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Abstract

Detecting and segmenting cell regions in microscopic

images is a challenging task, because cells typically do

not have rich features, and their shapes and appearances

are highly irregular and flexible. Furthermore, cells of-

ten form clusters, rendering the existing joint detection

and segmentation algorithms unable to segment out indi-

vidual cells. We address these difficulties by proposing

a Heterogeneous Conditional Random Field (HCRF), in

which different nodes have different state sets. The state

sets are designed in such a way that the resulting HCRF

model could encode all possible detection/segmentation

cases while keeping its identifiability and compactness. At-

tributed to the provably optimal design of the state sets,

the proposed model successfully realizes joint detection

and segmentation of the cell regions into individual cells

whether the cells are separate or touch one another. Exper-

iments on two different types of cell images show that the

HCRF outperforms several recently proposed methods.

1. Introduction

Reliable detection and segmentation of individual cells

in microscopic images is one of the most important com-

ponents of vision-based automated systems for cell behav-

ior analysis [18]. Unfortunately, such a task is highly non-

trivial even when images are taken with advanced imaging

systems such as phase-contrast microscopy. The difficul-

ties lie in several aspects. Firstly, unlike many objects in

natural images, cells under phase-contrast microscopy do

not have distinctive textures. As a result, detection algo-

rithms such as SIFT [11] that heavily rely on textures are

not applicable. Secondly, cells are highly morphable. As

is shown in Figure 1, all the cells are of the same type in a

single image taken by a phase-contrast microscope. How-

ever, they have such a wide range of shapes and appearances

that many of them cannot be nicely isolated by rectangu-

Figure 1. Examples of the same type of cells (C2C12 muscle stem

cells) with disparate shapes and appearances. Note that a rect-

angular window is often not able to isolate a single cell without

including other cells and/or the background.

Figure 2. The left two images show clustered cells of two types

(C2C12 muscle stem cells and bovine aortic endothelial cells).

The right two images show background distractions for the two

types of cells.

lar windows without including a large portion of other cells

and/or the background. Consequently, detection methods

based on sliding windows [6, 4, 7] are not effective. Thirdly,

as we could observe in Figure 1, boundary-like structures

within individual cells would fool vision algorithms into

over-segmenting those cells. Fourthly, cells often form clus-

ters, generating blurred boundaries and causing additional

difficulties in segmenting out individual cells. Please see

examples given in the left two images of Figure 2. Lastly,

debris and other particles become strong background dis-

tractions in many cases, as is shown in the right two images

of Figure 2.

Due to the high complexity of detecting individual cells

as a whole, it would be more desirable to first make predic-

tions on a large number of interest points as to how likely

they belong to cell regions, as is proposed by Pan et al. [14].

Similar to object parts, interest points have more regular-

ity than individual cells, and are therefore easier to classify.

This is to some extent similar to part-based object detec-

tion [5, 1, 3], with the exception that the spatial relations of



the ”parts” is highly flexible. In [14], interest points within

cell regions are detected by thresholding the probability of

each point belonging to a cell given local image features.

To obtain cell-level detection, we could reason over the

interest points and segment the cell regions into individ-

ual cells by grouping those interest points based on how

likely adjacent points come from the same cell. The method

proposed in [14] transitively group the points whose pair-

wise conditional probability of being within the same cell

is higher than a threshold. The total number of cells is

automatically obtained at the end of the process. Alterna-

tively, other segmentation techniques such as Normalized

Cuts [9, 19, 12, 13] could be employed to segment the cell

regions, yet the total number of cells, which is part of the

information we want to infer, must be known in advance.

A major weakness of the approach in [14] is that de-

tection and segmentation of the cell regions are performed

separately, where each component requires a critical thresh-

old that trades off between precision and recall. (Applying

Normalized Cuts to the entire image does not circumvent

this problem, because spectral clustering itself does not tell

whether a segment belongs to a cell or background.) In

fact, jointly dealing with detection and segmentation could

enhance the performance for both of them. For instance,

knowing that an ambiguous point lies close to an obvious

cell point within the same plain region makes it more cer-

tain that the ambiguous point probably belongs to a cell.

