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Abstract

In the research realm of game theory, interdependent networks have extended the content

of spatial reciprocity, which needs the suitable coupling between networks. However, thus

far, the vast majority of existing works just assume that the coupling strength between net-

works is symmetric. This hypothesis, to some extent, seems inconsistent with the ubiqui-

tous observation of heterogeneity. Here, we study how the heterogeneous coupling

strength, which characterizes the interdependency of utility between corresponding players

of both networks, affects the evolution of cooperation in the prisoner’s dilemma game with

two types of coupling schemes (symmetric and asymmetric ones). Compared with the tradi-

tional case, we show that heterogeneous coupling greatly promotes the collective coopera-

tion. The symmetric scheme seems much better than the asymmetric case. Moreover, the

role of varying amplitude of coupling strength is also studied on these two interdependent

ways. Current findings are helpful for us to understand the evolution of cooperation within

many real-world systems, in particular for the interconnected and interrelated systems.

Introduction

Cooperation behavior is ubiquitous among social individuals ranging from micro-organisms

to animals and human beings [1, 2], which, however, seems inconsistent with the prediction of

Darwinian theory [3]. To resolve this issue, evolutionary game theory has become one of key

paradigms behind many scientific disciplines [4, 5]. Borrowing from the analysis methods of

statistical physics [6] and network science [7–11], network reciprocity is amongst the most

well-known mechanisms that may sustain cooperation in evolutionary games [12]. That is to

say, when players are arranged on the spatially structured topology and interact only with their

direct neighbors, cooperation can survive by means of forming compact clusters, which mini-

mizes the exploitation and protect those cooperative individuals located within the interior of

such clusters [13]. After this seminal discovery, the role of spatial topology and its various
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underlying promotion mechanisms in evolutionary games have been intensively explored [14–

17]. Typical examples include complex networks [18–22], the presence of mobile agents [23–

26], the diversity between players [27–31], reward and punishment [32–37], co-evolutionary

scenarios [38–44], to name but a few.

In spite of great accumulated progress, huge quantities of existing works simply assume that

players have only interactions with others in the same network, which is actually inconsistent

with the empirical observations. In reality, individuals are simultaneously the elements of more

than one network in most, yet not all, natural and engineering systems [45, 46], and it thus

becomes instructive going beyond the traditional isolated network theory and proposing a

novel framework. The interdependent networks, defined as the combination class of interre-

lated networks in a nontrivial way, recently become a fundamental tool to quantitatively

describe the interaction among networks as well as between these constituents [47]. This archi-

tecture is actually suggested in the research of network robustness, where even seemingly irrele-

vant changes in one network can have catastrophic and very much unexpected consequence in

another network [48–50]. Along this way, interdependent network has become a hot topic of

general interest, is extensively employed to study diverse subjects upon them, such as disease

spreading and immunization [51–53], random walk [54, 55], traffic [56, 57], voting dynamics

[58, 59] as well as the emergency and promotion of cooperation [60, 61].

With regard to game models on interdependent networks, the dynamic process between dif-

ferent networks are mainly coupled via utility function and strategy information transition

[62]. In the pioneering work, Jin et al. proposed a fashion of symmetric utility: individual utility

is composed of its own payoff and that of its counterpart from another network, which is con-

trolled by coupling strength [63]. It is interestingly unveiled that cooperation will simulta-

neously be promoted below a critical threshold, but above which the phenomenon of

symmetry breaking (namely, cooperation level is unequal again) takes place, which is induced

by asynchronous expansion between heterogeneous strategy couples of both networks. Resort-

ing to importance of synchronization across networks, another recent report [64] shows that

simultaneous formation of correlated cooperator clusters on interdependent networks can

enhance cooperation to a completely dominated level, which enriches the context of traditional

network reciprocity. Besides, the utility function is further extended to biased coupling way

[65], partially inter-correlated fashion as well as co-evolution between coupling strength and

imitation ability [66]. While for information coupling, it can be assumed that individual deci-

sion depends on not only the payoff advantage of a neighbor but also how popular the adapting

strategy in the network of its counterpart [67]. Furthermore, Attila and Perc also displayed that

the excess correlation of players between two networks can promote the cooperation to an

extremely high level [68]. Meanwhile, Jiang and Perc investigated the impact of external links

between networks on the cooperation behavior, in which external links lie between a lattice

and complex network (e.g., random or scale-free network), and the results revealed that an

intermediate interdependence optimally facilitates the spreading of cooperative behaviour

between groups [69].

