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Anytime you work with 
oranges and apples, 

you’ll need a number of 

schemes to organize 
total performance. This 

article surveys the 
challenges posed by 

H 
omogeneous computing, which uses one or more machines of the same 

type, has provided adequate performance for many applications in the 
past. Many of these applications had more than one type of embedded 

parallelism, such as single instruction, multiple data (SIMD) and multiple instruc- 
tion, multiple data (MIMD). Most of the current parallel machines are suited only 
for homogeneous computing. However, numerous applications that have more 

than one type of embedded parallelism are now being considered for parallel 

implementation. On the other hand, as the amount of homogeneous parallelism in 
applications decreases, homogeneous systems cannot offer the desired speedups. 
To exploit the heterogeneity in computations, researchers are investigating a suite 

of heterogeneous architectures. 

Heterogeneous computing (HC) is the well-orchestrated and coordinated effec- 

tive use of a suite of diverse high-performance machines (including parallel 
machines) to provide superspeed processing for computationally demanding tasks 
with diverse computing needs.’ An HC system includes heterogeneous machines, 

high-speed networks, interfaces, operating systems, communication protocols, 
and programming environments, all combining to produce a positive impact on 
ease of use and performance. Figure 1 shows an example HC environment. 

Heterogeneous computing should be distinguished from network computing or 
high-performance distributed computing, which have generally come to mean 

either clusters of workstations or ad hoc connectivity among computers using little 

more than opportunistic load-balancing. HC is a plausible, novel technique for 

heterogeneous solving computationally intensive problems that have several types of embedded 

computing and 
parallelism. HC also helps to reduce design risks by incorporating proven technol- 

ogy and existing designs instead of developing them from scratch. However, 

discusses some 
several issues and problems arise from employing this technique, which we discuss. 

In the past few years, several technical meetings have addressed many of these 

approaches to opening issues. There is also a growing interest in using this paradigm to solve Grand 

up its opportunities. 
Challenges problems. Richard Freund has organized the Heterogeneous Process- 
ing Workshops held each year at the IEEE International Parallel Processing 
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Glossary 
Symposiums.’ Another related yearly 
meeting is the IEEE International Sym- 
posium on High-Performance Distrib- 
uted Computing.’ 

Heterogeneous systems 

The quest for higher computational 
power suitable for a wide range of ap- 

plications at a reasonable cost has ex- 
posed several inherent limitations of 

homogeneous systems. Replacing such 
systems with yet more powerful homo- 
geneous systems is not feasible. More- 
over. this approach does not improve 
the versatility of the system. HC offers 

a novel cost-effective approach to these 

problems; instead of replacing existing 
multiprocessor systems at high cost, HC 
proposes using existing systems in an 

integrated environment. 

Limitations of homogeneous systems. 
Conventional homogeneous systems 

usually use one mode of parallelism in a 
given machine (like SIMD, MIMD, or 
vector processing) and thus cannot ad- 

equately meet the requirements of ap- 

plications that require more than one 

Analytical benchmarking: A procedure to analyze the relative effectiveness 

of machines on various computational types. 

Code-type profiling: A code-specific function to identify various types of par- 

allelism present in code and to estimate the execution times of each code type. 

Cross-machine debuggers: Those available within the heterogeneous com- 

puting environment to help debug the application code that executes over multi- 

ple machines. 

Cross-over overhead: That incurred in transferring data from one machine 

to another. It also includes data-format-conversion overhead between the two 

machines. 

Cross-parallel compiler: An intelligent compiler that can generate intermedi- 

ate code executable on different parallel machines. 

Heterogeneous computing (HC): A well-orchestrated, coordinated effective 

use of a suite of diverse high-performance machines (including parallel ma- 

chines) to provide fast processing for computationally demanding tasks that 

have diverse computing needs. 

Metacomputations: Computations exhibiting coarse-grained heterogeneity 

in terms of embedded parallelism. 

Mixed-mode computations: Computations exhibiting fine-grained heteroge- 

neity in terms of embedded parallelism. 

Multiple instruction, multiple data (MIMD): A mode in which code stored in 

each processor’s local memory is executed independently. 

Single instruction, multiple data (SIMD): A mode in which all processors 

execute the same instruction synchronously on data stored in their local 

memory. 

