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Abstract

Networked embedded systems pose several challenges in
the modeling, simulation, and design domains. The pres-
ence of the network, in particular, makes an already criti-
cal task such as HW/SW co-simulation even more complex,
since a three-way (HW/SW/network) co-simulation and co-
design capability is required. Modeling of networks and
their interaction with hardware and software is thus key for
an effective design methodology at early stages of the de-
sign flow.

In this work, we present a HW/SW/network co-
simulation and co-design methodology, based on the in-
tegration of heterogeneous simulation environments such
as SystemC and NS (Network Simulator). This method-
ology has been successfully applied to the design of a
system-on-chip performing the fast path of IPv4 routing, al-
lowing to explore different HW/SW allocation for different
network configurations.

1. Introduction

The always increasing complexity in embedded systems
makes the design issues more and more challenging. In fact,
in addition to the complexity of designing the hardware and
the software components, the embedded system engineer is
now faced with the problem of interfacing the embedded
system with a networked world in which the design it will
operate.
In other terms, embedded systems are no more viewed as
isolated monads; rather, they interact among them and with
the environment, exchanging data and messages in such a
way to set up a more or less ubiquitous network. Account-
ing for the presence of a network is essential: First, it can be
used as an additional “variable” to allows for further opti-
mizations of the design. Second, it allows to verify the func-
tionality of the embedded system within its actual context.
For efficiency reasons, the design of the embedded system,

of the network protocols, and of the interacting elements
should be carried out concurrently, starting from the sys-
tem level specification.
This scenario turns the conventional hardware-software
co-design problem into a more complex one, where the
network is an explicit dimension, that we call “hard-
ware/software/network co-design”; the network becomes
then one variable in the design of an embedded sys-
tem as hardware and software are. Figure 1 shows what
are the steps of the “network synthesis”, and how they
match their corresponding tasks in the HW and SW do-
main.
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Figure 1. Network Synthesis vs. HW and SW
Synthesis.

While HW/SW co-design and its many issues (parti-
tioning choices, communication issues and synthesis,
co-modeling, co-simulation, and co-verification) has been
thoroughly studied [1], the HW/SW/network co-design
is quite a new topic. Although it has problems simi-
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lar to HW/SW, it also has to cope with the difficulty
coming from the different “cultures” of the designers com-
ing from the HW/SW and network domain.
The network dimension gives to the the embedded sys-
tem designer an additional degree of freedom in choosing
how to implement a certain action/function. Given the dif-
ferent abstraction level of the HW/SW and network do-
mains, we envision a hierarchical partitioning step in the
HW/SW/network co-design; that is, there is a first-level par-
titioning between HW/SW and network, and an eventual,
lower-level conventional HW/SW partitioning.
In other terms, the HW/SW/network partitioning answers
the question whether the function should be realized by a
board containing the embedded system, or it can be del-
egated to networks elements; HW/SW partitioning, con-
versely, decides whether the function should be performed
by a processor or by dedicated hardware. Any a priori defi-
nition of partitions can lead to sub-optimal designs.
The architectural exploration involves thus also the network
elements and the topology, with an increase of complexity
in the solution space. This complexity is reflected into the
modeling and simulation steps that should help to find the
optimal partition among hardware or software blocks and
network elements.
On the other hand, the great complexity of networking soft-
ware and hardware, added with the variability of the net-
work workloads, make the overall verification quite com-
plex. Around the embedded system we need a refined model
of the network environment in order to make the software
and hardware to act on that network to verify and, possi-
bly, validate the involved algorithms and architectures. The
idea is to model these networked embedded systems in a
hybrid style: part of the system is modeled in a conven-
tional, system-level, hardware-oriented environment, while
the network part is described with a proper network mod-
eling tool. The former part has a straightforward path to
HW/SW implementation, while the latter offers a great
availability of protocols and network structure models.
In this paper, we discuss a possible implementation of
HW/SW/network co-design, that uses a HW/SW/network
co-simulation environment that integrates HW (specifically,
SystemC), SW (specifically, Instruction Set Simulators),
and network (specifically, NS-2) simulation in a way that al-
lows for timing-accurate simulation (between HW and net-
work), and allows to quickly evaluate alternative partition-
ing solutions. The methodology has been applied for the de-
sign of a system-on-chip implementing a embedded packet
engine.

