
Heterogeneous Computing:
Challenges and
Opportunities

Ashfaq A. Khokhar, Viktor K. Prasanna, Muhammad E. Shaaban,

and Cho-Li Wang

University of Southern California

Anytime you work with
oranges and apples,

you’ll need a number of

schemes to organize
total performance. This

article surveys the
challenges posed by

H
omogeneous computing, which uses one or more machines of the same

type, has provided adequate performance for many applications in the
past. Many of these applications had more than one type of embedded

parallelism, such as single instruction, multiple data (SIMD) and multiple instruc-
tion, multiple data (MIMD). Most of the current parallel machines are suited only
for homogeneous computing. However, numerous applications that have more

than one type of embedded parallelism are now being considered for parallel

implementation. On the other hand, as the amount of homogeneous parallelism in
applications decreases, homogeneous systems cannot offer the desired speedups.
To exploit the heterogeneity in computations, researchers are investigating a suite

of heterogeneous architectures.

Heterogeneous computing (HC) is the well-orchestrated and coordinated effec-

tive use of a suite of diverse high-performance machines (including parallel
machines) to provide superspeed processing for computationally demanding tasks
with diverse computing needs.’ An HC system includes heterogeneous machines,

high-speed networks, interfaces, operating systems, communication protocols,
and programming environments, all combining to produce a positive impact on
ease of use and performance. Figure 1 shows an example HC environment.

Heterogeneous computing should be distinguished from network computing or
high-performance distributed computing, which have generally come to mean

either clusters of workstations or ad hoc connectivity among computers using little

more than opportunistic load-balancing. HC is a plausible, novel technique for

heterogeneous solving computationally intensive problems that have several types of embedded

computing and
parallelism. HC also helps to reduce design risks by incorporating proven technol-

ogy and existing designs instead of developing them from scratch. However,

discusses some
several issues and problems arise from employing this technique, which we discuss.

In the past few years, several technical meetings have addressed many of these

approaches to opening issues. There is also a growing interest in using this paradigm to solve Grand

up its opportunities.
Challenges problems. Richard Freund has organized the Heterogeneous Process-
ing Workshops held each year at the IEEE International Parallel Processing

18 0018.9162/93/0600-0018$03.00 Q 1993 IEEE COMPUTER

Glossary
Symposiums.’ Another related yearly
meeting is the IEEE International Sym-
posium on High-Performance Distrib-
uted Computing.’

Heterogeneous systems

The quest for higher computational
power suitable for a wide range of ap-

plications at a reasonable cost has ex-
posed several inherent limitations of

homogeneous systems. Replacing such
systems with yet more powerful homo-
geneous systems is not feasible. More-
over. this approach does not improve
the versatility of the system. HC offers

a novel cost-effective approach to these

problems; instead of replacing existing
multiprocessor systems at high cost, HC
proposes using existing systems in an

integrated environment.

Limitations of homogeneous systems.
Conventional homogeneous systems

usually use one mode of parallelism in a
given machine (like SIMD, MIMD, or
vector processing) and thus cannot ad-

equately meet the requirements of ap-

plications that require more than one

Analytical benchmarking: A procedure to analyze the relative effectiveness

of machines on various computational types.

Code-type profiling: A code-specific function to identify various types of par-

allelism present in code and to estimate the execution times of each code type.

Cross-machine debuggers: Those available within the heterogeneous com-

puting environment to help debug the application code that executes over multi-

ple machines.

Cross-over overhead: That incurred in transferring data from one machine

to another. It also includes data-format-conversion overhead between the two

machines.

Cross-parallel compiler: An intelligent compiler that can generate intermedi-

ate code executable on different parallel machines.

Heterogeneous computing (HC): A well-orchestrated, coordinated effective

use of a suite of diverse high-performance machines (including parallel ma-

chines) to provide fast processing for computationally demanding tasks that

have diverse computing needs.

Metacomputations: Computations exhibiting coarse-grained heterogeneity

in terms of embedded parallelism.

Mixed-mode computations: Computations exhibiting fine-grained heteroge-

neity in terms of embedded parallelism.

Multiple instruction, multiple data (MIMD): A mode in which code stored in

each processor’s local memory is executed independently.

Single instruction, multiple data (SIMD): A mode in which all processors

execute the same instruction synchronously on data stored in their local

memory.

User workstations

Massively Parallel Processor (MPP) Image-Understanding Architecture (IUA)

Figure 1. An example heterogeneous computing environment.

