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Background: Pyruvate dehydrogenase (PDH) complex converts pyruvate into acetyl-
CoA by pyruvate decarboxylation, which drives energy metabolism during cell growth,
including prostate cancer (PCa) cell growth. Themajor catalytic subunit of PDH, PDHA1, is
regulated by phosphorylation/dephosphorylation by pyruvate dehydrogenase kinases
(PDKs) and pyruvate dehydrogenase phosphatases (PDPs). There are four kinases,
PDK1, PDK2, PDK3 and PDK4, which can phosphorylate and inactivate PDH; and two
phosphatases, PDP1 and PDP2, that dephosphorylate and activate PDH.

Methods: We have analyzed by immunohistochemistry the expression and
clinicopathological correlations of PDHA1, PDP1, PDP2, PDK1, PDK2, PDK3, and
PDK4, as well as of androgen receptor (AR), in a retrospective PCa cohort of patients.
A total of 120 PCa samples of representative tumor areas from all patients were included
in tissue microarray (TMA) blocks for analysis. In addition, we studied the subcellular
localization of PDK2 and PDK3, and the effects of the PDK inhibitor dichloroacetate (DCA)
in the growth, proliferation, and mitochondrial respiration of PCa cells.

Results:We found heterogeneous expression of the PDH complex components in PCa
tumors. PDHA1, PDP1, PDK1, PDK2, and PDK4 expression correlated positively with
AR expression. A significant correlation of PDK2 immunostaining with biochemical
recurrence and disease-free survival was revealed. In PCa tissue specimens, PDK2
displayed cytoplasmic and nuclear immunostaining, whereas PDK1, PDK3 and PDK4
showed mostly cytoplasmic staining. In cells, ectopically expressed PDK2 and PDK3
were mainly localized in mitochondria compartments. An increase in maximal
mitochondrial respiration was observed in PCa cells upon PDK inhibition by DCA, in
parallel with less proliferative capacity.
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Conclusion: Our findings support the notion that expression of specific PDH complex
components is related with AR signaling in PCa tumors. Furthermore, PDK2 expression
associated with poor PCa prognosis. This highlights a potential for PDH complex
components as targets for intervention in PCa.
Keywords: prostate cancer (PCa), pyruvate dehydrogenase (PDH), pyruvate dehydrogenase kinase (PDK),
androgen receptor (AR), dichloroacetate (DCA)
INTRODUCTION

PCa is a long-latency cancer, evolving from low malignancy early
stages (prostatic intraepithelial neoplasia) to high-grade and
metastatic adenocarcinomas, which frequently do not respond to
anti-androgen hormone therapies (castrate-resistant prostate
cancer, CRPC) (1–3). The androgen pathway is the central
signaling pathway in PCa, together with the retinoblastoma (RB),
PI3K/PTEN/AKT/mTOR, and RAS/RAF/MAPK pathways (4–7).
Frequent alterations in PCa include gene amplification of MYC
transcription factor and androgen receptor (AR), the gene deletion
of NKX3.1 homeobox, RB1, and PTEN phosphatase, and the gene
reorganization of the ETS family of transcription factors (8–12).
Currently, the identification of early tumor markers, including
metabolic biomarkers, and molecular targets for effective PCa
treatment is a research priority (13–17).

PCa presents a high extent of metabolic modifications, mainly
relatedwith increase in aerobic glycolysis and protein and fatty acid
synthesis (18, 19). As in other cancer types, this metabolic switch
facilitates the synthesis ofbiomolecules requiredby the tumorcell to
support its rapid growth and division (20). PCa cells display high
levels of aerobic glycolysis in themore advanced tumor stages,while
primary PCa cells show higher oxidative respiration than non-
transformed prostatic cells. This is mainly due to a decrease in Zn
accumulation in primary PCa cells, which allows citrate oxidation
through the Krebs cycle. High de novo fatty acid synthesis is
characteristic of PCa progression towards CRPC, which is
facilitated by high expression of fatty acid synthase (FASN) and
other lipogenic enzymes (21, 22). PCa progression and metastasis
has been recently linked to glycolytic enzymes such as pyruvate
kinase isoform M2 (PKM2) (23). Together, these observations
suggest that specific interference with key metabolic reactions
could be useful to improve the current therapies for advanced PCa.