In other words, we need to enable the local detectors and

segmenters to share information. In this process, a globally

optimal solution could be reached, and critical thresholds

could be reduced or even eliminated.

Conditional Random Field (CRF) [10] is a powerful tool

to achieve joint detection and segmentation. Many algo-

rithms based on CRF have been proposed to perform object

detection and segmentation in natural images [17, 16, 15].

However, those algorithms are not readily applicable to the

detection and segmentation of cell regions, because those

algorithms perform region level rather than object level seg-

mentation. In other words, if two objects of the same class

are not completely separated in space, they will be regarded

as a single region. This would cause a huge problem in seg-

menting cell images: since cells often form clusters, those

algorithms would regard the entire cell cluster as a single

segment.

Murphy et al. proposed iterative inference in CRF to

tackle this difficulty [2]. In this algorithm, the state set of

each node includes three states: background, the current

cell, and all the other cells. Each round of inference seg-

ments out a single cell, and this process repeats until the

segmented region is too small. However, there is an inher-

ent contradiction in such a design of state set: the current

cell and an adjacent cell belong to different classes, while

two adjacent cells other than the current cell belong to the

same class. In fact, these two cases are statistically identical

in terms of appearance in the image.

Ideally, we could design the state set of the CRF in such

a way that each state is a unique cell ID, and then infer the

optimal state (i.e. cell ID) for each node. Nevertheless, it

is difficult to determine the size of the state set since we

do not know the total number of cells. Even if we know the

total number, optimal state assignment is still unidentifiable,

because the IDs of different cells are interchangeable.

The main contribution of this paper is that we design a

novel Heterogeneous CRF (HCRF) that jointly detects and

segments all the cells in a single round of inference. The

total number of cells is part of the optimal solution, and no

critical parameter is required. We achieve this by defining

heterogeneous state sets over the CRF: each node is asso-

ciated with a state set specific to that node, which includes

the background label and the cell IDs allowed for that node.

The state sets are generated by a restricted propagation

rule, and the inference over the HCRF is subject to a non-

maxima suppression rule. Together, the resulting model is

provably complete, sound, unique and irreducible in terms

of encoding all possible detection/segmentation scenarios

(please see definitions in Section 2).

The remainder of this paper is organized as follows. Sec-

tion 2 describes the construction and inference over the Het-

erogeneous CRF (HCRF). The application of this model

to the detection and segmentation of cell regions in phase-

contrast microscopic images is described in Section 3. Ex-

perimental results are presented in Section 4, and we con-

clude the paper in Section 5.

2. Heterogeneous Conditional Random Field

2.1. Problem Reformulation

Joint detection and segmentation of cell regions in a mi-

croscopic image can be abstracted as the following problem.

Given an image containing some unknown number of

foreground objects, and a set of N interest points located

either in the background or in one of the foreground ob-

jects, we want to detect all those interest points belonging to

the foreground objects, and meanwhile segment those fore-

ground points into individual sets corresponding to individ-

ual foreground objects.

In what follows, we refer to cells as (foreground) objects,

and interest points simply as points.

We construct an undirected graphical model to capture

the probabilistic attributes of the points. Each point corre-

sponds to a node in the graph. The structure of the graph

is highly irregular, as the locations of the points could be

arbitrary. We form the edges of the graph by linking each

node with up to k nearest neighbors within radius r. The pa-

rameters k and r determine the complexity of the network,

and the performance is insensitive to their specific values as



long as they are reasonably large.

The state set of each node (i.e. the set of states each node

can take) consists of the background ID and object IDs. As

each point can form a separate object, the number of ob-

ject IDs is equal to the total number of points. The task of

joint detection and segmentation is equivalent to assigning

to each node a state from its state set. The log conditional

distribution of such a joint assignment given the image X is

logP (S|X) =
∑

i

ωi(Si|Xi)+
∑

i,j

ϕij(Si, Sj |Xij)−logZ(X),

(1)

where Si is the state assigned to node i, S = {Si}
N
i=1

is the

set of states assigned to all the N nodes, ωi(Si|Xi) is the

nodal potential of node i taking state Si given local image

features Xi, and ϕij(Si, Sj |Xij) is the pairwise potential

of nodes i and j taking states Si and Sj respectively, given

pairwise image features Xij . Z(X) is the partition function

which is a constant during inference.