User workstations 

Massively Parallel Processor (MPP) Image-Understanding Architecture (IUA) 

Figure 1. An example heterogeneous computing environment. 
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Vector MIMD SIMD 
Special 
purpose 

tal time = 100 units 

of heterogeneous machines (so that each 
portion of the code is executed on its 

matching machine type) is likely to 
achieve speedups. Figure 2 illustrates a 
possible scenario (the numbers are exe- 

cution times in terms of basic units). 

tal time = 50 units 

Communication time 

1 1 Total time = 4 units + 
communication overhead 

Heterogeneous computing. Hetero- 
geneity in computing systems is not an 

entirely new concept. Several types of 
special-purpose processors have been 
used to provide specific services for 

improving system throughput. One of 

the most common is I/O handling. At- 

tachingfloating-point processors to host 
computers is yet another heterogeneous 

approach to enhance system perfor- 

mance. In high-performance comput- 
ers, the concept of heterogeneity mani- 
fests itself at the instruction level in the 

the code is executed rapidly, while oth- form of several types of functional units, 

er portions of the code still have rela- such as vector arithmetic pipelines and 
tively higher execution times. Similarly, fast scalar processors. However, cur- 

the same code when executed on a suite rent multiprocessor systems remain 

Figure 2. Execution of example code using various systems. 

type of parallelism. As a result, any 

single type of machine often spends its 
time executing code for which it is poor- 

ly suited. Moreover, many applications 
need to process information at more 
than one level concurrently, with differ- 

ent types of parallelism at each level. 
Image understanding, a Grand Chal- 

lenges problem, is one such applica- 
tion.’ 

At the lowest level of computer vi- 
sion, image-processing operations are 
applied to the raw image. These compu- 

tations have a massive SIMD-type par- 
allelism. In contrast, the participants in 
the DARPA Image-Understanding 

Benchmark exercises’ observed that 
high-level image-understanding compu- 

tations exhibit coarse-grained MIMD- 
type characteristics. For such appli- 

cations, users of a conventional multi- 
processor system must either settle for 

degraded performance on the existing 
hardware or acquire more powerful (and 

expensive) machines. 

Each type of homogeneous system 
suffers from inherent limitations. For 
example, vector machines employ in- 
terleaved memory with apipelined arith- 

metic logic unit, leading to performance 
in high million floating-point operations 
per second (Mflops). If the data distri- 
bution of an application and the result- 

ing computations cannot exploit these 

features, the performance degrades se- 
verely. 

Consider an application code having 
mixed types of embedded parallelism. 

Assume that the code when executed 
on a serial machine spends 100 units of 
time. When this code is executed on a 
vector machine, the vector portion of 
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Partitioning and mapping 

Figure 3. User-directed approach. 
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mostly homogeneous as far as the type 

of parallelism supported by them. Such 

systems have been traditionally classi- 
fied according to the number of instruc- 

tion and data streams. 
An HC environment must contain 

the following components: 

l a set of heterogeneous machines, 

l an intelligent high-speed network 
connecting all machines, and 

l a (user-friendly) programming en- 

vironment. 

HC lets a given system be adapted to a 
wide range of applications by augment- 
ing it with specific functional or perfor- 

mance capabilities without requiring a 

complete redesign. Since HC comprises 

several autonomous computers, overall 

system fault tolerance and longevity are 

likely to improve. 

Issues 

We consider two approaches to using 

the HC paradigm. The first one analyz- 
es an application to explore embedded 

heterogeneous parallelism. Research- 
ers must devise new algorithms or mod- 

ify existing ones to exploit the hetero- 
geneity present in the application. Based 

on these algorithms, users develop the 
code to be executed by the machines. 

In the second approach, an existing 

Vector MIMD SIMD SP 

Programming environment 

Figure 4. Compiler-directed approach. 

l Mixed-mode computing. In this fine- 

grained heterogeneity, almost every al- 
ternate parallel instruction belongs to a 

different class of parallel computation. 

Programs exhibiting this type of heter- 
ogeneity are not suitable for execution 
on a suite of heterogeneous machines 

because the communication overhead 

due to frequent exchange of informa- 
tion between machines can become a 

bottleneck. However, these programs 

can be executed efficiently on a single 
machine such as PASM (Partitionable 
SIMD/MIMD) which incorporates het- 

erogeneous modes of computation. 