2. Enabling Technologies

The heterogeneous co-simulation of networked embedded
systems is an essential feature for HW/SW/network co-
design, since it represents the base mechanism that allows

to do simulation, validation and profiling. Although homo-
geneous co-simulation is more efficient, in this context het-
erogeneity is mandatory and not really a choice. So far, the
literature about heterogeneous co-simulation, has not ad-
dressed the issue of integrating the simulation of HW, SW
and a network. Many two-tier co-simulation approaches do
exist, however, such as solutions that integrate network and
HW simulation or HW and SW simulation.
The methodological effort of this work has been that of
taking such two-tier approaches and integrating them into
a three-tier scheme. This integrated co-simulation environ-
ment has been realized by integrating well-known simula-
tion engines (see Figure 2):

NS-2
Network

SystemC

Instruction Set
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Figure 2. Integration of Simulation Environ-
ments.

the network side is modeled by a Network Simulator called
NS-2 [3]; NS-2 is a discrete event simulator for network
protocols and algorithm analysis. NS-2 is based on two pro-
gramming languages: C++ and OTcl; the former is used to
create simulation models of network components, while the
latter is used to describe the simulation scenarios, choos-
ing the components to simulate and setting their parame-
ters. NS-2 comes with a number of available protocol mod-
els, and its open-source model guarantees the early avail-
ability also of even the latest protocols and/or algorithms.
The HW/SW domain can be modeled by C/C++ code, mod-
eling the behavior of the device, properly wrapped with Sys-
temC [9] code. In this approach the overall device (HW and
SW) is modeled as a set of SystemC modules linked to-
gether. SystemC is a C++ class library that can be used
to create models of a system at different abstraction lev-
els, from the system-level to the cycle-accurate one. The li-
brary provides the constructs required to model system ar-
chitectures including hardware timing, concurrency and re-



active behavior that are missing in standard C++. Therefore,
the hardware part is modeled with SystemC (at any level of
abstraction) and the software is a C/C++ program executed
by a real CPU on a board, or by an Instruction Set Simula-
tor (ISS), which represents a model of the processor.
The three simulation environments (NS-2, SystemC and
ISS/board) are integrated in a unique heterogeneous co-
simulation framework. Timing-accurate co-simulation is re-
alized by using two existing methodologies:

• NS-2/SystemC integration is achieved by adopting the
solution proposed in [2]. It consists of an efficient co-
simulation scheme based on messages exchanged be-
tween the two simulators, so as to establish a timing-
accurate communication.

• ISS/SystemC integration has been implemented by us-
ing two methodologies presented in [10]; the first
approach provides a co-simulation scheme where the
communication between the simulators is embedded
into the SystemC kernel; in the second scheme ”calls”
to the SystemC hardware functionalities are mapped to
device drivers calls of the operating system running on
the ISS.

3. Case Study

The integrated, three-tier schemes has been applied to the
design of a system-on-chip that implements the fast path
of IPv4 routing. The chip should support the checking and
the classification of the packets, as well as support quality
of service. The conceptual scheme of the router is shown
in Figure 3. The model follows a modular approach [5], by
isolating the different functionalities and connecting them
in a data-path oriented paradigm. The networking applica-
tion was split into independent modules that, through spe-
cific adaptation libraries, can be mapped on different plat-
forms or processor architectures.
That allows, on one hand, to have flexible software that can
be easily tuned to fit the different kinds of configurations
that the router application can have; on the other side, it
allows to follow the required changes of the programming
model and of the architecture during the development of the
design.
The ingress part is formed by a line card with two interfaces
connected to a switch fabric, the egress forwards packet to
two output interfaces. Figure 3 shows a configuration of the
router fast-path ingress side with Virtual Output Queuing. It
is composed by:

• CheckIPv4: module to validate the packet and modify
the time-to-live field [7];