The enzyme pyruvate dehydrogenase (PDH) is essential in the
glycolytic and Krebs cycle metabolism, and play important roles in
carcinogenesis, making this enzyme a feasible therapeutic target in
cancer (24–27). PDH exists as a multi-enzyme complex formed by
three catalytic (E1 [two genes: PDHA1-2], E2 [DLAT], and E3
[DLD]) and three regulatory subunits (E3BP [PDHX], PDKs [four
genes: PDK1-4], and PDPs [two genes: PDP1-2). The mRNA
expression patterns of these genes in prostate tissues and prostate
tumors are distinct, as shown in databases GTEx (Genotype-
Tissue Expression; https://gtexportal.org) and TCGA (The Cancer
Genome Atlas; https://www.proteinatlas.org), but comprehensive
comparative studies on the expression at the protein level of these
enzymes in PCa are lacking. The association of PDKs expression
with poor prognosis and resistance to anti-cancer therapies is
2

widely documented, and PDKs inhibition (which results in PDH
activation) constitutes a potential therapeutic possibility in several
cancer types, including PCa (28–34). In addition, differing results
have been reported on the association of other PDH components,
such as PDHA1 and PDP1, with PCa prognosis (35, 36). Together,
this makes relevant to investigate comparatively the individual
expression and function of the distinct components of the PDH
complex in relation with PCa progression and malignancy.

In this study, we have evaluated the expression and subcellular
localization of components of the PDH complex in PCa, including
PDHA1, PDP1, PDP2, PDK1, PDK2, PDK3 and PDK4. We have
found specific correlations between the expression of some of these
PDH complex components and AR expression in PCa tumors.
Furthermore, a significant correlation of PDK2 PCa tumor
immunostaining with patient biochemical recurrence and
disease-free survival has been revealed. We discuss the potential
of PDH complex components as targets for intervention in PCa.
MATERIAL AND METHODS

Cell Lines
Simian kidney COS-7 cells were cultured in DMEM (Dulbecco’s
Modified Eagle’s Medium) (Lonza, Basel, Switzerland) medium
supplemented with 5% FBS (Fetal Bovine Serum) (Sigma Aldrich,
St. Louis,MO,USA).Humanprostate carcinoma LNCaP cells were
cultured in RPMI-1640 (Lonza) medium supplemented with 10%
FBS. Human prostate carcinoma DU-145 cells were cultured in
EMEM (Eagle’s Minimal Essential Medium) (Lonza) medium
supplemented with 10% FBS. All media were supplemented with
1% L-Glutamine and 1% penicillin/streptomycin (Lonza). Cells
were incubated at 37°C and 5% CO2.

Plasmids, Transfection, and Immunoblot
Human PDK2 (NM_002611.4) and PDK3 (NM_001142386)
cDNAs, cloned in pcDNA3.1+/C-DYK mammalian expression
plasmids (C-terminal Flag fusion), were purchased from
GeneScript (Piscataway, NJ, USA). pRK5 Flag-PTEN was made
by PCR incorporation of an N-terminal Flag sequence to human
PTEN (NM_000314) from pRK5 PTEN (37). Cells were
transiently transfected with empty vector, pRK5 Flag-PTEN,
pCDNA3.1 PDK2-Flag, or pCDNA3.1 PDK3-Flag using
GenJet reagent (SignaGen, Frederick, MD, USA). Cells were
lysed in M-PER extraction reagent (ThermoFisher, Waltham,
MA, USA) and processed for immunoblot as described (38).
Primary antibody used was mouse anti-Flag (1:500, MAB3118,
Sigma Aldrich). Secondary antibody was IRDye 680RD Goat
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anti-Mouse (LI-COR, Lincoln, NE, USA). Blots were processed
with Odyssey CLx Imaging system (LI-COR).

Metabolism/Seahorse
Oxygen Consumption Rate Assay Kit (Cayman Chemical, Ann
Arbor, MI, USA) was used to measure extracellular oxygen
consumption levels according to manufacturer’s instructions.
XF96 Mitochondrial stress test was performed using Seahorse
Extracellular Flux Analyzer XF96e (Agilent Technologies, Santa
Clara, CA, USA) to measure the oxygen consumption rate
(OCR) of cells according to manufacturer’s instructions.
Seahorse assays were performed in at least triplicate wells in
three independent experiments for each condition.

Cell Proliferation and Confluence
Cell proliferation/viability of LNCaP and DU-145 cells was
assessed as described (39). 5x103 cells/well were plated in 96-
well culture plates. A day after plating the cells, different
concentrations of dichloroacetate (DCA; Sigma Aldrich) or
vehicle were added. Cell proliferation was measured with the
CellTiter 96®AQueous One Solution Cell Proliferation Assay Kit
(MTS Assay, Promega, Madison, WI, USA) in 96-well plates, and
luminescence was measured at 490 nm using Victor3 microplate
reader (PerkinElmer, Waltham MA, USA). To assess cell
confluence, 5x103 cells/well were seeded on 96-well plates and
the cell confluence was measured every three hours by the
IncuCyte FLR imaging microscopes (Essen Biosciences, Ann
Arbor, MI, USA), as described (40). The cells were treated with
the indicated DCA concentrations 21 h post-plating and were
scanned for 72 h after adding the drug.