Mixed-mode computing refers to heter- 
ogeneity at the instruction level. 
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parallel code of the application is taken 
as input. To run this code in an HC 

environment, users must profile the types 

of heterogeneous parallelism embed- 
ded in the code. For this purpose, code- 
type profilers need to be designed. Fig- 
ures 3 and 4 illustrate these approaches. 

However, both approaches need strate- 

gies for partitioning, mapping, schedul- 
ing, and synchronization. New tools and 
metrics for performance evaluation are 

also required. Parallel programming en- 
vironments are needed to orchestrate 
the effective use of the computing re- 

sources. 

Algorithm design. Heterogeneous 
computing opens new opportunities for 

developing parallel algorithms. In this 

section, we identify the efforts needed 

to devise suitable algorithms. The fol- 
lowing issues must be considered by the 

designer: 

(1) the types of machines available 

and their inherent computing char- 

acteristics, 

(2) alternate solutions to various 
subproblems of the application, 

and 
(3) the costs of performing the com- 

munication over the network. 

Computations in HC can be classified 

into two types? 

l Metacomputing. Computations in 

this class fall into the category of coarse- 
grained heterogeneity. Instructions be- 
longing to a particular class of parallel- 

ism are grouped to form a module; each 

module is then executed on a suitable 

parallel machine. Metacomputing re- 
fers to heterogeneity at the module lev- 

el. 



Mixed-mode machines can achieve 
large speedups for fine-grained hetero- 

geneity by using the mixed-mode pro- 

cessing available in a single machine. A 

mixed-mode machine, for example. can 
use its mode-switching capability to 

support SIMDiMIMD parallelism and 

hardware-barrier synchronization, thus 
improving its performance over a ma- 
chine operating in SIMD or MIMD mode 

only. 

Code-type profiling. Fast parallel ex- 
ecution of the code in a heterogeneous 
computing environment requires iden- 
tifying and profiling the embedded par- 

allelism. Traditional program profiling 
involves testing a program assumed to 

consist of several modules by executing 
it on suitable test data. The prqfiler 

monitors the execution of the program 
and gathers statistics, including the ex- 

ecution time of each program module. 
This information is then used to modify 

the modules to improve the overall ex- 
ecution time. 

In HC. profiling is done not only to 
estimate the code’s execution time on 

a particular machine but also to analyze 
the code’s type. This is achieved by 
code-type profiling. As introduced by 

Freund.’ this code-specific function is 
an off-line procedure: the statistics to 
be gathered include the types of paral- 

lelism of various modules in the code 
and the estimated execution time of 

each module on the machines available 
in the environment. Code types that can 

be identified include vectorizable, 

SIMDiMIMD parallel, scalar, and spe- 
cial purpose (such as fast Fourier trans- 

form). 

Analytical benchmarking. This test 
measures how well the available ma- 
chines perform on a given code type.- 

While code-type profiling identifies the 

type of code. analytical benchmarking 
ranks the available machines in terms of 
their efficiency in executing a given code 

type. Thus. analytical benchmarking 
techniques permit researchers to deter- 
mine the relative effectiveness of a giv- 

en parallel machine on various types of 

computation. 
This benchmarking is also an off-line 

process and is more rigorous than previ- 

ous benchmarking techniques, which 
simply looked at the overall result of 

running an entire benchmark code on a 
processor. Some experimental results 

obtained by analytical benchmarking 

show that SIMD machines are well suit- 
ed for operations such as matrix compu- 
tations and low-level image processing. 

MIMD machines. on the other hand, 

are most efficient when an application 
can be partitioned into a number of 
tasks that have limited intercommuni- 

cation. Note that analytical benchmark 

results are used in partitioning and map- 
ping. 

Partitioning and mapping. Problems 

that occur in these areas of a homoge- 
neous parallel environment have been 

widely studied. The partitioning prob- 
lem can be divided into two subprob- 

lems. Parallelism detection determines 
the parallelism present in a given pro- 

gram. Clustering combines several op- 

erations into a program module and 
thus partitions the application into sev- 
eral modules. These two subproblems 
can be handled by the user, the compil- 

er, or the machine at runtime. 