If we look back upon the above-mentioned literatures, however, we can find a common

characteristic: the coupling strength between networks is always homogeneous, irrespective of

coupling fashion. While in the realistic life, heterogeneity plays a significant role in human

behavior, even including the individual decision-making process [70]. An interesting question

thus takes place: if there exists the heterogeneous coupling strength within the framework of

interdependent networks, how does it affect the spatial reciprocity of cooperation? Aiming to

answer this question, here we consider the heterogeneous coupling in interdependent net-

worked games. It is unambiguously unveiled that increasing heterogeneity is beneficial for the

dominance of cooperation yet may impede cooperation in some special conditions.
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Methods and Models

We consider an evolutionary prisoner’s dilemma game that is characterized with the tempta-

tion to defect T = b (the highest payoff received by a defector if playing against a cooperator),

reward for mutual cooperation R = 1, and the punishment for mutual defection P as well as the

sucker’s payoff S (the lowest payoff received by a cooperator if playing against a defector)

equaling 0. As a standard practice, 1< b� 2 ensures a proper payoff ranking (T> R> P� S)

and captures the essential social dilemma between individual and common interests [13]. The

players are staged on two square lattices, each of size L × L, where initially each player x is des-

ignated either as a cooperator (sx = C) or defector (sx = D) with the equal probability. Based on

direct interactions with nearest neighbors, player x can obtain its accumulated payoff πx. Due

to the interdependence between networks, individual utilities used to determine fitness are

determined by itself and its parter x0 from another network (i.e., via external links between cor-

responding players), in the mode Ux = πx+α × πx0. The parameter 0� α� 1 represents the cou-

pling strength (or the strength of external links), and consequentially, the larger its value, the

higher the potential increase of utility of two players that are connected by the external link.

It is worth mentioning that the interdependence of two networks does not allow strategies

to be transferred across networks. The game is thus iterated forward in accordance with the

Monte Carlo simulation procedure comprising the following elementary steps. First, a ran-

domly selected player x acquires its utility Ux by playing the game with its nearest neighbors

and taking into account also the potential addition to the utility stemming from the possible

external link. Next, one randomly chosen neighbor y also acquires its utility Uy in the same

way. Lastly, player x attempts to adopt the strategy sy from player y with a probability deter-

mined by the Fermi function

Wðsy ! sxÞ ¼
1

1þ exp½ðUx � UyÞ=K�
; ð1Þ

where K = 0.1 quantifies the uncertainty related to the strategy adoption process [71]. During

one full Monte Carlo step, each player on both networks has a chance to adopt one of the

neighboring strategies once on average.

To incorporate individual heterogeneity into the coupling strength α, we can express the

coupling strength α as follows

a ¼ A � w; ð2Þ

where χ denotes a uniformly distributed number in the interval [−1,1], and
R

1

�1
Awdw ¼ 0

ensures that the average value of coupling strength across both networks is zero. The tunable

parameter A thus dictates the amplitude of coupling strength. Obviously, A = 0 decouples both

networks and renders the traditional case to be recovered. The larger the value of A is, the

stronger the heterogeneity of interdependency is. To mimick the realistic cases, Eq (2) can be

divided into two cases as illustrated: the first case is the symmetric coupling (case I) that means

the coupling strength between player x and its partner x0 is the same (i.e., αx = αx0); another one

is the asymmetric coupling (case II), which is denoted as αx 6¼ αx0 (namely, the random number

χ is different for x and x0).

The results of Monte Carlo simulations presented below were obtained from L = 200 to 400

lattices. The key quantity, the fraction of cooperators FC, was determined within the last 104

full MCS steps after sufficient long relaxation time steps are discarded. If not stated, the total

number of MCS steps is assumed to MCS = 5 × 104. Moreover, since the heterogeneous

coupling may introduce additional disturbances, the final results were averaged over up to 20

independent realizations for each set of parameter values in order to assure suitable accuracy.
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Simulation Results

To begin with, we examine how cooperation varies under the heterogeneous interdependency

or coupling strength A. Fig 1 depicts the fraction of cooperators (FC) as a dependence on b for

different values of A. Compared with the traditional uncoupled case (namely, A = 0), it is clear

that the increment of A will totally promote cooperation, irrespective of symmetric or asym-

metric coupling. Moreover, the critical value bC, indicating the disappearance of cooperation,

also enhances with A increasing. Since the larger A denotes stronger interdependence heteroge-

neity between networks, the observations suggest the consideration of both heterogeneous

coupling promotes the evolution of cooperation, which further extends the content of interde-

pendent network reciprocity [64].