The nodal potentials can be directly computed from the

probability of each node belonging to a foreground object

given local image features:

ωi(Si|Xi) =

{

1− P (ni ∈ F|Xi) if Si = 0

P (ni ∈ F|Xi) if Si 6= 0
(2)

where P (ni ∈ F|Xi) denotes the probability of node i be-

longing to the foreground region F given local image fea-

tures Xi. Note that Si ∈ Si.

The pairwise potential can be computed from the condi-

tional probability of an ordered pair of nodes having one of

the five possible relations: background-background, same

foreground object, background-foreground, foreground-

background, and different foreground objects. Let Pbb, Psf ,

Pbf , Pfb, Pdf be the conditional probabilities of the five

pairwise relations respectively, then we could define the

pairwise potential as

ϕij(Si, Sj |Xij) =































Pbb if Si = Sj = 0

Psf if Si = Sj 6= 0

Pbf if Si = 0 and Sj 6= 0

Pfb if Si 6= 0 and Sj = 0

Pdf if Si 6= 0 and Sj 6= 0 and Si 6= Sj

(3)

Having defined the potentials, we perform the most prob-

able explanation (MPE) inference over the graphical model

using max-product belief propagation [8, 20] to obtain the

optimal detection/segmentation solution Ŝ:

Ŝ = argmax
S

logP (S|X). (4)

The problem seems to have been solved. However, as we

will see soon, a lot of difficulties still need to be addressed.

2.2. Heterogeneous Conditional Random Field

If we simply make the state set of every node include

the background ID and all possible object IDs, then this

is a conventional CRF. However, such a state set design is

highly redundant, although it could represent all the detec-

tion/segmentation cases. To see why, just assume that all the

points belong to the same object, and then we have N dif-

ferent state assignments to represent this single case. Such

redundancy renders the optimal state assignment unidenti-

fiable. In addition, it would significantly increase computa-

tional complexity.

Therefore, we need to design a CRF with heterogeneous

state sets that change size and content over different nodes.

We also need to specify some rules when generating the

state sets and doing inference, so that the resulting model is

complete, irreducible, unique, and sound. The definitions of

these properties, along with some introductory definitions,

are given below.

Definition 1 For a given graph GN with N nodes, a Het-

erogeneous Conditional Random Field (HCRF) is a Condi-

tional Random Field (CRF) which has a heterogeneous set

of state sets {Si}
N
i=1

associated with the nodes {ni}
N
i=1

of

the graph, and which has a set of rules governing state set

generation and inference.

Definition 2 For a given graph GN with N nodes and an

HCRF with heterogeneous state sets {Si}
N
i=1

and a set of

rules, a state assignment combination is an ordered set of

states {Si}
N
i=1

allowed by the rules of the HCRF such that

each node ni is assigned state Si where Si ∈ Si.

Definition 3 Given graph GN , we say an object in a detec-

tion/segmentation case is legal if, for any two nodes within

the object, there exists at least one path connecting them

along which every node belongs to that object. In other

words, a legal object must be a connected region.

Definition 4 A legal detection/segmentation case allowed

by the structure of a graph GN only consists of legal objects

and/or the background.

Definition 5 (completeness) An HCRF is complete with

respect to GN if, for any legal detection/segmentation case

allowed by the structure of GN , there exists at least one

state assignment combination that can realize such a case.

Definition 6 (irreducibility) An HCRF is irreducible with

respect to GN if removing any state from any individual

state set Si would make the HCRF no longer complete.

Definition 7 (uniqueness) An HCRF is unique with re-

spect to GN if there exists at most one state assignment

combination for the same legal detection/segmentation

case.