In HC, parallelism detection is not 
the only objective; code classification 

based on the type of parallelism is also 
required. This is accomplished by code- 

type profiling, which also poses addi- 
tional constraints on clustering. 

Mapping (allocating) program mod- 

ules to processors has been addressed 
by many researchers. Informally, in 

homogeneous environments, the map- 
ping problem can be defined as assign- 

ing program modules to processors so 
that the total execution time (including 

the communication costs) is minimized. 

Several other costs, such as the interfer- 
ence cost, have also been considered. In 
HC, however, other objectives, such as 

matching the code type to the machine 

type, result in additional constraints. If 
such a mapping has to be performed at 
runtime for load-balancing purposes (or 

due to machine failure), the mapping 

problem becomes more complex due to 
the overhead associated with the code 
and data-format conversions. Various 

approaches to optimal and approximate 

partitioning and mapping in HC have 
been studied.X-lL’ 

Mapping in HC can be performed 
conceptually at two levels: system (or 

macro) and machine (or micro). At the 
system-level mapping, each module is 
assigned to one or more machines in the 

system so that the parallelism embed- 

ded in the module matches the machine 
type. Machine-level mapping assigns 
portions of the module to individual 

processors in the machine. The most 

common goal of the mapping process is 

to accomplish these assignments such 
that the overall runtime of the task is 

minimized. 
Chen et al.” proposed a heuristic map- 

ping methodology based on the Clus- 
ter-M mdoel, which facilitates the de- 

sign of portable software. Only one 

algorithm is required for a given appli- 

cation, regardless of the underlying ar- 
chitecture. Various types of parallelism 

present in the application are identi- 
fied. In addition, all communication 

and computation requirements of the 
application are preserved in an inter- 

mediate specification of the code. The 
architecture of each machine in the en- 

vironment is modeled in the system rep- 
resentation, which captures the inter- 

connections of the architecture. The four 

components of this approach are 

*an intermediate model to provide 

an architecture-independent algorithm 

specification of the application, 
l languages to support the specifica- 

tion in the intermediate model (such 

languages should be machine-indepen- 

dent and allow a certain amount of ab- 
straction of the computations), 

l a tool that lets users specify topolo- 

gies of the machines employed in the 
HC environment, and 

l a mapping module to match the prob- 

lem specification and the system repre- 

sentation. 

Figure 5 illustrates this methodology. 

Machine selection. An interesting 
problem appears in the design of HC 
environments: How can one find the 

most appropriate suite of heterogeneous 
machines for a given collection of appli- 

cation tasks subject to a given constraint. 
such as cost and execution time? 

Freund’ has proposed the Optimal Se- 
lection Theory (OST) to choose an op- 

timal configuration of machines for ex- 

ecuting an application task on a 

heterogeneous suite of computers with 
the assumption that the number of ma- 

chines available is unlimited. It is also 

assumed that machines matching the 
given set of code types are available and 
that the application code is decomposed 

into equal-sized modules. 

Wang et al’s Augmented Optimal 
Selection Theory (AOST)‘“incorporates 

the performance of code segments on 

nonoptimal machine choices, assuming 
that the number of available machines 
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for each code type is limited. In this 

approach, the program module most 
suitable for one type of machine is as- 

signed to another type of machine. In 

the formulation of OST and AOST, it 
has been assumed that the execution of 
all program modules of a given applica- 
tion code is totally ordered in time. In 
reality, however, different execution 

interdependencies can exist among pro- 
gram modules. Also, parallelism can be 

present inside a module, resulting in 
further decomposition of program mod- 

ules. Furthermore, the effect of differ- 
ent mappings on different machines 

available for a program module has not 

been considered in the formulation of 

these selection theories. 
The Heterogeneous Optimal Selec- 

tion Theory (HOST)9 extends AOST in 

two ways. It incorporates the effect of 

various mapping techniques available 
on different machines for executing a 

program module. Also, the dependen- 

cies between the program modules are 
specified as a directed graph. Note that 
OST and AOST assume linear ordering 
of program modules. In the formulation 

of HOST, an application code is as- 
sumed to consist of subtasks to be exe- 
cuted serially. Each subtask contains a 
collection of program modules. Each 

program module is further decomposed 
into blocks of parallel instructions, called 
code blocks. 