• LookupIPv4: this module performs the lookup of the IP
address defining the interface which the packet should
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Figure 3. Case study: IPv4 router.

be forwarded to. It is based on a LCtrie tree structure
with the implementation given in [6];

• Classifier: this module classifies the packet in order to
perform a QoS based queuing. It can perform different
algorithms like linear, hierarchical trie, RFC [8]. In the
considered test case it looks up just for the ToS field;

• Random Early Discard - RED: it performs the RED al-
gorithm to prevent the queue saturation [6];

• Queue: it manages the queuing of the packets and the
management of the packet memory;

• Queue Service: it can serve the queue using differ-
ent algorithm like Round Robin, WRR, MWDRR, and
WDRR. In the considered case the WRR was used.

The choice of modularizing the application was suggested
by the need of changing the partitioning of the application.
The decisions space includes the following options:

• What algorithms and protocols should be used, consid-
ering the impact at network level;

• What parts of the design should be implemented with
dedicated hardware;

• What parts of the design should be implemented in
software;

• What parts of the design should be included into the
system-on-chip and what should be outside.

In addition, we should decide which kind of instruction set,
(and thus, of processor), should be used. Due to the com-
plexity of the design, the verification phase was also a key
factor in the design success.
The partitioning problem has two dimensions:

• A model point of view: We need to decide the most ap-
propriate environment to be used for each functional-
ity of the router at the different abstraction layers;



• An implementation point of view: We need to split the
functionality among HW, SW and network.

The methodology for the partitioning is carried out in two
phases, corresponding to the two levels of the hierarchy
mentioned in Section 1. The first one implies both the model
and the implementation point of view, the second one only
the implementation point of view.

3.1. First-Level Partitioning

As already mentioned, the availability of a co-design frame-
work can be used to describe the different parts of the router
with the most appropriate environment. The first partition-
ing should be done during the modeling phase. The parti-
tion was driven by the following factors:

• Level of abstraction at which the module will be de-
scribed at the end of the modeling phase: in other
words, we need to split the functionalities that should
not be refined from the functionalities that can lead to
HW or SW implementation;

• Availability of the identified functionalities in the tools:
try to reuse the functionalities already present in the
tool libraries;

• Communication pattern between the various function-
alities: avoid, at least in a first stage, to have function-
alities with high interaction in two different tools.

Therefore, the functionalities described in NS-2 are defined
by the subset given by the intersection of (i) the set of
functionality present in NS-2 and (ii) those that do not re-
quire refinement at lower levels; The functionalities simu-
lated with GDB will be determined at lower abstraction lev-
els by the usual HW-SW partition. The functionalities mod-
eled in SystemC will be those not present in NS-2 library
(at the system level), and and those to be refined till arriv-
ing to HW synthesis (at the lower level).
It should be noticed that such partitioning can be carried out
in several phases. With the refinements of the design we can
move the some functionalities from one domain to another
domain.
In our case study, the starting point was a simple router de-
scribed in NS-2. After the first functional definition and the
module division, the innovative router algorithms, such as
the lookup algorithm, were described in ANSI C. Than, we
inserted the LookupIPv4 ANSI C code in SystemC mod-
ule, as shown in Figure 4.
This module implements an algorithm not available in NS-2
router. It should be noticed that in our case it was quite in-
tuitive what functionalities should map onto hardware and
which ones mapped on the the network, so the choice be-
tween a SystemC or NS-2 description is driven merely by
the modeling opportunity.
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Figure 4. First Partitioning.

The first algorithmic exploration was done by connect-
ing the SystemC module with NS-2 structure, using the
paradigm described in Section 2.
A first system-level analysis was done by gathering in-
formation on the behavior of the algorithms: either those
present in NS-2 either the new ones. This first model al-
lows the tuning of the algorithm parameters with respect to
the network. For examples, the characteristic of the RED al-
gorithm, the length of the queues, the lookup search algo-
rithm, the weights of the WRR algorithm and data struc-
tures were determined in this way.
In this first stage there is no notion of architecture. The only
partitioning regards the functionalities that are described in
SystemC and those described in NS-2, and corresponds to
the first level of the partitioning hierarchy (HW/SW vs. net-
work). We then refined the model by porting the CheckIP
module into SystemC, as shown in Figure 5.