Immunofluorescence
3x104 COS-7 cells per well were plated in 8-well chamber slides
for immunofluorescence (Ibidi, Gräfelfing, Germany). Transient
transfection was performed as described above. Cells were
washed and mitochondria were stained with Mitotracker™

Red CMXRos following manufacturer’s instructions (250 nM,
20 min) (ThermoFisher). before they were fixed in methanol for
5 min at -20°C and blocked in blocking solution (Phosphate
Buffered Saline (PBS) containing 3% Bovine Serum Albumin
(BSA). Mouse anti-Flag primary antibody (1/100 in blocking
solution) was incubated overnight at 4°C in a wet chamber.
Subsequently, cells were washed three times with PBS-BSA for 10
min prior to incubation with anti-mouse FITC secondary
antibody (1/100) for 1 h in a wet chamber and darkness at
room temperature. Cells were washed and mounted in Mounting
Medium with DAPI (4’6-diamidino-2-phenylindole) (Abcam)
and visualized by standard [NIKON ECLIPSE TE2000 (Nikon,
Tokyo, Japan)] or confocal microscopy [ZEISS LSM880
AIRYSCAN (Zeiss, Jena, Germany)].

Clinical Data and Tumor Samples
The PCa cohort has been previously described (41). Briefly, it
consisted of 120 PCa patients treated with radical prostatectomy
at Cruces University Hospital (Barakaldo, Spain) between 2000
and 2005. An experienced pathologist (JIL) selected tumor areas
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with well‐preserved tissue, representative of the whole tumor,
from formalin‐fixed and paraffin‐embedded (FFPE) tumor tissue
blocks, and TMA blocks were made from these areas. 4 mm
sections were made from the TMA blocks, one of which was
stained with hematoxylin and eosin (H&E) to verify the presence
of tumor content. Biochemical recurrence (BR) was defined as a
Prostate-Specific Antigen (PSA) measurement equal to or greater
than 0.4 ng/ml after surgery. Follow‐up has been recorded until
October 1, 2016. Cancer of the Prostate Risk Assessment
Postsurgical (CAPRA‐S) score was calculated according to its
definition (42), that is, by combining preoperative PSA, Gleason
grade, surgical margins, extracapsular extension, seminal vesicle
invasion, and lymph node invasion.

Immunohistochemistry and Scoring
Immunohistochemistry (IHC) was carried out using the following
primary antibodies: PDHA1 (Sigma Aldrich, HPA047864, dilution:
1:10), PDP1 (Sigma Aldrich, HPA019081, dilution 1:10), PDP2
(Sigma Aldrich, HPA019950, dilution 1:65), PDK1 (Cell Signaling,
Danvers, MA, USA, HPA027376, dilution: 1:120), PDK2 (Sigma
Aldrich, HPA008287, dilution 1:25), PDK3 (Sigma Aldrich,
HPA046583, dilution 1:50), PDK4 (Sigma Aldrich, HPA056731,
dilution 1:100), and AR (SP107 ready to use, Ventana, Roche, Basel,
Switzerland) antibodies. Antigen retrieval was performed at pH 6
and pH 9 using PT link system (Agilent Technologies). IHC
immunostainings were performed in automated immunostainers
(EnVision FLEX, Dako Autostainer Plus; Dako, Glostrup, Denmark
and BenchMark Ultra, Ventana Medical Systems, Tucson, AZ,
USA). Antibodies were incubated for 30 min, followed by
secondary antibody incubation for 15 min using Goat Anti
Mouse and Anti-rabbit Ig/HRP secondary antibodies (Dako),
FLEX/HPR for 20 min, FLEX DAB/Sub Chromo for 10 min, and
finally counterstaining with hematoxylin. Immunostainings were
evaluated in tumor cells as negative (weak/no staining) or positive
(medium/high staining). The analysis was performed using a Nikon
Eclipse 80i microscope (Nikon, Tokyo, Japan).

Statistical Analysis
Error bars in results represent ± standard deviation (S.D.). Cell
data was analyzed by GraphPad Prism t Test Calculator (San
Diego, CA, USA), where significance was calculated using two-
tailed student t-test. p values smaller than 0.05 were considered
significant and are indicated with an asterisk (*). All experiments
were performed at least twice, and results shown are from one
representative experiment. The SPSS version 23 software (SPSS
Inc., Chicago, IL, USA) was used for statistical calculations of the
clinical material. For all the experiments, any p value below 0.05
was considered statistically significant.
RESULTS

PDH complex components, including the negative regulators of
PDH activity, PDKs, have been involved in PCa carcinogenesis
(27). We analyzed the role of PDKs in the growth, proliferation,
May 2022 | Volume 12 | Article 873516
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and mitochondrial respiration of PCa cells, using the PDK
inhibitor dichloroacetate (DCA), which selectively shifts the
cancer cell metabolism from glycolysis to oxidative
phosphorylation (29). As expected, DCA treatment inhibited
in a dose-response manner the growth/viability of LNCaP and
DU-145 PCa cells, as shown by MTS assay and cell confluence
measurements (Figures 1A–C). In addition, an increase in
maximal oxygen consumption rate (OCR) was observed in
LNCaP PCa cells upon PDK inhibition by DCA, in parallel
with less proliferative capacity and cell viability (Figure 1D).
These results suggest a role for PDKs in the regulation of cell
growth and viability of PCa cells.