To find an optimal set of machines, 

we have to assign the program modules 

to the machines so that 

cr 

is minimal, while 

z e 2 c,,, 

where P is the time to execute program 
module i, c’ is the cost of the machine 

on which program module i is to be 

executed, and C,,, is an overall con- 
straint on the cost of the machines. The 
cost c’ and execution time 71 corre- 
sponding to the assignment under con- 

sideration can be obtained by using code- 

type profiling andlor by analyzing the 
algorithms. 

Iqbal” presented a selection scheme 
that finds an assignment of program 

modules to machines in HC so that the 
total processing time is minimized, while 
the total cost of machines employed in 

the solution does not exceed an upper 
bound. The scheme can also find a solu- 
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Heterogeneous architecture 

Problem-specification tool 

Figure 5. Cluster-M-based heuristic mapping methodology. 

tion to the dual of the above problem, 

that is, finding a least expensive set of 

machines to solve a given application 

subject to a maximal execution time 
constraint. This scheme is applicable to 
all of the above selection theories. The 

accuracy of the scheme, however, de- 
pends upon the method used to assign 
the program modules to the machines. 

Iqbal also shows that for applications in 

which the program modules communi- 
cate in a restrictive manner, one can 
find exact algorithms for selecting an 

optimal set of machines. If, however, 

the program modules communicate in 
an arbitrary fashion, the selection prob- 

lem is NP-complete. 

Scheduling. In homogeneous environ- 
ments, a scheduler assigns each pro- 

gram module to a processor to achieve 
desired performance in terms of pro- 

cessor utilization and throughput. De- 
signers usually employ three schedul- 

ing levels. High-level scheduling, also 

called job scheduling, selects a subset of 
all submitted jobs competing for the 

available resources. Intermediate-level 
scheduling responds to short-term fluc- 

tuations in the system load by tempo- 
rarily suspending and activating pro- 

cesses to achieve smooth system 
operation. Low-level scheduling de- 
termines the next ready process to be 
assigned to a processor for a certain 
duration. Different scheduling policies, 

such as FIFO, round-robin, shortest- 
job-first, and shortest-remaining-time, 

can be employed at each level of sched- 

uling. 
While all three levels of scheduling 

can reside in each machine in an HC 
environment, a fourth level is needed to 
perform with scheduling at the system 
level. This scheduler maintains a bal- 

anced system-wide workload by moni- 

toring the progress of all program mod- 

ules. In addition, the scheduler needs to 
know the different module types and 
available machine types in the environ- 

ment, since modules may have to be 
reassigned when the system configura- 

tion changes or overload situations oc- 

cur. Communication bottlenecks and 

queueing delays incurred due to the 
heterogeneity of the hardware add con- 

straints on the scheduler. 

Synchronization. This process pro- 
vides mechanisms to control execution 

sequencing and to supervise interpro- 

cess cooperation. It refers to three dis- 
tinct but related problems: 

l synchronization between the send- 

er and receiver of a message, 
aspecification and control of the 

shared activities of cooperating pro- 

cesses, and 
l serialization of concurrent accesses 

to shared objects by multiple pro- 
cesses. 
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A variety of synchronization meth- 
ods have been proposed in the past: 
semaphores, conditional critical regions, 

monitors, and pass expressions, among 
others. In addition, some multiproces- 
sors include hardware synchronization 

primitives. In general, synchronization 

can be implemented by using shared 
variables or by message-passing. 

In heterogeneous computing, the syn- 

chronization problem resembles that of 

distributed systems. In both cases, a 
global clock and shared memory are 
absent. and (unpredictable) network 

delays and a variety of operating sys- 
tems and programming environments 
complicate the process. 

Several techniques used in distribut- 

ed systems are again useful for solving 
HC synchronization problems. Two 
approaches are available: centralized 

(one machine is designated as a control 

node) and distributed (decision-mak- 
ing is distributed across the entire sys- 
tem). The correct choice depends on 

the topology, reliability, speed, and 
bandwidth of the network, in addition 

to the types and number of machines in 

the environment. However, reducing 

synchronization overhead is important 
to achieving large speedups in HC. Due 
to the possibility of several concurrent- 

ly operating autonomous machines in 
the environment, application-code per- 
formance in HC is more sensitive to 

synchronization overheads. Frequent 
hand-shaking for synchronization may 
expend most of the available network 

bandwidth. 