Definition 8 (soundness) An HCRF is sound with respect

to GN if every state assignment combination represents a

legal detection/segmentation case.

Now we show how to construct an HCRF (i.e. the het-

erogeneous state sets and the set of rules) that possesses all



the four properties.

Each node is associated with a specific state set which

specifies all the eligible states the node could take. Suppose

there are N nodes, and they are given an arbitrary order.

For the mth node, its state set consists of three types of

states. The first type is called background state which takes

on value 0, meaning the node could be in the background.

The second type is called initiating state which takes on

value m, meaning the node could initiate a new object in-

dexed m. This could happen if all the m− 1 lower-indexed

nodes form m − 1 different foreground objects. The third

type is called inherited states. This type includes the initi-

ating states of other nodes propagated to the mth node via

edges. For example, if the mth node has an inherited state

j, it means the mth node could belong to object j initiated

by the jth node.

However, if we allow the initiating state of a node to

propagate freely to all the other nodes, then all the nodes

would have exactly the same state set which includes states

0 through N . As is previously discussed, this set of state

sets is redundant, or, equivalently, not unique. Redundancy

arises when the state sets of nodes belonging to the same

object share states greater than the smallest initiating state

among them. (E.g., for the upper object in Figure 3, the

smallest initiating state among nodes 2 and 3 is 2, yet they

both have states 3,4,5 in their state sets.) To remove this

type of redundancy, we introduce the restricted propaga-

tion rule: the mth node neither accepts nor passes on any

propagated state greater than its own initiating state m. To

see why, suppose an object contains M nodes, and node m

has the smallest initiating state m among them. To represent

the case that the M nodes belong to this object, they should

take the same state, denoted as S. The restricted propa-

gation rule prohibits node m from having any state greater

than m in its state set. Hence, S cannot be greater than m,

eliminating the type of redundancy exemplified in the right-

most image of Figure 3. An example of the heterogeneous

state sets generated under the restricted propagation rule is

shown in the leftmost image of Figure 3.

Nevertheless, as S could be less than m, the restricted

propagation rule alone does not guarantee the uniqueness

of the HCRF. Similarly, the soundness of the HCRF may

not be satisfied either. An example is illustrated in Figure

4. However, we solve all these problems by introducing

a simple rule after the MPE inference over the graphical

model. It is not hard to see that the redundant (or illegal)

state assignment combinations have exactly the same con-

ditional probability as the desirable state assignment combi-

nation. This (easy) unidentifiability can be directly resolved

by enforcing the non-maxima suppression rule, which spec-

ifies that in case the MPE probability of a node is shared by

several states, the node should take the largest state among

them. The non-maxima suppression rule, along with the re-

Figure 3. Left: The heterogeneous state sets generated under

the restricted propagation rule. Here, the circled numbers are

node indices, the green numbers indicate the ground state, the

red numbers represent the initiating states, and the black num-

bers show the inherited states. Middle left: The state sets re-

sulting from free propagation of the initiating states. Middle

right: The desirable state assignment combination to represent a

detection/segmentation case where blue ellipses indicate objects.

Right: A redundant state assignment combination that represents

the same detection/segmentation case as in the middle right image.

Figure 4. Violation of uniqueness and soundness when only the

restricted propagation rule is enforced. Left: The heterogeneous

state sets generated under the restricted propagation rule. Middle

left: Desirable state assignment combination. Middle right: A

redundant state assignment combination. Right: The state assign-

ment combination represents an illegal detection/segmentation

case in which object 1 does not form a connected region.

stricted propagation rule, ensures that the nodes belonging

to the same object can only take a common state equal to

the smallest initiating state among the nodes. In the exam-

ple given in Figure 4, the MPE probability over the state set

of node 4 is shared by states 1, 3, and 4. The non-maxima

suppression rule forces node 4 to select state 4 as the final

solution. The same happens to nodes 5. This way, both

uniqueness violation and soundness violation are avoided.

Now we formally prove that the HCRF defined by the

proposed heterogeneous state sets and the rule set consist-

ing of the restricted propagation rule and the non-maxima

suppression rule, is indeed complete, irreducible, unique,

and sound.