June 1993 19

Vector MIMD SIMD
Special
purpose

tal time = 100 units

of heterogeneous machines (so that each
portion of the code is executed on its

matching machine type) is likely to
achieve speedups. Figure 2 illustrates a
possible scenario (the numbers are exe-

cution times in terms of basic units).

tal time = 50 units

Communication time

1 1 Total time = 4 units +
communication overhead

Heterogeneous computing. Hetero-
geneity in computing systems is not an

entirely new concept. Several types of
special-purpose processors have been
used to provide specific services for

improving system throughput. One of

the most common is I/O handling. At-

tachingfloating-point processors to host
computers is yet another heterogeneous

approach to enhance system perfor-

mance. In high-performance comput-
ers, the concept of heterogeneity mani-
fests itself at the instruction level in the

the code is executed rapidly, while oth- form of several types of functional units,

er portions of the code still have rela- such as vector arithmetic pipelines and
tively higher execution times. Similarly, fast scalar processors. However, cur-

the same code when executed on a suite rent multiprocessor systems remain

Figure 2. Execution of example code using various systems.

type of parallelism. As a result, any

single type of machine often spends its
time executing code for which it is poor-

ly suited. Moreover, many applications
need to process information at more
than one level concurrently, with differ-

ent types of parallelism at each level.
Image understanding, a Grand Chal-

lenges problem, is one such applica-
tion.’

At the lowest level of computer vi-
sion, image-processing operations are
applied to the raw image. These compu-

tations have a massive SIMD-type par-
allelism. In contrast, the participants in
the DARPA Image-Understanding

Benchmark exercises’ observed that
high-level image-understanding compu-

tations exhibit coarse-grained MIMD-
type characteristics. For such appli-

cations, users of a conventional multi-
processor system must either settle for

degraded performance on the existing
hardware or acquire more powerful (and

expensive) machines.

Each type of homogeneous system
suffers from inherent limitations. For
example, vector machines employ in-
terleaved memory with apipelined arith-

metic logic unit, leading to performance
in high million floating-point operations
per second (Mflops). If the data distri-
bution of an application and the result-

ing computations cannot exploit these

features, the performance degrades se-
verely.

Consider an application code having
mixed types of embedded parallelism.

Assume that the code when executed
on a serial machine spends 100 units of
time. When this code is executed on a
vector machine, the vector portion of

20

Partitioning and mapping

Figure 3. User-directed approach.

COMPUTER

mostly homogeneous as far as the type

of parallelism supported by them. Such

systems have been traditionally classi-
fied according to the number of instruc-

tion and data streams.
An HC environment must contain

the following components:

l a set of heterogeneous machines,

l an intelligent high-speed network
connecting all machines, and

l a (user-friendly) programming en-

vironment.

HC lets a given system be adapted to a
wide range of applications by augment-
ing it with specific functional or perfor-

mance capabilities without requiring a

complete redesign. Since HC comprises

several autonomous computers, overall

system fault tolerance and longevity are

likely to improve.

Issues

We consider two approaches to using

the HC paradigm. The first one analyz-
es an application to explore embedded

heterogeneous parallelism. Research-
ers must devise new algorithms or mod-

ify existing ones to exploit the hetero-
geneity present in the application. Based

on these algorithms, users develop the
code to be executed by the machines.

In the second approach, an existing

Vector MIMD SIMD SP

Programming environment

Figure 4. Compiler-directed approach.

l Mixed-mode computing. In this fine-

grained heterogeneity, almost every al-
ternate parallel instruction belongs to a

different class of parallel computation.

Programs exhibiting this type of heter-
ogeneity are not suitable for execution
on a suite of heterogeneous machines

because the communication overhead

due to frequent exchange of informa-
tion between machines can become a

bottleneck. However, these programs

can be executed efficiently on a single
machine such as PASM (Partitionable
SIMD/MIMD) which incorporates het-

erogeneous modes of computation.

Mixed-mode computing refers to heter-
ogeneity at the instruction level.

June 1993 21

parallel code of the application is taken
as input. To run this code in an HC

environment, users must profile the types

of heterogeneous parallelism embed-
ded in the code. For this purpose, code-
type profilers need to be designed. Fig-
ures 3 and 4 illustrate these approaches.

However, both approaches need strate-

gies for partitioning, mapping, schedul-
ing, and synchronization. New tools and
metrics for performance evaluation are

also required. Parallel programming en-
vironments are needed to orchestrate
the effective use of the computing re-

sources.

Algorithm design. Heterogeneous
computing opens new opportunities for

developing parallel algorithms. In this

section, we identify the efforts needed

to devise suitable algorithms. The fol-
lowing issues must be considered by the

designer:

(1) the types of machines available

and their inherent computing char-

acteristics,

(2) alternate solutions to various
subproblems of the application,

and
(3) the costs of performing the com-

munication over the network.

Computations in HC can be classified

into two types?

l Metacomputing. Computations in

this class fall into the category of coarse-
grained heterogeneity. Instructions be-
longing to a particular class of parallel-

ism are grouped to form a module; each

module is then executed on a suitable

parallel machine. Metacomputing re-
fers to heterogeneity at the module lev-

el.

Mixed-mode machines can achieve
large speedups for fine-grained hetero-

geneity by using the mixed-mode pro-

cessing available in a single machine. A

mixed-mode machine, for example. can
use its mode-switching capability to

support SIMDiMIMD parallelism and

hardware-barrier synchronization, thus
improving its performance over a ma-
chine operating in SIMD or MIMD mode

only.