Interconnection requirements. Cur- 
rent local area networks (LANs) are 

not suitable for HC because higher band- 
width and lower latency networks are 

needed. The bandwidth of commercial- 
ly available LANs is limited to about 10 

megabits per second. On the other hand, 

in HC, assuming machines operating at 
40 megahertz and 20 million instruc- 
tions per second with a 32-bit word 

Some academic sites 

A number of academic sites are developing HC environments and applica- 

tions (this list is not exhaustive). 

Systems and architectures 

Distributed High-Speed Computing (DHSC) project at Pittsburgh Supercom- 

puting Center, University of Pittsburgh 

Image-Understanding Architecture, University of Massachusetts at Amherst 

Mentat, University of Virginia 

Nectar-Based Heterogeneous System, Carnegie Mellon University 

Northeast Parallel Architecture Center (NPAC), Syracuse University 

Partitionable SIMD/MIMD (PASM), Purdue University 

institutes and departments 

Beckman Institute, University of Illinois at Urbana-Champaign 

Department of Biological Sciences, University of California at Los Angeles 

Department of Computer Science, Kent State University 

Department of Computer Science, University of California at San Diego 

Department of Computer and Information Sciences, New Jersey Institute of 

Technology 

Department of Electrical Engineering-Systems, University of Southern Cali- 

fornia 

Department of Math and Computer Science, Emory University 

Minnesota Supercomputer Center (MSC), University of Minnesota at Minne- 

apolis 

Supercomputer Computations Institute (SCI), Florida State University 
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length, a bandwidth on the order of 1 
gigabit/second is required to match the 

computation and communication speeds. 
Even if higher bandwidth networks 

were available, three main sources of 

inefficiency would persist in current net- 
works. First, application interfaces in- 
cur excessive overhead due to context 

switching and data copying between the 

user process and the machine’s operat- 

ing system. Second, each machine must 
incur the overhead of executing the high- 

levelprotocols that ensure reliable com- 
munication between program modules. 
Also, the network interface burdens the 

machine with interrupt handling and 

header processing for each packet. This 
suggests incorporating additional net- 

work-interface hardware in each ma- 

chine. 
Nectar’* is an example of a network 

backplane for heterogeneous multicom- 

puters. It consists of a high-speed fiber- 

optic network, large crossbar switches, 
and powerful network-interface proces- 

sors. Protocol processing is off-loaded 

to these interface processors. A net- 
working standard called Hippi (ANSI 
X3T9.3 High-Performance Parallel In- 

terface)‘? is being implemented for re- 

alizing heterogeneous computing envi- 

ronments at various research sites. Hippi 
is an open standard that defines the 
physical and logical link layers of a 100- 

Mbytelsecond network. 
In HC, hardware modules from vari- 

ous vendors share physical intercon- 

nections. Differing communication pro- 

tocols may make network-management 
problems complex. The following gen- 
eral approaches for dealing with net- 

work heterogeneity have been discussed 
in the literature: 

(1) treat the heterogeneous network 

as a partitioned network, with each 
partition employing a uniform set 

of protocols; 
(2) have a single “visible” network 

management console; and 

(3) integrate the heterogeneous man- 
agement functions at a single 

management console. 

The IEEE Computer Society Techni- 
cal Committee on Parallel Processing, 

the Technical Committee on Mass Stor- 

age, and several research sites are work- 

ing together to define interface stan- 
dards. 

Programming environments. A par- 

allel programming environment includes 
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parallel languages, intelligent compil- 

ers, parallel debuggers, syntax-directed 

editors. configuration-management 
tools, and other programming aids. 

In homogeneous computing, intelli- 

gent compilers detect parallelism in 
sequential code and translate it into 
parallelmachinecode.Parallelprogram- 
ming languages have been developed to 

support parallel programming, such as 
MPL for MasPar machines, and Lisp 
and C for the Connection Machine. In 

addition, several parallel programming 
environments and models have been 

designed, such as Code, Faust, Sched- 
ule, and Linda. 