Theorem 1 (completeness) For any given graph GN , the

HCRF defined by the proposed heterogeneous state sets and

the rule set is complete.

Proof Any legal detection/segmentation case is com-

posed of at most three types of segments: background re-

gion, single-node object, and multi-node object. For any

background region formed by a set of nodes {nbi}
K
i=1

, it

can be realized by setting Sbi = 0, i = 1, ...,K, since

0 is always in the state set for any node. For any single-

node object formed by node ni, it can be realized by set-

ting Si = i, since the initiating state i is always in the



state set of node ni. For any multi-node object formed

by a set of nodes {nfi}
M
i=1

, it can be realized by setting

Sfi = mini fi, i = 1, ...,M , where mini fi is the small-

est initiating state among the M nodes. This is realizable

because every other node in the set is somehow connected

to the node with the smallest initiating state (by the defi-

nition of legal detection/segmentation), and such a state is

accepted by every other node (by the restricted propagation

rule). End of proof.

Theorem 2 (irreducibility) For any given graph GN , the

HCRF defined by the proposed heterogeneous state sets and

the rule set is irreducible.

Proof For any node i with a state set Si, removing the

background state 0 from Si makes node i unable to be in the

background; removing the initiating state i from Si makes it

impossible to represent the case in which each node forms a

different object; removing any inherited state k < i makes

it impossible to represent the case in which nodes 1 through

k−1 form k−1 different objects, and nodes k and i belong

to the same object other than the previous k−1 objects. End

of proof.

Theorem 3 (uniqueness) For any given graph GN , the

HCRF defined by the proposed heterogeneous state sets and

the rule set is unique.

Proof Evidently, if there exist more than one state as-

signment combintations to represent a legal clustering case,

then all those state assignment combinations would have ex-

actly the same conditional probabilities. This means that,

on the node level, the MPE probability of each node would

be shared by several states corresponding to those state as-

signment combinations. The non-maxima suppression rule

forces each node to take the largest state among those states.

This ensures that the optimal solution given by the HCRF

is unique, and that the optimal solution always satisfies, 1)

for any single-node object, the node must take its initiating

state; and 2) for any multi-node object, the nodes within

the object must take a common state equal to the smallest

initiating state among the nodes. (Note that the restricted

propagation rule has already ruled out the possibility for the

nodes taking a common state greater than the smallest ini-

tiating state among them.) According to the proof in Theo-

rem 1, this optimal solution does represent the given detec-

tion/segmentation case. Therefore, the optimal solution is

valid and unique. End of proof.

Theorem 4 (soundness) For any given graph GN , the

HCRF defined by the proposed heterogeneous state sets and

the rule set is sound.

Proof If the HCRF is not sound, then there exists a so-

lution of the HCRF that corresponds to an illegal detec-

tion/segmentation case in which a set of nodes taking a

common state do not form a legal (i.e. connected) object.

This set of nodes can always be decomposed into several

groups of nodes where each group forms a connected ob-

ject. We could perform such a decomposition on every

illegal object until all the objects are legal. Then these

objects, along with the background, form a legal detec-

tion/segmentation case. As we know from the proof of The-

orem 3, for any legal detection/segmentation case, the opti-

mal solution given by the HCRF always assigns the small-

est initiating state to the nodes in an object. As different

legal objects do not overlap, they have different smallest

initiating states. As a result, any unconnected set of nodes

that compose an illegal object could never take any common

state in the optimal solution given by the HCRF. This con-

tradicts the assumption that the unconnected set of nodes

form an illegal object by sharing a common state. End of

proof.

Now we have proved that the HCRF possesses all the

four properties. One may still wonder if the ordering of the

nodes matters. As the proofs above do not assume any spe-

cific node ordering, the four properties are satisfied for any

node ordering. However, the node ordering does affect the

total number of states over all the nodes. (Note that irre-

ducibility still holds for the heterogeneous state sets gener-

ated under any node ordering.) In order to reduce the total

number of states as much as possible, a node with more

neighbors should be given a lower index, because such a

node would block more propagation paths of states greater

than its index (which is equal to its initiating state) due to

the restricted propagation rule.