Code-type profiling. Fast parallel ex-
ecution of the code in a heterogeneous
computing environment requires iden-
tifying and profiling the embedded par-

allelism. Traditional program profiling
involves testing a program assumed to

consist of several modules by executing
it on suitable test data. The prqfiler

monitors the execution of the program
and gathers statistics, including the ex-

ecution time of each program module.
This information is then used to modify

the modules to improve the overall ex-
ecution time.

In HC. profiling is done not only to
estimate the code’s execution time on

a particular machine but also to analyze
the code’s type. This is achieved by
code-type profiling. As introduced by

Freund.’ this code-specific function is
an off-line procedure: the statistics to
be gathered include the types of paral-

lelism of various modules in the code
and the estimated execution time of

each module on the machines available
in the environment. Code types that can

be identified include vectorizable,

SIMDiMIMD parallel, scalar, and spe-
cial purpose (such as fast Fourier trans-

form).

Analytical benchmarking. This test
measures how well the available ma-
chines perform on a given code type.-

While code-type profiling identifies the

type of code. analytical benchmarking
ranks the available machines in terms of
their efficiency in executing a given code

type. Thus. analytical benchmarking
techniques permit researchers to deter-
mine the relative effectiveness of a giv-

en parallel machine on various types of

computation.
This benchmarking is also an off-line

process and is more rigorous than previ-

ous benchmarking techniques, which
simply looked at the overall result of

running an entire benchmark code on a
processor. Some experimental results

obtained by analytical benchmarking

show that SIMD machines are well suit-
ed for operations such as matrix compu-
tations and low-level image processing.

MIMD machines. on the other hand,

are most efficient when an application
can be partitioned into a number of
tasks that have limited intercommuni-

cation. Note that analytical benchmark

results are used in partitioning and map-
ping.

Partitioning and mapping. Problems

that occur in these areas of a homoge-
neous parallel environment have been

widely studied. The partitioning prob-
lem can be divided into two subprob-

lems. Parallelism detection determines
the parallelism present in a given pro-

gram. Clustering combines several op-

erations into a program module and
thus partitions the application into sev-
eral modules. These two subproblems
can be handled by the user, the compil-

er, or the machine at runtime.

In HC, parallelism detection is not
the only objective; code classification

based on the type of parallelism is also
required. This is accomplished by code-

type profiling, which also poses addi-
tional constraints on clustering.

Mapping (allocating) program mod-

ules to processors has been addressed
by many researchers. Informally, in

homogeneous environments, the map-
ping problem can be defined as assign-

ing program modules to processors so
that the total execution time (including

the communication costs) is minimized.

Several other costs, such as the interfer-
ence cost, have also been considered. In
HC, however, other objectives, such as

matching the code type to the machine

type, result in additional constraints. If
such a mapping has to be performed at
runtime for load-balancing purposes (or

due to machine failure), the mapping

problem becomes more complex due to
the overhead associated with the code
and data-format conversions. Various

approaches to optimal and approximate

partitioning and mapping in HC have
been studied.X-lL’

Mapping in HC can be performed
conceptually at two levels: system (or

macro) and machine (or micro). At the
system-level mapping, each module is
assigned to one or more machines in the

system so that the parallelism embed-

ded in the module matches the machine
type. Machine-level mapping assigns
portions of the module to individual

processors in the machine. The most

common goal of the mapping process is

to accomplish these assignments such
that the overall runtime of the task is

minimized.
Chen et al.” proposed a heuristic map-

ping methodology based on the Clus-
ter-M mdoel, which facilitates the de-

sign of portable software. Only one

algorithm is required for a given appli-

cation, regardless of the underlying ar-
chitecture. Various types of parallelism

present in the application are identi-
fied. In addition, all communication

and computation requirements of the
application are preserved in an inter-

mediate specification of the code. The
architecture of each machine in the en-

vironment is modeled in the system rep-
resentation, which captures the inter-

connections of the architecture. The four

components of this approach are

*an intermediate model to provide

an architecture-independent algorithm

specification of the application,
l languages to support the specifica-

tion in the intermediate model (such

languages should be machine-indepen-

dent and allow a certain amount of ab-
straction of the computations),

l a tool that lets users specify topolo-

gies of the machines employed in the
HC environment, and

l a mapping module to match the prob-

lem specification and the system repre-

sentation.

Figure 5 illustrates this methodology.

Machine selection. An interesting
problem appears in the design of HC
environments: How can one find the

most appropriate suite of heterogeneous
machines for a given collection of appli-

cation tasks subject to a given constraint.
such as cost and execution time?

Freund’ has proposed the Optimal Se-
lection Theory (OST) to choose an op-

timal configuration of machines for ex-

ecuting an application task on a

heterogeneous suite of computers with
the assumption that the number of ma-

chines available is unlimited. It is also

assumed that machines matching the
given set of code types are available and
that the application code is decomposed

into equal-sized modules.