3.2. Second-Level Partitioning

The second partitioning phase concerns the allocation of
tasks to either HW (i.e., synthesizable SystemC) or SW (i.e.,
C++ programs).
This phase is driven by the profiling information extracted
by simulation; profiling gives a quantitative evaluation of
the computational weight of the different blocks, and has
been done as follows. The ANSI C blocks were first com-
piled on different instruction set. Then, using the described
methodology, the code was simulated with the debugger us-
ing NS-2 and SystemC as testbench for the software.

4. Partitioning Evaluation

The partitioning evaluation, for the case study described in
Section 3, is based on the profiling results shown in Fig-
ure 6.



����� �

���	��
 ����

����� �

������������� �����

� � !�"�"�# $ # %�&

� '�%�(���� �����

) *
+*
+

,�-/.0-/.21	.03 4�5 6�.

) *
+*
+

) *
+*
+

) *
+*
+

78
9

78
9

78
9

78
9

,�-/.0-/.21	.03 4�5 6�.

:<;>= ? @BADC�E0F�G = @

78
9

78
9

78
9

78
9

��!�(���%�H I %�J�%�& !�H ��&

) *
+*
+

) *
+*
+

) *
+*
+

) *
+*
+

97K
L

Figure 5. Second Partitioning.
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Figure 6. Profiling Breakdown.

After profiling, the most computationally expensive parts
(namely, the checkup block) were refined in SystemC in or-
der to arrive to a synthesizable description. Modules that are
left implemented in software are simulated using the debug-
ger. The cross-target feature of the GNU debugger allowed
us to prove different instruction sets for the addressed algo-
rithms.
After the refinement and optimization steps, the whole sys-
tem was tested with different network configurations. The
tool allows to easily change the characteristic of the traf-
fic, the number of the involved nodes, the link bandwidth
and the topology, thanks to the features of NS-2. After the
choice of the processor, the last step was to connect the de-
bugger to a real board in order to have more detailed feed-
backs in terms of the execution speed and of the synchro-
nization with the rest of the design.
Thanks to the described integrated tool, the refinement step
of the hardware, the optimization of the code and the net-

work statistic analysis could all be performed in parallel.
The integrated environment allowed us to avoid the over-
head of the test benches and of the simulation patterns us-
ing. The results of the profiling leads to the partitioning sce-
nario shown in Figure 7.
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Figure 7. Partitioning for the Validation of the
Case Study.

The router, modeled with SystemC and an ANSI C pro-
gram, receives packets from the network, modeled with NS-
2. The packets are then routed to the proper destination.
The co-simulation performances for this scenario are shown
in Table 1. Column Sim. Time reports the simulated time, in
milliseconds, while the remaining three columns show the
times for the SystemC/ISS simulation, the NS simulation,
and the total simulation time. We can notice how the sim-
ulation is quite efficient (the overhead is about 13%), thus
allowing fast exploration of design alternatives.

Sim. time SystemC/ISS NS-2 Total
[ms] [ms] [ms] [ms]

1000 1093 43 1136
10000 10925 429 11354
100000 109208 4288 113496

Table 1. CPU Times for Different Simulated
Times of the Final Partitioning.

5. Conclusions

In this paper we presented the hardware/software/network
co-design paradigm as the methodology to be applied dur-
ing the project of an embedded system with high network-
ing capabilities. The methodology implies the introduction



of additional partition steps in the usual HW-SW design ap-
proach. The partition is carried out in a hierarchical fashion,
by first allocating the functionalities of the application be-
tween network elements and embedded system, and eventu-
ally assigning the latter functionalities to either HW or SW.
The methodology was applied to the design of the fast-path
of a router, allowing to explore different HW/SW alloca-
tion for different network configurations. Performance re-
sults clearly demonstrate the feasibility of the proposed ap-
proach to the design of networked embedded systems.
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