Except for the joint advancement of cooperation level, we can also capture some difference

for both heterogeneous coupling schemes. Compared with the case II, it is explicit that the

Fig 1. Stationary fraction of cooperators in the whole population (FC ) as a function of defection parameter ( b ) under different amplitude of
coupling strength ( A). On the top panel (a), corresponding players on two networks always have the same coupling strength which is taken from the
interval [−A, A] according to Eq (2), and the cooperation can be greatly promoted as A increases; On the bottom panel (b), corresponding players on two
networks hold distinct coupling strengths which are independently derived from Eq (2), and the cooperation is also promoted but the enhancement level is
much smaller than that in the top panel. Other parameters are set to be L = 200 and K = 0.1.

doi:10.1371/journal.pone.0129542.g001
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elevation effect of case I is more pronounced, which means that cooperation becomes more

robust and cooperators can resist the exploitation of defectors better. Under case I, the cou-

pling strength between corresponding partners is symmetric, and the symmetric utility can eas-

ily render the corresponding agents to attain the consensus strategy. On the contrary, in case

II, the interdependency values between each pair of players are independently taken from the

uniform interval [-A, A], and the utility will be asymmetrically calculated and it is difficult to

arrive at the coordination state.

To further understand the origin of cooperation created by this type of interdependency, we

explore the dynamical evolution of fraction of cooperation on two interdependent networks.

Fig 2 presents the time course of cooperation fraction (FC) and the percentage of cooperative

pairs (fCC). Here, the cooperative pair (CC) means that a player at one lattice is a cooperator

and the corresponding partner on the other lattice is also a cooperator. Similarly, we can define

the cooperator-defector pair (CD, it means that a player on one lattice is a cooperator and cor-

responding partner is a defector on the other lattice) and defector-defector pair (DD, it points

out that two matching players are both defectors on these two networks). Among them, the left

three panels [from Fig 2a–2c] characterize the evolution of FC and fCC under case I. We can

clearly observe that, on one hand, the dynamical evolution of fraction of cooperators (FC) for

two lattices can almost keep strictly consistent at each MCS step since the utility calculation of

an individual equally considers the contribution from the payoff of corresponding partner; on

the other hand, the evolutionary trend of FC is qualitatively in step with that of fCC. In fact, we

can also record the evolution of fraction of other strategy pairs (i.e., fCD or fDD) during the

Monte Carlo simulation (although fCD and fDD are not shown here), and find that only the evo-

lution of fCC dominates the cooperative behaviors on these two interdependent networks. In

addition, there is also a subtle phenomenon to be noted that an optimal amplitude A exists

here for the smaller defection parameter b = 1.05, and A = 0.5 leads to the highest fraction of

cooperators which well agrees with the result in Fig 1.

At the same time, the right three panels [from Fig 2d–2f] illustrate the dynamical evolution

of cooperation under the case II. Here, any pair of partners on two lattices will asymmetrically

integrate the payoff from the opposite one into the fitness computation of focal player, and the

fraction of cooperators (FC) cannot completely fall into step with each other. However, the

qualitative tendency is always kept to be consistent for FC on two lattices, and thus the total

fraction of cooperators will be obtained by averaging the fraction of cooperators on these two

lattices as described in Fig 1. Again, it is also shown that the dynamical evolution of FC can

qualitatively hold the same behavior as the fraction of cooperative pairs fCC. These results indi-

cate that the evolution of cooperation between these two interdependent lattices is dictated by

the CC strategy pairs.

To illustrate the evolution of cooperation in depth, we depict the characteristic snapshots of

cooperators and defectors for various scenarios after enough time steps in Fig 3. In this figure,

the first two rows of panels characterize the distribution of cooperators and defectors on two

layered lattices, in which the coupling strength is independently set among players within each

lattice according to Eq (2), that is, case II. Under this case, when A = 0, the system is reduced

into two traditional lattices, all players cannot resist the temptation of defection and evolve

into the full defection state on these two lattices. However, when A> 0, the evolutionary state

can have a chance to escape from the fate of full defection and cooperators can organize into

some cooperative clusters to avoid the employment of defectors. Thus, it is indicated that inte-

grating the payoff from the corresponding player on the other lattice into the focal player’s fit-

ness evaluation helps to promote the cooperation. Meanwhile, the clusters become larger and