This prompted us to investigate the expression of PDKs and
other PHD complex components in PCa patient tumor samples.
The expression of PDHA1, PDP1, PDP2, PDK1, PDK2, PDK3,
and PDK4, as well as the expression of AR was evaluated by IHC
in a retrospective cohort of 120 PCa patients (Tables 1–3). FFPE
samples from representative tumor areas were included in TMAs
for analysis, and expression was scored as negative or positive.
We observed heterogeneous expression of PDHA1, PDP1, PDP2,
PDK1, PDK2, PDK3, and PDK4 in PCa specimens, and
examples of different patterns of staining for the different
PDKs are shown in Figure 2. PDK2 expression in tumors
displayed a nuclear/cytoplasmic pattern, whereas PDK1, PDK3,
and PDK4 expression was mostly cytoplasmic (Figure 2). PDP1
expression positively correlated with stage (p = 0.037) and
extracapsular extension (p = 0.027) (Table 1). Importantly, we
found a significant positive correlation of PDK2 immunostaining
with biochemical recurrence (p = 0.033), and negative
correlation with disease-free survival (p = 0.045), suggesting a
negative prognostic role for PDK2 expression in PCa (Table 2).
Significant positive correlations were found with respect to AR
expression for PDHA1 (p = 0.035), PDP1 (p = 0.046), PDK1 (p =
0.003), PDK2 (p = 0.001), and PDK4 (p = 0.031) expression
(Table 3 and Figure 3). PDP2 and PDK3 did not show any
significant correlation. Together, these findings show a
heterogeneous expression pattern of PDH complex
components in PCa related with AR and suggest an association
between PDK2 expression and PCa progression.

PDH complex components are found at the mitochondria, but
they have also been found in the nucleus, which has been
proposed to have clinical implications (36, 43). Next, we
investigated by immunoblot and immunofluorescence the
expression and subcellular localization of PDK2 and PDK3
(tagged with a Flag epitope at the C-terminus) ectopically
expressed in COS-7 (as a suitable cell model for ectopic protein
expression) and LNCaP PCa cells (Figures 4A–D). The
expression of the phosphatase PTEN was monitored as a
control. PDK2-Flag and PDK3-Flag proteins displayed a
predominant punctate pattern of expression that overlapped
with Mitotracker marker staining, indicating a major
mitochondrial localization in cells (Figures 4B–D). This is in
accordance with the mitochondrial subcellular localization
reported for PDH components in other human cancer cell lines
(43). In contrast, Flag-PTEN displayed cytoplasmic/nuclear
localization (Figure 4B). Together, these results illustrate
differential subcellular localization of PDKs in cells and in
Frontiers in Oncology | www.frontiersin.org 4
PCa tissues. In the case of PDK2, which showed predominant
nuclear localization in PCa tissues, further studies are required to
A

B

C

D

FIGURE 1 | Viability, proliferation and mitochondrial function of PCa cells
treated with DCA. (A) Cell viability is shown for LNCaP and DU-145 PCa
cells, as determined by MTS analysis, after 72 h in the presence of DCA (5
mM and 20 mM). (B) Cell viability is shown for LNCaP cells, as determined by
MTS analysis, after 72 h in the presence of DCA (1 mM and 5 mM). (C) Cell
growth is shown for LNCaP cells, as determined by Incucyte live-cell analysis,
after 72 h in the presence of DCA (1 mM and 5 mM). (D) Mitochondrial
respiration is shown for LNCaP cells, as determined by Seahorse extracellular
flux analysis, after 48 h in the presence of DCA (1 mM and 5 mM). p value
below 0.05 are indicated with *.
May 2022 | Volume 12 | Article 873516
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TABLE 1 | Correlation between clinical and pathological variables and PDHA1, PDP1 and PDP2 protein expression in prostate cancer.