HC requires machine-independent 
and portable parallel programming lan- 
guages and tools. This requirement cre- 

ates the need for designing cross-paral- 

lel compilers for all machines in the 
environment, and parallel debuggers for 
debugging cross-machine code. Several 

programming models and environments 
have been developed in the past for 

heterogeneous computing.R~‘J-‘6 

r 

Programming environment 
I 

The Parallel Virtual Machine (PVM) 

system.16 evolved over the past three 

years, consists of software that provides 
a virtual concurrent computing envi- 

ronment on general-purpose networks 
of heterogeneous machines. It is com- 

posed of a set of user-interface primi- 

tives and supporting software that en- 
able concurrent computing on a loosely 

coupled network of high-performance 
machines. It can be implemented on a 

hardware base consisting of different 
architectures, including single-CPU sys- 

tems, vector machines, and multipro- 

cessors (see Figure 6). 

Figure 6. An overview of the Parallel Virtual Machine system. 

work, presenting a virtual concurrent 

computing environment to users. 

in the environment. The inherent con- 
currency in a distributed computing 

environment, the lack of total ordering 

of events on different machines, and the 
nondeterministic nature of the commu- 

nication delays between the processes 

make the problem of evaluating perfor- 

mance more complex. 

Application programs view the PVM 
system as a general and flexible parallel 

computing resource that supports 

shared memory, message-passing, and 
hybrid models of computation. A het- 

erogeneous application can be decom- 
posed into several subtasks based on 

the embedded types of computation 
and then executed by using PVM sub- 
routines on different matching ma- 

chines available on the network. The 
PVM primitives are provided in the 

form of libraries linked to application 

programs written in imperative languag- 

es. They support process initiation and 

management, message-passing, syn- 

chronization, and other housekeeping 
facilities. 

Performance evaluation. Performance 
tools are used to summarize the run- 
time behavior of an application, includ- 

ing analyzingresource use and the cause 
of any performance bottleneck. Depend- 

ing on its design, a performance tool can 
describe program behaviors at many 

levels of detail. The two most common 
are the intraprocess and interprocess 

levels. Intraprocess performance tools, 

such as the gproffacility on BSD Unix, 

the HP sampletY3000, and the Mesa Spy, 
provide information about individual 
processes. 

The impact of the code type must be 

considered. Thus, performance metrics 

such as processor utilization, speedup. 
and efficiency are difficult to compute. 
Indeed, these metrics must be carefully 

defined to make a reasonable perfor- 

mance evaluation. 

Performance tools for distributed 

computing systems concentrate on the 
interactions between the processes. In- 

tegrated performance models that ob- 

serve the status and the performance 
events at all levels can be found in the 

PIE (Programming and Instrumenta- 

tion Environment) project.17 

Image understanding 

Designing performance-evaluation 
tools for distributed computing systems 

involves collecting, interpreting, and 

evaluating performance information 
from application programs, the operat- 
ing system, the communication network, 

and other hardware modules employed 

Intrinsic parallelism in image process- 
ing and the variety of heuristics avail- 

able for problems in image understand- 
ing make computer vision an ideal 

vehicle for studying heterogeneous com- 
puting. From a computational perspec- 

tive, vision processing is usually orga- 
nized as follows: 

Support software provided by the 
PVM system executes on a set of user- 
specified computing elements on a net- 

l Early processing of the raw image 
(often called low-level processing). At 

this level, the input is an image. The 
output image is approximately the same 
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size. Convolutions are performed on 

each pixel in parallel. The data commu- 
nication among the pixels is local to 

each pixel. 
l Interfacing between low-level and 

image-understanding problems (often 
termed intermediate-level processing). 

The operations performed on each data 
item can be nonlocal. The communica- 

tion is also irregular as compared with 
that of low-level processing. 

l Image understanding. By this we 
mean using the acquired data from the 

above processing (for example, geomet- 
ric features such as shape, orientation, 

and moments) to infer semantic at- 
tributes of an image. Processing at this 

level can be classified as knowledge and/ 

or symbolic processing. Search-based 
techniques are widely used at this level. 