The final detection/segmentation result can be obtained

as follows: the nodes assigned with a non-zero state are

detected as belonging to the foreground region, and indi-

vidual foreground objects are segmented out by associating

the nodes assigned with the same non-zero state. The total

number of foreground objects is the total number of non-

zero states assigned.

3. Cell Detection and Segmentation with the

HCRF

In this section, we briefly describe detecting and seg-

menting cell regions in microscopic images using the HCRF

detailed in Section 2.

We follow the approach proposed in [14] to obtain inter-

est points. As each cell contains at least one local minima

of intensity under phase-contrast microscopy, the interest

points are selected as local minima of intensity. The loca-

tions of those local minima are further refined by a mean-

shift process to provide more regularity. For the sake of

comparison, we also extract the same unary features and

pairwise features as in [14]. The unary features are used to

train a cell/background classifier which is an SVM with a

Gaussian kernel. In testing, the probabilistic output of the

cell/background classifier gives the value of P (ni ∈ F|Xi)
which is then used to compute the nodal potentials accord-



ing to Equation 2. Unlike the approach in [14], the pairwise

features are used to train a multi-relation classifier which

is a multi-class logistic regression classifier. In testing, the

probabilistic output of the multi-relation classifier provides

the values of Pbb, Psf , Pbf , Pfb, and Pdf in Equation 3.

Inference over the HCRF gives the detection/segmentation

result over the interest points.

As cells cannot extend a long range, two nodes that are

far apart cannot belong to the same cell. Therefore, the

propagation of the initiating state of each node is conducted

only within a certain radius centered at the node. This radius

is set as 150 pixels, which is large enough. When construct-

ing the graph, the radius to search for the nearest neighbors

is set as r = 30, and the maximum number of the nearest

neighbors is set as k = 5.

After classifying all the interest points, we need to clas-

sify the remaining pixels as well, so that cell boundaries can

be obtained. To achieve this efficiently, we associate each

remaining pixel with one of the interest points in its vicinity

(within 30 pixels), and assign the label of that interest point

to the pixel. To determine which interest point to choose,

we compute, for each interest point nearby, the maximal

intensity along the line connecting the pixel to the interest

point, and the interest point with the lowest such intensity

is associated with the pixel.

4. Experiments

In this section, we evaluate the performance of our pro-

posed HCRF in cell detection/segmentation and compare it

with the method proposed by Pan et al. [14] which treats de-

tection and segmentation separately, as well as the approach

proposed by Chen et al. [2] which employs a conventional

CRF. Pan’s method could be used as is. To adapt Chen’s ap-

proach to our experiments and allow for a fair comparison,

we set the “DNA potential” (i.e. nodal potential) to be the

probabilistic output of the cell/background classifier, and

the “boundary potential” (i.e. pairwise potential) to be the

sum of Pbf , Pfb, and Pdf obtained from the multi-relation

classifier.

We perform experiments on two different types of cells:

bovine aortic endothelial cells and C2C12 muscle stem

cells. For each type of cell, 10 images are used for training

and 10 images for testing. Although the number of images

is relatively small, yet each image contains a large number

of cells, and the algorithms need to classify each individ-

ual interest point and segment out each individual cell. For

the first type of cells, 20 images in total contain about 4,900

cells, 15,200 interest points, and 41,800 pairs of points. The

statistics for the second type of cells are 9,800 cells, 94,100

interest points, and 260,840 pairs of points. The results ob-

tained in our experiments are therefore statistically signifi-

cant.

The cell/background classifier gives an initial probability

Figure 5. Quantitative comparison of point-level detection per-

formance. “P”, “R”, and “F” represent precision, recall and F-

measure, respectively.

Figure 6. Quantitative comparison of cell-level detec-

tion/segmentation performance. “P”, “R”, and “F” represent

precision, recall and F-measure, respectively.