Wang et al’s Augmented Optimal
Selection Theory (AOST)‘“incorporates

the performance of code segments on

nonoptimal machine choices, assuming
that the number of available machines

22 COMPUTER

for each code type is limited. In this

approach, the program module most
suitable for one type of machine is as-

signed to another type of machine. In

the formulation of OST and AOST, it
has been assumed that the execution of
all program modules of a given applica-
tion code is totally ordered in time. In
reality, however, different execution

interdependencies can exist among pro-
gram modules. Also, parallelism can be

present inside a module, resulting in
further decomposition of program mod-

ules. Furthermore, the effect of differ-
ent mappings on different machines

available for a program module has not

been considered in the formulation of

these selection theories.
The Heterogeneous Optimal Selec-

tion Theory (HOST)9 extends AOST in

two ways. It incorporates the effect of

various mapping techniques available
on different machines for executing a

program module. Also, the dependen-

cies between the program modules are
specified as a directed graph. Note that
OST and AOST assume linear ordering
of program modules. In the formulation

of HOST, an application code is as-
sumed to consist of subtasks to be exe-
cuted serially. Each subtask contains a
collection of program modules. Each

program module is further decomposed
into blocks of parallel instructions, called
code blocks.

To find an optimal set of machines,

we have to assign the program modules

to the machines so that

cr

is minimal, while

z e 2 c,,,

where P is the time to execute program
module i, c’ is the cost of the machine

on which program module i is to be

executed, and C,,, is an overall con-
straint on the cost of the machines. The
cost c’ and execution time 71 corre-
sponding to the assignment under con-

sideration can be obtained by using code-

type profiling andlor by analyzing the
algorithms.

Iqbal” presented a selection scheme
that finds an assignment of program

modules to machines in HC so that the
total processing time is minimized, while
the total cost of machines employed in

the solution does not exceed an upper
bound. The scheme can also find a solu-

June 1993

Heterogeneous architecture

Problem-specification tool

Figure 5. Cluster-M-based heuristic mapping methodology.

tion to the dual of the above problem,

that is, finding a least expensive set of

machines to solve a given application

subject to a maximal execution time
constraint. This scheme is applicable to
all of the above selection theories. The

accuracy of the scheme, however, de-
pends upon the method used to assign
the program modules to the machines.

Iqbal also shows that for applications in

which the program modules communi-
cate in a restrictive manner, one can
find exact algorithms for selecting an

optimal set of machines. If, however,

the program modules communicate in
an arbitrary fashion, the selection prob-

lem is NP-complete.

Scheduling. In homogeneous environ-
ments, a scheduler assigns each pro-

gram module to a processor to achieve
desired performance in terms of pro-

cessor utilization and throughput. De-
signers usually employ three schedul-

ing levels. High-level scheduling, also

called job scheduling, selects a subset of
all submitted jobs competing for the

available resources. Intermediate-level
scheduling responds to short-term fluc-

tuations in the system load by tempo-
rarily suspending and activating pro-

cesses to achieve smooth system
operation. Low-level scheduling de-
termines the next ready process to be
assigned to a processor for a certain
duration. Different scheduling policies,

such as FIFO, round-robin, shortest-
job-first, and shortest-remaining-time,

can be employed at each level of sched-

uling.
While all three levels of scheduling

can reside in each machine in an HC
environment, a fourth level is needed to
perform with scheduling at the system
level. This scheduler maintains a bal-

anced system-wide workload by moni-

toring the progress of all program mod-

ules. In addition, the scheduler needs to
know the different module types and
available machine types in the environ-

ment, since modules may have to be
reassigned when the system configura-

tion changes or overload situations oc-

cur. Communication bottlenecks and

queueing delays incurred due to the
heterogeneity of the hardware add con-

straints on the scheduler.

Synchronization. This process pro-
vides mechanisms to control execution

sequencing and to supervise interpro-

cess cooperation. It refers to three dis-
tinct but related problems:

l synchronization between the send-

er and receiver of a message,
aspecification and control of the

shared activities of cooperating pro-

cesses, and
l serialization of concurrent accesses

to shared objects by multiple pro-
cesses.

23

A variety of synchronization meth-
ods have been proposed in the past:
semaphores, conditional critical regions,

monitors, and pass expressions, among
others. In addition, some multiproces-
sors include hardware synchronization

primitives. In general, synchronization

can be implemented by using shared
variables or by message-passing.

In heterogeneous computing, the syn-

chronization problem resembles that of

distributed systems. In both cases, a
global clock and shared memory are
absent. and (unpredictable) network

delays and a variety of operating sys-
tems and programming environments
complicate the process.

Several techniques used in distribut-

ed systems are again useful for solving
HC synchronization problems. Two
approaches are available: centralized

(one machine is designated as a control

node) and distributed (decision-mak-
ing is distributed across the entire sys-
tem). The correct choice depends on

the topology, reliability, speed, and
bandwidth of the network, in addition

to the types and number of machines in

the environment. However, reducing

synchronization overhead is important
to achieving large speedups in HC. Due
to the possibility of several concurrent-

ly operating autonomous machines in
the environment, application-code per-
formance in HC is more sensitive to

synchronization overheads. Frequent
hand-shaking for synchronization may
expend most of the available network

bandwidth.