PDP1 positive PDP2 negative PDP2 positive
(N = 13) (N = 88) (N = 31)

0.745 r = -0.086 / P = 0.564
9.9 (5.9-15) 10.7 (1-16) 10 (5.9-15)

0.615 r = 0.011 / P = 0.970
64 (53-69) 63 (48-73) 63 (50-70)

0.767 r = 0.013 / P = 0.888
9 (69) 58 (66) 20 (64.5)
4 (31) 30 (34) 11 (35.5)

0.819 r = -0.168 / P = 0.311
5 (38.5) 23 (26) 13 (42)
5 (38.5) 32 (36.5) 11 (35.5)
3 (23) 26 (29.5) 7 (22.5)
0 (0) 4 (4.5) 0 (0)
0 (0) 3 (3.5) 0 (0)

0.545 r = 0.065 / P = 0.480
7 (54) 55 (62.5) 16 (52)
4 (31) 14 (16) 8 (26)
0 (0) 6 (7) 1 (3)
2 (15) 13 (14.5) 6 (19)

0.037 r = - 0.024 / P = 0.797
8 (61.5) 72 (82) 26 (84)
5 (38.5) 16 (18) 5 (16)

0.360 r = -0.1 08 / P = 0.239
10 (77) 55 (62.5) 23 (74)
3 (23) 33 (37.5) 8 (26)

0.027 r = -0.011 / P = 0.907
8 (61.5) 73 (83) 26 (84)
5 (38.5) 15 (17) 5 (16)

0.506 r = -0.124 / P = 0.175
12 (92) 83 (94.5) 31 (100)
1 (8) 5 (5.5) 0 (0)

0.388 r = -0.1 45 / P = 0.240
4 (31) 36 (41) 12 (39)
6 (46) 34 (39) 9 (29)
0 (0) 9 (10) 0 (0)
3 (23) 9 (10) 10 (32)

0.360 r = 0.013 / P = 0.888
10 (77) 58 (66) 20 (64.5)
3 (23) 30 (34) 11 (35.5)

0.463 r = -0.046 / P = 0.652
3 (23) 28 (32) 12 (39)
7 (54) 43 (49) 15 (48)
3 (23) 17 (19) 4 (13)
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Patients – no. N = 120 PDHA1 negative PDHA1 positive PDP1 negative
(N = 91) (N = 28) (N = 106)

Median follow-up time (IQR) – year 120 r = -0.182 / P = 0.720 r = -0.124 / P
10.5 (9.8-12.4) 10.9 (1-16) 9.9 (5.9-15) 10.6 (1-16)

Median age at surgery (IQR) – year r = 0.057 / P = 0.739 r = 0.041 / P
63 (59-68) 63 (48-71) 63.5 (52-73) 63 (48-73)

Age at surgery – no. (%) r = 0.015 / P = 0.872 r = -0.027 / P
< 65 year 78 (65) 60 (66) 18 (64) 69 (65)
> 65 year 42 (35) 31 (34) 10 (36) 37 (35)

Preoperative PSA – no. (%) r = -0.100 / P = 0.440 r = -0.082 / P
≤ 6 ng/ml 36 (30) 25 (27.5) 11 (39.5) 31 (29)
> 6 ng/ml and ≤ 10 ng/ml 43 (35) 34 (37.5) 8 (28.5) 37 (35)
> 10 ng/ml and ≤ 20 ng/ml 33 (27.5) 25 (27.5) 8 (28.5) 30 (28)
> 20 ng/ml 4 (3.3) 4 (4.5) 0 (0) 4 (4)
Missing 4 (3.3) 3 (3) 1 (3.5) 4 (4)

Gleason grade – no. (%) r = -0.051 / P = 0.389 r = -0.004 / P
≤ 6 72 (60) 55 (60.5) 16 (57) 64 (60)
3+4 22 (18) 14 (15.5) 8 (28.5) 18 (17)
4+3 7 (6) 6 (6.5) 1 (3.5) 7 (7)
≥ 8 19 (16) 16 (17.5) 3 (11) 17 (16)

Stage - no. (%) r = 0.107 / P = 0.243 r = 0.191 / P
T2 99 (82.5) 77 (84.5) 21 (75) 90 (85)
T3 21 (17.5) 14 (15.5) 7 (25) 16 (15)

Surgical margins – no. (%) r = -0.069 / P = 0.454 r = -0.084 / P
Negative 78 (65) 58 (64) 20 (71.5) 68 (64)
Positive 42 (35) 33 (36) 8 (28.5) 38 (36)

Extracapsular extension– no. (%) r = 0.122 / P = 0.185 r = 0.203 / P
No 100 (83) 78 (86) 21 (75) 91 (86)
Yes 20 (17) 13 (14) 7 (25) 15 (14)

Seminal vesicle invasion – no. (%) r = -0.017 / P = 0.849 r = 0.061 / P
No 20 (17) 87 (96) 27 (96.5) 102 (96)
Yes 100 (83) 4 (4) 1 (3.5) 4 (4)

