the Compensation Hypothesis. Current
Directions in Psychological Science. 2008; 17:177–82.

Heterogeneous Aging Effects on Functional Connectivity in Different Cortical Regions

PLOSONE | DOI:10.1371/journal.pone.0162028 September 22, 2016 20 / 21

http://dx.doi.org/10.1016/j.dcn.2013.11.004
http://www.ncbi.nlm.nih.gov/pubmed/24333927
http://dx.doi.org/10.1073/pnas.1415122111
http://www.ncbi.nlm.nih.gov/pubmed/25368199
http://dx.doi.org/10.1146/annurev-psych-122414-033634
http://www.ncbi.nlm.nih.gov/pubmed/26393868
http://dx.doi.org/10.3389/fnsys.2011.00002
http://dx.doi.org/10.3389/fnsys.2011.00002
http://www.ncbi.nlm.nih.gov/pubmed/21442040
http://www.ncbi.nlm.nih.gov/pubmed/7584893
http://dx.doi.org/10.1002/hbm.20359
http://www.ncbi.nlm.nih.gov/pubmed/17274023
http://dx.doi.org/10.1371/journal.pone.0103492
http://www.ncbi.nlm.nih.gov/pubmed/25057823
http://dx.doi.org/10.1002/hbm.21514
http://www.ncbi.nlm.nih.gov/pubmed/22359372
http://dx.doi.org/10.1016/j.dcn.2010.10.001
http://dx.doi.org/10.1016/j.dcn.2010.10.001
http://www.ncbi.nlm.nih.gov/pubmed/21516202
http://dx.doi.org/10.1002/hbm.20968
http://www.ncbi.nlm.nih.gov/pubmed/20725910
http://dx.doi.org/10.1002/hbm.22720
http://dx.doi.org/10.1002/hbm.22720
http://www.ncbi.nlm.nih.gov/pubmed/25523617
http://dx.doi.org/10.1093/cercor/bhs231
http://www.ncbi.nlm.nih.gov/pubmed/22892423
http://dx.doi.org/10.1016/j.neuroimage.2011.11.094
http://dx.doi.org/10.1016/j.neuroimage.2011.11.094
http://www.ncbi.nlm.nih.gov/pubmed/22178809
http://dx.doi.org/10.1016/j.neurobiolaging.2010.07.013
http://dx.doi.org/10.1016/j.neurobiolaging.2010.07.013
http://www.ncbi.nlm.nih.gov/pubmed/20739099
http://dx.doi.org/10.1006/nimg.2002.1280
http://www.ncbi.nlm.nih.gov/pubmed/12414279


44. Callaert DV, Ribbens A, Maes F, Swinnen SP, Wenderoth N. Assessing age-related gray matter
decline with voxel-based morphometry depends significantly on segmentation and normalization pro-
cedures. Frontiers in aging neuroscience. 2014; 6:124. doi: 10.3389/fnagi.2014.00124 PMID:
25002845; PubMed Central PMCID: PMC4066859.

Heterogeneous Aging Effects on Functional Connectivity in Different Cortical Regions

PLOSONE | DOI:10.1371/journal.pone.0162028 September 22, 2016 21 / 21

http://dx.doi.org/10.3389/fnagi.2014.00124
http://www.ncbi.nlm.nih.gov/pubmed/25002845