Interconnection requirements. Cur-
rent local area networks (LANs) are

not suitable for HC because higher band-
width and lower latency networks are

needed. The bandwidth of commercial-
ly available LANs is limited to about 10

megabits per second. On the other hand,

in HC, assuming machines operating at
40 megahertz and 20 million instruc-
tions per second with a 32-bit word

Some academic sites

A number of academic sites are developing HC environments and applica-

tions (this list is not exhaustive).

Systems and architectures

Distributed High-Speed Computing (DHSC) project at Pittsburgh Supercom-

puting Center, University of Pittsburgh

Image-Understanding Architecture, University of Massachusetts at Amherst

Mentat, University of Virginia

Nectar-Based Heterogeneous System, Carnegie Mellon University

Northeast Parallel Architecture Center (NPAC), Syracuse University

Partitionable SIMD/MIMD (PASM), Purdue University

institutes and departments

Beckman Institute, University of Illinois at Urbana-Champaign

Department of Biological Sciences, University of California at Los Angeles

Department of Computer Science, Kent State University

Department of Computer Science, University of California at San Diego

Department of Computer and Information Sciences, New Jersey Institute of

Technology

Department of Electrical Engineering-Systems, University of Southern Cali-

fornia

Department of Math and Computer Science, Emory University

Minnesota Supercomputer Center (MSC), University of Minnesota at Minne-

apolis

Supercomputer Computations Institute (SCI), Florida State University

24

length, a bandwidth on the order of 1
gigabit/second is required to match the

computation and communication speeds.
Even if higher bandwidth networks

were available, three main sources of

inefficiency would persist in current net-
works. First, application interfaces in-
cur excessive overhead due to context

switching and data copying between the

user process and the machine’s operat-

ing system. Second, each machine must
incur the overhead of executing the high-

levelprotocols that ensure reliable com-
munication between program modules.
Also, the network interface burdens the

machine with interrupt handling and

header processing for each packet. This
suggests incorporating additional net-

work-interface hardware in each ma-

chine.
Nectar’* is an example of a network

backplane for heterogeneous multicom-

puters. It consists of a high-speed fiber-

optic network, large crossbar switches,
and powerful network-interface proces-

sors. Protocol processing is off-loaded

to these interface processors. A net-
working standard called Hippi (ANSI
X3T9.3 High-Performance Parallel In-

terface)‘? is being implemented for re-

alizing heterogeneous computing envi-

ronments at various research sites. Hippi
is an open standard that defines the
physical and logical link layers of a 100-

Mbytelsecond network.
In HC, hardware modules from vari-

ous vendors share physical intercon-

nections. Differing communication pro-

tocols may make network-management
problems complex. The following gen-
eral approaches for dealing with net-

work heterogeneity have been discussed
in the literature:

(1) treat the heterogeneous network

as a partitioned network, with each
partition employing a uniform set

of protocols;
(2) have a single “visible” network

management console; and

(3) integrate the heterogeneous man-
agement functions at a single

management console.

The IEEE Computer Society Techni-
cal Committee on Parallel Processing,

the Technical Committee on Mass Stor-

age, and several research sites are work-

ing together to define interface stan-
dards.

Programming environments. A par-

allel programming environment includes

COMPUTER

parallel languages, intelligent compil-

ers, parallel debuggers, syntax-directed

editors. configuration-management
tools, and other programming aids.

In homogeneous computing, intelli-

gent compilers detect parallelism in
sequential code and translate it into
parallelmachinecode.Parallelprogram-
ming languages have been developed to

support parallel programming, such as
MPL for MasPar machines, and Lisp
and C for the Connection Machine. In

addition, several parallel programming
environments and models have been

designed, such as Code, Faust, Sched-
ule, and Linda.

HC requires machine-independent
and portable parallel programming lan-
guages and tools. This requirement cre-

ates the need for designing cross-paral-

lel compilers for all machines in the
environment, and parallel debuggers for
debugging cross-machine code. Several

programming models and environments
have been developed in the past for

heterogeneous computing.R~‘J-‘6

r

Programming environment
I

The Parallel Virtual Machine (PVM)

system.16 evolved over the past three

years, consists of software that provides
a virtual concurrent computing envi-

ronment on general-purpose networks
of heterogeneous machines. It is com-

posed of a set of user-interface primi-

tives and supporting software that en-
able concurrent computing on a loosely

coupled network of high-performance
machines. It can be implemented on a

hardware base consisting of different
architectures, including single-CPU sys-

tems, vector machines, and multipro-

cessors (see Figure 6).

Figure 6. An overview of the Parallel Virtual Machine system.

work, presenting a virtual concurrent

computing environment to users.

in the environment. The inherent con-
currency in a distributed computing

environment, the lack of total ordering

of events on different machines, and the
nondeterministic nature of the commu-

nication delays between the processes

make the problem of evaluating perfor-

mance more complex.