CAPRA-S risk group – no. (%)* r = -0.111 / P = 0.529 r = -0.005 / P
Low 48 (40) 35 (38.5) 13 (46.5) 44 (41.5)
Intermediate 44 (37) 34 (37) 9 (32) 37 (35)
High 9 (8) 8 (9) 1 (3.5) 9 (8.5)
Missing 19 (15) 14 (25.5) 5 (18) 16 (15)

Biochemical recurrence – no. (%) r = -0.027 / P = 0.769 r = -0.084 / P
Negative 78 (65) 59 (65) 19 (68) 68 (64)
Positve 42 (35) 32 (35) 9 (32) 38 (36)

Disease-free survival – no. (%) r = 0.105 / P = 0.299 r = 0.074 / P
Yes 41 (34) 32 (35) 8 (28) 37 (35)
No 58 (48) 41 (45) 17 (61) 51 (48)
Missing 21 (18) 18 (20) 5 (11) 18 (17)

*The CAPRA-S scores were categorized to give the three risk groups: Low risk if sscore 0-2; Intermediate risk if score 3 to 5; High risk if score 6 to 12.
Spearsman´s correlation r (95% CI) / P value.
IQR, interquartile range; PSA, prostate-specific antigen; AR, androgen receptor.
=

=

=

=

=

=

=

=

=

=

=

=
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TABLE 2 | Correlation between clinical and pathological variables and PDK1, PDK2, PDK3 and PDK4 protein expression in prostate cancer.

tive PDK3 positive PDK4 negative PDK4 positive
) (N = 100) (N = 14) (N = 96)

.006 / P = 0.592 r = -0.315 / P = 0.016
3.9) 10.5 (1-16) 13.2 (1-15) 10.3 (2.1-16)
.035 / P = 0.065 r = 0.019 / P = 0.834
3) 63 (48-71) 62 (52-71) 63 (48-73)
.022 / P = 0.817 r = 0.041 / P = 0.668

66 (66) 10 (71) 63 (66)
34 (34) 4 (29) 33 (34)

0.056 / P = 0.715 r = 0.109 / P = 0.280
32 (32) 7 (50) 29 (30)
36 (36) 2 (14) 34 (36)
27 (27) 4 (29) 27 (28)
3 (3) 0 (0) 4 (4)
2 (2) 1 (7) 2 (2)

.042 / P = 0.839 r = 0.075 / P = 0.199
61 (61) 8 (57) 60 (62.5)
18 (18) 5 (36) 16 (16.5)
5 (5) 1 (7) 5 (5)

16 (16) 0 (0) 15 (16)
.095 / P = 0.315 r = 0.107 / P = 0.243

81 (81) 14 (100) 77 (80)
19 (19) 0 (0) 19 (20)

.022 / P = 0.817 r = -0.132 / P = 0.165
66 (66) 7 (50) 66 (69)
34 (34) 7 (50) 30 (31)

.088 / P = 0.350 r = 0.169 / P = 0.076
82 (82) 14 (100) 78 (81)
18 (18) 0 (0) 18 (19)

0.081 / P = 0.389 r = 0.074 / P = 0.437
97 (97) 14 (100) 92 (96)
3 (3) 0 (0) 4 (4)

.032 / P = 0.817 r = 0.032 / P = 0.544
39 (39) 6 (43) 38 (40)
39 (39) 7 (50) 35 (36)
6 (6) 0 (0) 6 (6)

) 16 (16) 1 (7) 17 (18)
.028 / P = 0.763 r = 0.163 / P = 0.088

65 (65) 12 (86) 60 (62.5)
35 (35) 2 (14) 36 (37.5)

0.030 / P = 0.770 r = -0.170 / P = 0.106
34 (34) 2 (14) 35 (36)

) 39 (39) 9 (64) 45 (47)
) 27 (27) 3 (22) 16 (17)
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Patients – no. N = 120 PDK1 negative PDK1 positive PDK2 negative PDK2 positive PDK3 neg
(N = 26) (N = 89) (N = 17) (N = 102) (N = 13

Median follow-up time (IQR) – year 120 r = -0.180 / P = 0.295 r = 0.080 / P = 0.580 r =
10.5 (9.8-12.4) 12 (8.4-14.9) 10.3 (1-16) 10 (2-14) 10.5 (1-16) 10.2 (9.4-

Median age at surgery (IQR) – year r = 0.097 / P = 0.632 r = -0.112 / P = 0.603 r =
63 (59-68) 62 (50-73) 63 (48-71) 64 (54-73) 63 (48-71) 61 (52-7

Age at surgery – no. (%) r = 0.046 / P = 0.625 r = -0.108 / P = 0.237 r =
< 65 year 78 (65) 18 (69) 57 (64) 9 (53) 69 (68) 9 (69
> 65 year 42 (35) 8 (31) 32 (36) 8 (47) 33 (32) 4 (31