Figure 7. Quantitative comparison of the shape quality for cor-

rectly detected cells. Please see the text for details.

of each point belonging to cell regions. The method in [14]

sets a threshold on this probability to obtain the detection

result on a point level. When the threshold is set as 0.5, the

correctness of such prediction on an example testing image

for the two types of cells is shown in the second column

from the left in Figure 9. We could see that detection us-

ing unary features alone tends to make mistakes where cells

form clusters and/or have non-typical appearances. Mis-

takes are also likely in face of background distractions.

The quantitative evaluation of point-level detection is

summarized in Figure 5, where the mean and standard de-

viation of precision, recall and F-measure are computed

over all the testing images for each type of cells. The

performance is enhanced by up to 3% over [14] when de-

tection is performed jointly with segmentation using the

HCRF. Comparing the third column with the second col-

umn in Figure 9, we observe that many mistakes made by

the cell/background classifier are corrected by the HCRF in-

ference. Although the method in [2] also jointly performs

detection and segmentation, the use of a conventional CRF

with suboptimal state sets leads to less improvement, or

even some deterioration, in the detection performance. This

is illustrated both qualitatively in the rightmost column in

Figure 9 and quantitatively in Figure 5.

As for cell-level detection/segmentation performance,

the HCRF still outperforms the other algorithms. Figure

10 displays the final detection/segmentation results on an

example testing image for the two types of cells, and quan-

titative results are listed in Figure 6. Compared with the



Figure 8. Comparison of the HCRF with the best possible perfor-

mance of the method in [14]. The left plot is for bovine cells, and

the right plot for C2C12 cells. The blue curve is the precision-

recall curve obtained by setting different values of the two critical

parameters in the method of [14]. The red square indicates the

performance of using cross-validation to determine the parame-

ters. The purple diamond indicates the best possible performance

by manually tuning the parameters. The green star indicates the

performance of the HCRF. Corresponding F-measures are shown

next to the symbols.

algorithm of [14], the HCRF achieves an F-measure about

3% higher for C2C12 cells and 2% higher for bovine cells.

Such an improvement is significant, because unlike the al-

gorithm in [14] which has two critical parameters to tune,

the HCRF does not require any critical parameters. The

performance of the method in [2] is rather poor due to the

inherent contradiction of its state sets as is mentioned in the

Introduction. It is observed that the method tends to mis-

takenly associate points belonging to different cells. This

leads to a large number of missed cells. Such a behavior

is understandable, because the CRF in [2] is asked to clas-

sify all the other individual cells as the same class, which

is not reasonable. The HCRF circumvents this problem by

employing the heterogeneous state sets that could represent

every individual cell.

In addition to precision and recall, we also report the

quality of shapes for the cells correctly detected. For an

algorithm-generated cell and a ground-truth cell that form a

match, the shape quality of the algorithm-generated cell is

measured as the ratio of the area of the intersection to the

area of the union of the two cell regions. The average shape

quality of all the correctly detected cells is listed in Figure

7 for the two types of cells. We can see that the HCRF

also achieves the highest shape quality for those correctly

detected cells.

Finally, we show in Figure 8 that the optimal detec-

tion/segmentation solution obtained by the HCRF is even

better than the best performance achievable by tuning the

parameters along the precision-recall curve generated by the

approach in [14]. This is not surprising: as long as we have

an optimal design of the state sets, the joint detection and

segmentation in the HCRF provides additional information

that is not available when detection and segmentation are

performed separately.

5. Conclusion

In this paper, we propose a Heterogeneous Conditional

Random Field (HCRF) to perform joint detection and seg-

mentation of cell regions in microscopic images. In order to

make the graphical model expressive enough to encode all

detection/segmentation cases while avoiding unidentifiabil-

ity and excessive complexity, we carefully design a hetero-

geneous set of state sets and a rule set, such that the model

is provably optimal. Such a model design enables our algo-

rithm to effectively incorporate detection and segmentation

into a unified probabilistic framework and achieve an opti-

mal solution without the need of tuning any critical param-

eters.
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