Application programs view the PVM
system as a general and flexible parallel

computing resource that supports

shared memory, message-passing, and
hybrid models of computation. A het-

erogeneous application can be decom-
posed into several subtasks based on

the embedded types of computation
and then executed by using PVM sub-
routines on different matching ma-

chines available on the network. The
PVM primitives are provided in the

form of libraries linked to application

programs written in imperative languag-

es. They support process initiation and

management, message-passing, syn-

chronization, and other housekeeping
facilities.

Performance evaluation. Performance
tools are used to summarize the run-
time behavior of an application, includ-

ing analyzingresource use and the cause
of any performance bottleneck. Depend-

ing on its design, a performance tool can
describe program behaviors at many

levels of detail. The two most common
are the intraprocess and interprocess

levels. Intraprocess performance tools,

such as the gproffacility on BSD Unix,

the HP sampletY3000, and the Mesa Spy,
provide information about individual
processes.

The impact of the code type must be

considered. Thus, performance metrics

such as processor utilization, speedup.
and efficiency are difficult to compute.
Indeed, these metrics must be carefully

defined to make a reasonable perfor-

mance evaluation.

Performance tools for distributed

computing systems concentrate on the
interactions between the processes. In-

tegrated performance models that ob-

serve the status and the performance
events at all levels can be found in the

PIE (Programming and Instrumenta-

tion Environment) project.17

Image understanding

Designing performance-evaluation
tools for distributed computing systems

involves collecting, interpreting, and

evaluating performance information
from application programs, the operat-
ing system, the communication network,

and other hardware modules employed

Intrinsic parallelism in image process-
ing and the variety of heuristics avail-

able for problems in image understand-
ing make computer vision an ideal

vehicle for studying heterogeneous com-
puting. From a computational perspec-

tive, vision processing is usually orga-
nized as follows:

Support software provided by the
PVM system executes on a set of user-
specified computing elements on a net-

l Early processing of the raw image
(often called low-level processing). At

this level, the input is an image. The
output image is approximately the same

June 1993 2s

PVM system

size. Convolutions are performed on

each pixel in parallel. The data commu-
nication among the pixels is local to

each pixel.
l Interfacing between low-level and

image-understanding problems (often
termed intermediate-level processing).

The operations performed on each data
item can be nonlocal. The communica-

tion is also irregular as compared with
that of low-level processing.

l Image understanding. By this we
mean using the acquired data from the

above processing (for example, geomet-
ric features such as shape, orientation,

and moments) to infer semantic at-
tributes of an image. Processing at this

level can be classified as knowledge and/

or symbolic processing. Search-based
techniques are widely used at this level.

As evident in the preliminary results

from the 1988 DARPA Image-Under-
standing Benchmark,ls each level in com-

puter vision exhibits a different type of

parallelism. Therefore, at each level a
suitable type of parallel machine must
be employed. Corresponding to each of

the above classes of problems, a suit-
able class of architecture was proposed:3

l SIMD machines. Machines in this
class are well suited for computations in
low-level and in some intermediate-lev-

el computer vision problems because of
the regular dataflow and iconic opera-

tions in these two levels. For example,
two-dimensional cellular arrays and

mesh-connected computers have been
proposed for a large class of geometric
and graph-based problems in image pro-

cessing. Parallel machines such as the

MasPar MP-series and the Connection
Machine CM-2000 fall in this category.

Pipelined parallel machines (like the
Carnegie Mellon University Warp ma-

chine) are also well suited for low- and
intermediate-level vision computations.

l Medium-grained MIMD machines.
Various intermediate- and high-level

vision tasks are computationally inten-
sive with irregular dataflow. Moreover,

the size of the input is smaller than the

input image size. Parallel systems hav-
ing a set of powerful processors are
suitable for performing computations

in intermediate- and high-level vision
tasks. The Connection Machine CM-5,

Vistal2, Alliant FX-80, and Sequent
Symmetry 81 are some examples.

9 Coarse-grained MIMD machines.

High-level vision tasks such as image

understanding/recognition andsymbolic forms better than any single machine

processing employ complex data struc- considered. These results support the

tures. Many of the proposed algorithms suitability of a heterogeneous environ-

for such problems are nondeterminis- ment for computer vision applications.

tic, and architectural requirements for
these problems demand coarse-grained
MIMD machines. Parallel machines such

H
eterogeneous computing offers

as the Aspex ASP and Vista/3 are well new challenges and opportu-

suited for this class of problems. nities to several research com-

munities. To support this paradigm, the
following areas of research must be in-

vestigated:
Another approach is to build machines

having multiple computational capabil-
ities embedded in a single system. These
architectures consist of several levels.