Preoperative PSA – no. (%) r = 0047 / P = 0.305 r = 0.020 / P = 0.875 r =
≤ 6 ng/ml 36 (30) 10 (38.5) 26 (29) 5 (29.5) 31 (30.5) 4 (31
> 6 ng/ml and ≤ 10 ng/ml 43 (35) 6 (23) 34 (38) 6 (35) 36 (35) 3 (23
> 10 ng/ml and ≤ 20 ng/ml 33 (27.5) 9 (34.5) 23(26) 5 (29.5) 28 (27.5) 4 (31
> 20 ng/ml 4 (3.3) 0 (0) 4 (5) 0 (0) 4 (4) 1 (7.5
Missing 4 (3.3) 1 (4) 2 (2) 1 (6) 3 (3) 1 (7.5

Gleason grade – no. (%) r = 0.179 / P = 0.056 r = 0.092 / P = 0.617 r =
≤ 6 72 (60) 19 (73) 51 (57) 12 (70) 59 (58) 8 (62
3+4 22 (18) 4 (15.5) 17 (19) 3 (18) 19 (18) 3 (23
4+3 7 (6) 3 (11.5) 4 (5) 0 (0) 7 (7) 1 (7.5
≥ 8 19 (16) 0 (0) 17 (19) 2 (12) 17 (17) 1 (7.5

Stage - no. (%) r = 0.083 / P = 0.371 r = 0.000 / P = 1 r =
T2 99 (82.5) 23 (88.5) 72 (81) 14 (82) 84 (82) 12 (92
T3 21 (17.5) 3 (11.5) 17 (19) 3 (18) 18 (18) 1 (8)

Surgical margins – no. (%) r = -0.042 / P = 0.654 r = -0.007 / P = 0.937 r =
Negative 78 (65) 16 (61.5) 59 (66) 11 (65) 67 (66) 9 (69
Positive 42 (35) 10 (38.5) 30 (34) 6 (35) 35 (34) 4 (31

Extracapsular extension– no. (%) r = 0.073 / P = 0.437 r = -0.009 / P = 0.921 r =
No 100 (83) 23 (88) 73 (82) 14 (82) 85 (83) 12 (92
Yes 20 (17) 3 (12) 16 (18) 3 (18) 17 (17) 1 (8)

Seminal vesicle invasion – no. (%) r = -0.011 / P = 0.907 r = 0.085 / P = 0.351 r =
No 20 (17) 25 (96) 86 (96) 17 (100) 97 (95) 12 (92
Yes 100 (83) 1 (4) 3 (4) 0 (0) 5 (5) 1 (8)

CAPRA-S risk group – no. (%)* r = 0.085 / P = 0.492 r = 0.180 / P = 0.197 r =
Low 48 (40) 13 (50) 32 (36) 10 (59) 38 (37) 6 (46
Intermediate 44 (37) 8 (31) 36 (40) 5 (29) 38 (37) 4 (31
High 9 (8) 2 (7.5) 6 (7) 0 (0) 9 (9) 1 (7.5
Missing 19 (15) 3 (11.5) 15 (17) 2 (12) 17 (17) 2 (15.5

Biochemical recurrence – no. (%) r = 0.142 / P = 0.128 r = 0.195 / P = 0.033 r =
Negative 78 (65) 20 (77) 54 (61) 15 (88) 63 (62) 9 (69
Positve 42 (35) 6 (23) 35 (39) 2 (12) 39 (38) 4 (31

Disease-free survival – no. (%) r = -0.141 / P = 0.168 r = -0.202 / P = 0.045 r =
Yes 41 (34) 6 (23) 34 (38) 2 (12) 38 (37) 4 (31
No 58 (48) 15 (58) 42 (47) 11 (65) 47 (46) 7 (53.5
Missing 21 (18) 5 (19) 13 (15) 4 (23) 17 (17) 2 (15.5

*The CAPRA-S scores were categorized to give the three risk groups: Low risk if sscore 0-2; Intermediate risk if score 3 to 5; High risk if score 6 to 12.
Spearsman´s correlation r (95% CI) / P value.
IQR, interquartile range; PSA, prostate-specific antigen; AR, androgen receptor.
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elucidate how its localization at specific subcellular compartments
in PCa tumors may affect PCa progression.
DISCUSSION