larger as A increases, and even a strongly connected giant component is created so that only

the sporadic defectors exist in the upper and lower lattices when A = 1.0. Likely, the bottom
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Fig 2. Time evolution of fraction of cooperators and cooperative pairs between two interdependent networks. The left three panels (a, b, c) depict the
time course of evolution under the case I, where the corresponding players hold the same interdependency taken from the interval [−1,1] (i.e., A = 1)
according to Eq (2). Panel (a) and (b) denote the fraction of cooperators on the upper lattice and lower one, respectively, and panel (c) represents the fraction
of cooperative pairs which means the corresponding players are both cooperators on these two lattices. While for the case II in which each individual takes
the interdependency value between −1 and 1, the right three panels, from panel (d) to (f), describe the time evolution of corresponding quantities. The
defection parameter b is fixed to be b = 1.05, other parameters are set to be L = 200 and K = 0.1.

doi:10.1371/journal.pone.0129542.g002
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two lines of panels describe the evolutionary patterns where the coupling strength is set to be

same for corresponding players on two interdependent lattices, that is, case I. It is explicitly

observed that the cooperation can be further elevated when compared to the case II, and an

interesting phenomenon different from the case II is that the optimal A exists when A> 0 var-

ies, and the current result is again consistent with the above-mentioned results. In the same

manner, A = 0 leads to two independent traditional lattices.

In order to highlight the role of cooperative pairs (CC) in the evolution of cooperation on

interdependent networks, we delineate the characteristic patterns at the last time step for differ-

ent initial distribution of cooperators and defectors in Figs 4 and 5. Unlike the traditional

setup, each player can take the C orD strategy with the identical possibility, here 40 × 40 play-

ers at the heart areas are cooperators at the upper and/or lower lattice and the rest ones are

defectors. In Fig 4, the corresponding players between two lattices hold the same coupling

strength mutually, and we can observe that the cooperation can persist only if the players in

Fig 3. Characteristic patterns between cooperators and defectors on two interdependent lattices at MCS = 50000 when A is changed from 0 to 1.0.
The panels for the first two rows denote the distribution of cooperators and defectors for the upper lattice and lower lattice in the case II; while the bottom two
rows of panels represent the evolutionary patterns of players for the case I. In all these panels, red dots stand for cooperators and green dots represent
defectors. From these figures, it is clearly shown that the fraction of cooperators is largely enhanced as A increases, meanwhile the cooperative pairs (C-C
type coupling way) have the predominant advantage and dominate the evolutionary behavior on interdependent lattices. In particular, the designating way of
the coupling strength between players on interdependent lattices can also affect the evolution of cooperation. The simulation parameters are set as follows:
MCS = 50000, b = 1.05, L = 200 and K = 0.1, and A is varied from 0 to 1.0 with the step length 0.25 (from the left panels to the right ones).

doi:10.1371/journal.pone.0129542.g003
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Fig 4. For a specific initial setup, characteristic patterns between cooperators and defectors on two interdependent lattices at MCS = 1 and
MCS = 50000 under case I. In all panels, red dots represent cooperators and green dot denote defectors. For the left four panels, central cooperators are
initially set on upper and lower lattices at the same time; only cooperators exist on the center of upper lattices in the middle four panels; while cooperators
merely exist on the center of lower lattices in the right four panels. However, the coupling strength for each pair of players on two lattices is set to be equal, in
which the coupling strength is taken from Eq (2). It is clearly indicated that cooperative pairs support the emergence of cooperation on interdependent
networks. From left to right, the only difference lies that initial conditions are set as different parameter deployments between cooperators and defectors. The
simulation parameters are set as follows: MCS = 50000, b = 1.05, L = 200, K = 0.1 and A = 0.5.

doi:10.1371/journal.pone.0129542.g004

Fig 5. For a specific initial setup, the characteristic patterns between cooperators and defectors on two interdependent lattices at MCS = 1 and
MCS = 50000 under case II. In all panels, red dots represent cooperators and green dot denote defectors. For the left four panels, central cooperators are
initially set on upper and lower lattices at the same time; only cooperators exist on the center of upper lattices in the middle four panels; while only
cooperators exist on the center of lower lattices in the right four panels. Here, the coupling strength for each player is independently assigned from Eq (2).
Likewise, the coupling of C-C type setup facilitate the evolution of cooperation on interdependent networks, and only that the fraction of cooperators is slightly
less than that under the case I. The simulation parameters are still set to be: MCS = 50000, b = 1.05, L = 200, K = 0.1 and A = 0.5.