Typically, the lower levels operate in

SIMD mode and the higher levels oper-
ate in MIMD mode. In the Image-Un-

derstanding Architecture,19 the lowest

level has bit-serial processors, and the

intermediate level consists of digital sig-
nal processors. The highest level con-

sists of general-purpose microproces-

sors operating in MIMD mode.

l Designing tools to identify hetero-

geneous parallelism embedded in

applications.
l Studying issues in high-speed net-

working, including available tech-

nologies and specialized hardware
for networking.

l Designing communication protocols

to reduce the cross-over overheads

that occur when different machines
communicate in the same environ-

An example vision task. We present
an example vision task and identify the

different types of parallelism. We have
chosen the DARPA Integrated Image-

Understanding Benchmark4 as an ex-
ample task. The overall task performed

by this benchmark is the recognition of
an approximately specified two-and-a-
half-dimensional “mobile” sculpture in

a cluttered environment, given images

from intensity and range sensors.

extraction are performed. Then, group-

ing the corners (an intermediate-level

vision operation) results in the extrac-

Steps in the benchmark can be identi-

fied by the vision-task classifications.
First, low-level operations such as con-

nected component labeling and corner

ment.
l Developing standards for parallel

interfaces between various ma-

chines.
l Designing efficient partitioning and

mapping strategies to exploit heter-
ogeneous parallelism embedded in

applications.
. Designing user interfaces and user-

friendlyprogrammingenvironments
to program diverse machines in the

same environment.

l Developing algorithms for applica-

tions with heterogeneous comput-
ing requirements.

tion of candidate rectangles. Finally,

Indeed, HC provides an opportunity

to bring together research from various

disciplines of computer science and en-

gineering to develop a feasible approach
partial matching of the candidate rect- for applications in the Grand Challeng-

angles is followed by confirmed match- es problem set. W

ing (a high-level vision task). The re-
sults obtained on several different

parallel machines were reported at the Acknowledgments

found in Weems et al.‘*

As they describe, directly interpret-
ing these results would be unfair, since

1988 Image-Understanding Workshop.
Details of the benchmark results can be

for many helpful discussions. This research
was partly supported by the National Sci-
ence Foundation under Grant No. IRI-
9145810.

We thank Richard Freund and Ashraf Iqbal

there were many undefined factors in
the benchmark description. However,

the benchmark does give pointers to References

performing operations at different lev-

els of vision. Overall, the simulation

results show that the (heterogeneous)
Image-Understanding Architecture per-

how different machines can be classi-

fied with respect to their suitabilitv for
currency: A Form of Distributed Heter-
ogeneous Supercomputing,” Supercom-
puting Review, Oct. 1990, pp. 47-50.

1. R. Freund and D. Conwell, “Supercon-

2. Newsletter of the IEEE Computer Soci-

26 COMPUTER

3

4

5

6

7

8.

9.

10

12 E. Arnould et al., “The Design of Nectar:
A Network Backplane for Heterogeneous
Multicomputers,” Proc. Inr’l Conf Ar-
chitectural Support for Programming
Languages and Operating Systems (AS-
PLO.5 I![), IEEE CS Press, Los Alami-
tos, Calif., Order No. Ml936 (microfiche),
1989, pp. 205-216.

13. ANSI X3T9.3, “High-Performance Par-
allel Interface: Hippi-PH. Hippi-SC, Hip-
pi-FP, Hippi-LE. and Hippi-MI,” Work-
ing Draft Proposed American National
Standard for Information Systems, Amer-
ican Nat’1 Standards Inst., New York,
Jan.-Apr., 1991.

etyTechnica1 Committee on Parallel Pro-
cessing (TCPP). Vol. 1, No. 1. Oct. 1992.

V.K. Prasanna Kumar. Parallel Algo-
rlrhms and Architectures ,for Image Un-
derstanding. Academic Press. Boston,
1991.

C. Weems et al.. “An Integrated Image-
UnderstandingBenchmark: Recognition
of a 2-112D Mobile,” Proc. DARPA Im-
age-understanding Workshop, Morgan
Kaufmann Publishers. San Mateo, Calif..
1988. pp. 11 l-126.

T. Berg and H.J. Siegel, “Instruction Ex-
ecution Trade-Offs for SIMD vs. MIMD
vs. Mixed-Mode Parallelism,” Proc. Int’l
Parallel Processing Symp. (IPPS), IEEE
CS Press. Los Alamitos. Calif., Order
No. 2167. 1991, pp. 301-308.

A. Khokhar et al.. “Heterogeneous Su-
percomputing: Problems and Issues,”
Proc. Workshop on Heterogeneous Pro-
cessing, IEEE CS Press, Los Alamitos.
Calif.. Order No. 2702. 1992. pp. 3-12.

R. Freund. “Optimal Selection Theory
for Superconcurrency.” Proc. 89 Super-
compuring, IEEE CS Press, Los Alami-
tos, Calif., Order No. M2021 (microfiche),
1989. pp. 13-17.

G. Agha and R. Panwar, “An Actor-
Based Framework for Heterogeneous
Computing Systems.” Proc. Workshop
on Heterogeneous Processing, IEEE CS
Press, Los Alamitos, Calif., Order No.
2702, 1992, pp. 35-42.