As evident in the preliminary results 

from the 1988 DARPA Image-Under- 
standing Benchmark,ls each level in com- 

puter vision exhibits a different type of 

parallelism. Therefore, at each level a 
suitable type of parallel machine must 
be employed. Corresponding to each of 

the above classes of problems, a suit- 
able class of architecture was proposed:3 

l SIMD machines. Machines in this 
class are well suited for computations in 
low-level and in some intermediate-lev- 

el computer vision problems because of 
the regular dataflow and iconic opera- 

tions in these two levels. For example, 
two-dimensional cellular arrays and 

mesh-connected computers have been 
proposed for a large class of geometric 
and graph-based problems in image pro- 

cessing. Parallel machines such as the 

MasPar MP-series and the Connection 
Machine CM-2000 fall in this category. 

Pipelined parallel machines (like the 
Carnegie Mellon University Warp ma- 

chine) are also well suited for low- and 
intermediate-level vision computations. 

l Medium-grained MIMD machines. 
Various intermediate- and high-level 

vision tasks are computationally inten- 
sive with irregular dataflow. Moreover, 

the size of the input is smaller than the 

input image size. Parallel systems hav- 
ing a set of powerful processors are 
suitable for performing computations 

in intermediate- and high-level vision 
tasks. The Connection Machine CM-5, 

Vistal2, Alliant FX-80, and Sequent 
Symmetry 81 are some examples. 

9 Coarse-grained MIMD machines. 

High-level vision tasks such as image 

understanding/recognition andsymbolic forms better than any single machine 

processing employ complex data struc- considered. These results support the 

tures. Many of the proposed algorithms suitability of a heterogeneous environ- 

for such problems are nondeterminis- ment for computer vision applications. 

tic, and architectural requirements for 
these problems demand coarse-grained 
MIMD machines. Parallel machines such 

H 
eterogeneous computing offers 

as the Aspex ASP and Vista/3 are well new challenges and opportu- 

suited for this class of problems. nities to several research com- 

munities. To support this paradigm, the 
following areas of research must be in- 

vestigated: 
Another approach is to build machines 

having multiple computational capabil- 
ities embedded in a single system. These 
architectures consist of several levels. 

Typically, the lower levels operate in 

SIMD mode and the higher levels oper- 
ate in MIMD mode. In the Image-Un- 

derstanding Architecture,19 the lowest 

level has bit-serial processors, and the 

intermediate level consists of digital sig- 
nal processors. The highest level con- 

sists of general-purpose microproces- 

sors operating in MIMD mode. 

l Designing tools to identify hetero- 

geneous parallelism embedded in 

applications. 
l Studying issues in high-speed net- 

working, including available tech- 

nologies and specialized hardware 
for networking. 

l Designing communication protocols 

to reduce the cross-over overheads 

that occur when different machines 
communicate in the same environ- 

An example vision task. We present 
an example vision task and identify the 

different types of parallelism. We have 
chosen the DARPA Integrated Image- 

Understanding Benchmark4 as an ex- 
ample task. The overall task performed 

by this benchmark is the recognition of 
an approximately specified two-and-a- 
half-dimensional “mobile” sculpture in 

a cluttered environment, given images 

from intensity and range sensors. 

extraction are performed. Then, group- 

ing the corners (an intermediate-level 

vision operation) results in the extrac- 

Steps in the benchmark can be identi- 

fied by the vision-task classifications. 
First, low-level operations such as con- 

nected component labeling and corner 

ment. 
l Developing standards for parallel 

interfaces between various ma- 

chines. 
l Designing efficient partitioning and 

mapping strategies to exploit heter- 
ogeneous parallelism embedded in 

applications. 
. Designing user interfaces and user- 

friendlyprogrammingenvironments 
to program diverse machines in the 

same environment. 

l Developing algorithms for applica- 

tions with heterogeneous comput- 
ing requirements. 

tion of candidate rectangles. Finally, 

Indeed, HC provides an opportunity 

to bring together research from various 

disciplines of computer science and en- 

gineering to develop a feasible approach 
partial matching of the candidate rect- for applications in the Grand Challeng- 

angles is followed by confirmed match- es problem set. W 

ing (a high-level vision task). The re- 
sults obtained on several different 

parallel machines were reported at the Acknowledgments 

found in Weems et al.‘* 

As they describe, directly interpret- 
ing these results would be unfair, since 
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Details of the benchmark results can be 
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