doi:10.1371/journal.pone.0129542.g005
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the central areas are both set to be cooperators on these two lattices, as shown in the left four

panels. While for the middle or right four panels, it can be seen that the defectors will take over

the whole system when only central players at the upper or lower lattice are set to be coopera-

tors. Thus, the coupling between cooperators on these two interdependent lattices is the key to

the evolution of cooperation. Similar phenomena can be identified in Fig 5 where correspond-

ing agents independently take the value of coupling strength from Eq (2), and again validates

the fact that the cooperative pairs (CC pairs) facilitate the cooperation behavior. The only dif-

ference is that the cooperation level under this case is much lower that that in case I.

Additionally, we investigate the effect of amplitude of coupling strength (A) on the coopera-

tion at a fixed defection parameter. In Fig 6, the fraction of cooperators (FC) is plotted as a

function of A when b is set to be 1.05. It is indicated that the cooperation can be promoted if A

is beyond a specific critical threshold (Ac). In reality, the coupling strength will be very small

and can only integrate a very low percentage of payoff of corresponding player into the fitness

value if A is less than Ac, at this time the cooperation cannot be promoted and the full defection

is arrived at. However, when A transcends over Ac, the cooperation level can be greatly elevated

for two types of coupling schemes with increasing A. An interesting phenomenon is found that

the highest fraction of cooperator emerges at A� 0.5 under the case I, where the full coopera-

tion is almost reached within the whole population. Nevertheless, FC will continue to expand

for the second coupling mechanism when A adds up to the maximum (A = 1), that is, there is

no optimal effect concerning the cooperation. It is also worthy to be remarked that at any given

value of A, the level of cooperation for the first fitness evaluation method (case I) will always be

higher than that under the second scheme (case II). For this reason, the corresponding players

Fig 6. Relationship between the fraction of cooperators and the amplitude of coupling strength at a
fixed defection parameter. In the whole, the tendency is that the cooperation will be elevated as A
increases. However, under the symmetric case (i.e., case I), the optimal amplitude of coupling strength
exists, but the asymmetric scenario (case II) leads to the monotonic variation of cooperation as coupling
strength grows. The parameter setup is still set to be: MCS = 50000, b = 1.05, L = 200 and K = 0.1.

doi:10.1371/journal.pone.0129542.g006
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on two interdependent lattices own the same coupling strength and resulting cooperative pairs

with large coupling values may exist, which will greatly facilitate the evolution of cooperation.

The current simulation again points out the origin of cooperation on the interdependent cir-

cumstances, and adding the payoff from the corresponding one on the other lattice into the

utility estimation for the focal player on the one lattice is conducive to shedding some lights on

the emergence and persistence of cooperation.

Conclusions and Discussions

To summarize, the impact of network interdependency, which is quantified and characterized

by the coupling between the payoff of corresponding partners on two interdependent lattices,

on the evolution of cooperation in the spatial prisoner’s dilemma game is studied here in detail.

In the current setup, we calculate an individual fitness by combing his/her own payoff on one

lattice and the payoff from the corresponding partner on the other one, that is, the players will

be virtually interrelated with or dependent on each other through the evaluation of fitness.

However, the coupling strength is not a constant among player within the whole population,

which is often assumed for most works regarding interdependent networked game at present,

but uniformly taken from a specific interval [−A, A] according to Eq (2). Furthermore, we con-

sider two different coupling schemes for the players on these two interdependent lattices. The

first case is that the corresponding players on two lattices are hypothesized to hold the equal

coupling strength (case I—the symmetric case) which is a random value between −A and A; In

the second case, each player in the system independently and stochastically takes the value

based on Eq (2), that is, the corresponding partners on two lattices may hold a completely dif-

ferent coupling strength (case II—the asymmetric case). Extensive simulations indicate that

the interdependency or the coupling between players on two lattices can largely enhance the

cooperation level within the whole population. Meanwhile, characteristic snapshots and cluster

analysis point out that the cooperative pairs between corresponding partners on two lattices

drives the evolution of cooperation. In addition, the symmetric coupling strength setup (case I)

leads to the higher cooperation when compared to the asymmetric (case II), that is, the asym-

metric coupling loses the evolutionary advantage. Our results convincingly demonstrated that

the emergence or persistence of cooperation within many real-world systems can be accounted

for by the interdependency between meta-populations or sub-systems, which deserves to be

deeply explored in the future.
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