S. Chen et al., “A Selection Theory and
Methodology for Heterogeneous Super-
computing,” Proc. Workshop on Hetero-
geneous Processing, IEEE CS Press, Los
Alamitos, Calif., Order No. 3532-02, 1993.

M. Wang et al., “Augmenting the Opti-
mal Selection Theory for Superconcur-
rencv,” Proc. Workshop on Heteroge-
two& Processing, IEEE CS Press, Los
Alamitos, Cahf., Order No. 2702, 1992,
pp. 13-22.

11. M. labal. “Partitioning Problems for Het-
erogeneous Computer Systems,” tech.
report, Dept. of Electrical Engineering-
Systems, Univ. of Southern California,
Los Angeles, 1993.

Ashfaq A. Khokhar is a
PhD candidate in the
Department of Electri-
cal Engineering-Systems
at the University of
Southern California, Los
Angeles. His areas of re-
search include parallel
architectures and scal-
able algorithms, image

understanding and parallel processing, VLSI
computations,interconnectionnetworks,and
heterogeneous computing.

Khokhar received the BSc degree in elec-
trical engineering from the University of
Eneineerine and Technolonv. Lahore. Paki-
sta; in 198yand the MS de;ee in computer
engineeringfromsyracuse University in 1988.
He is a student member of the Computer

Cho-Li Wang is a PhD
candidate in the Depart-
ment of Electrical Engi-
neering-systems, Uni-
versity of Southern
California. Los Angeles.
His areas of research
include computer archi-
tectures and algorithms,
image understanding
.

and parallel processmg, image compression,
and heterogeneous computing.

Society.
Wang received the BS degree in computer

science and information engineering from
NationalTaiwan University,Taiwan, in 1985
and the MS degree in computer engineering
from the University of Southern California
in 1990.

Viktor K. Prasanna
(V.K. Prasanna Kumar)
is an associate professor
in the Department of
Electrical Engineering-
Systems, Uni;ersity if
Southern California, Los
Angeles. His research
interests include paral-
lel computation, com-

Readers can contact Viktor K. Prasanna at
the School of Engineering, Department of
Electrical Engineering-Systems, University
of Southern California, University Park, Los
Angeles, CA 90089-2562.

June 1993 27

14. C. de Castro and S. Yalamanchili, “Parti-
tioning Signal Flow Graphs for Execu-
tion on Heterogeneous Signal Process-
ing Architectures,” Proc. Workshop on
Heterogeneous Processing, IEEE CS
Press. Los Alamitos, Calif., Order No.
2702. 1992. pp. 81-86.

15. J. Potter. “Heterogeneous Associative
Computing,” Proc. Workshop on Heter-
ogeneous Processing, IEEE CS Press, Los
Alamitos, Calif., Order No. 3532.02,1993.

16. V. Sunderam, “PVM: A Framework for
Parallel Distributed Computing,” Con-
currency: Practice and Experience, Vol.
2, No. 4. Dec. 1990, pp. 315-339.

17. Z. Segall and L. Rudolph, “PIE: A Pro-
gramming and Instrumentation Environ-
ment for Parallel Processing,” IEEESofi-
ware. Vol. 2, No. 6, Nov. 1985, pp. 22-27.

18. C. Weems et al., “Preliminary Results
from the DARPA Integrated Image-
Understanding Benchmark,” Parallel Ar-
CllitecturesandAlgorithnzsforlmage Un-
dersranding, V.K. Prasanna, ed.. Academ-
ic Press, Boston, 1991, pp. 399-499.

19. D. Shu, J. Nash, and C. Weems, “A Mul-
tiple-Level Heterogeneous Architecture
for Image Understanding,” Proc. Int’l
Con& Pattern Recognition, IEEE CS
Press, Los Alamitos, Calif., Vol2, Order
No. 2063, 1990.

puter architecture. VLSI computations. and
computational aspects of image processing,
vision. robotics. and neural networks.

Prasanna received the BS degree in elec-
tronics engineering from Bangalore Univer-
sity, the MS degree from the School of Auto-
mation. Indian Institute of Science. and the
PhD in computer science from Pennsylvania
State University in lY83. He serves as the
symposium chair of the 1994 IEEE Inter-
national Parallel Processing Symposium and
is a subject area editor of the Journal of
Parallel and Distributed Computing, IEEE
Transactionson Compurers, and IEEE Trans-
actions on Signal Processing. He is the found-
ing chair of the IEEE Computer Society
Technical Committee on Parallel Processing
and is a senior member of the Computer
Society.

Muhammad E. Shaaban
is a PhD candidate in
the Department of Elec-
trical Engineering-Sys-
tems, University of
Southern California. His
areas of research include
parallel optical inter-
connection networks,
parallel algorithms for

image processing, and heterogeneous com-
puting.

Shaaban received the BS and MS degrees
in electrical engineering from the University
of Petroleum and Minerals, Dhahran, Saudi
Arabia, in 1984 and 1986, respectively. He
recently served as a session chair at the Inter-
national Parallel Processing Symposium. He
is a student member of the Computer Soci-
ety.