PCa cells show a unique metabolic reprogramming process
during their progression towards malignancy, in which
signaling through AR plays an essential role. Primary PCa
tumor cells display unusual high oxidative respiration levels,
which switch in CRPC cells to high aerobic glycolysis upon
androgen-independent AR signaling (44). PDH enzymatic
activity is a major universal driver of the energy metabolism in
cells, coordinating the energy flux through the glycolytic and the
mitochondrial TCA-oxidative pathways. Accordingly, PDH
complex plays an important role in cancer-associated
metabolic reprograming (27). Here, we have analyzed by IHC
the expression of PDH components in PCa tumor samples. We
have found a positive correlation of AR expression with PDHA1,
PDP1, PDK1, PDK2, and PDK4 expression, which sustains the
involvement of AR signaling in the control of PDH activity in
PCa cells. In this regard, PDHA1 and PDK2 have been reported
in a meta-analysis study as common androgen-regulated genes
(45). In concordance, PDH/PDHA1 protein and its activator
Frontiers in Oncology | www.frontiersin.org 7
phosphatase PDP1 have been found to be overexpressed in PCa,
in association with high Gleason score (36, 46), although low
PDHA1 protein expression in PCa tumors has also been
associated with poor prognosis (35). In our study, we found
significant correlation of PDP1 expression, but not PDHA1, with
stage and extracapsular extension. Prostate conditional Pten-null
mice, knocked-out for PDHA1 expression in the prostate,
displayed growth inhibit ion of prostate cel ls , and
pharmacological inhibition of PDH activity in prostate Pten-
null mice and in human PCa cells caused tumor and cell growth
inhibition (36). Similarly, diminished cell growth was observed
in PDHA1 knock-out LNCaP PCa cells (35, 47). Overall, these
findings suggest a potential therapeutic benefit of PDH
inhibition in advanced PCa tumors.

PDKs are physiologic negative regulators of PDH. In a
variety of cancer types, PDK1-3 have been proposed to play
oncogenic roles, whereas PDK4 has been proposed to play both
oncogenic and tumor suppressive functions depending on the
tumor type (33). In PCa, PDK1 has been found to be
upregulated in correlation with disease progression, and
PDK1 knock-down using siRNAs increased PCa cell
migration and invasion, without significantly affecting cell
proliferation (48). On the other hand, low PDK4 expression
has been associated with biochemical recurrence in PCa
datasets (49). PDK4 mRNA, followed by PDK2, are the more
abundant PDK mRNAs detected in prostate and PCa
(Supplementary Figure 1), and our IHC analysis revealed
expression of all PDK proteins in PCa tumors. Notably, we
detected correlation of PDK2 high expression with higher
biochemical recurrence and lower disease-free survival,
suggesting a pro-oncogenic role for PDK2 in PCa. This is in
line with the proposed oncogenicity of PDK2 overexpression in
other cancer types (50, 51). The tumor suppressor p53
negatively regulates PDK2 transcription (52), making of
interest the analysis of the participation of p53 in the
regulation of PDK2 expression in PCa cells. PDK2 showed a
marked nuclear localization in PCa tumors, but not in PCa cell
lines, which displayed PDK2 mitochondrial localization.
Additional experiments are necessary to uncover the
functional activities of nuclear PDK2 in PCa tissue.

The inhibition of PDKs by DCA, alone or in combination
with other drugs, has been proposed as an alternative
therapeutic anti-cancer approach, especially in chemoresistant
tumors (34, 53–56). In our study, treatment of LNCaP and DU-
145 PCa cells with DCA resulted in diminished cell
proliferation, suggesting the feasibility of DCA, or DCA-
related drugs, in the treatment of PCa. However, the clinical
use of DCA in cancer therapy is limited, mainly due to
undesired side effects, including peripheral neurotoxicity (32,
57). Kailavasan et al. reported metabolite ratios alterations in
highly metastatic LNCaP-LN3 cells upon DCA treatment,
which were not detected in poorly metastatic LNCaP cells
(28). It has also been reported the sensitization to radiation
of PCa cells by DCA (58), as well as PDK isozyme-specific
effects of DCA on PCa cells (34). Interestingly, early studies on
PDKs enzymatic activity revealed PDK2 as the PDK more
TABLE 3 | Correlation between PDHA complex components and androgen
receptor protein expression in prostate cancer.

Patients - no. N = 120 AR negative AR positive
(N = 26) (N = 92)

Missing 2
PDHA1- no. (%) p = 0.195 / P = 0.035
Negative 89 (75) 23 (88) 66 (72)
Positive 28 (24) 2 (8) 26 (28)
Missing 1 (1) 1 (4) 0 (0)

PDP1 - no. (%) p = 0.184 / P = 0.046
Negative 104 (88) 25 (96) 79 (86)
Positive 13 (11) 0 (0) 13 (14)
Missing 1 (1) 1 (4) 0 (0)

PDP2 - no. (%) p = 0.124 / P = 0.180
Negative 86 (73) 21 (80) 65 (70)
Positive 31 (26) 4 (15) 27 (30)
Missing 1 (1) 1 (4) 0 (0)

PDK1 - no. (%) p = 0.282 / P = 0.003
Negative 26 (22) 11 (42) 15 (16)
Positive 87 (74) 13 (50) 74 (81)
Missing 5 (4) 2 (8) 3 (3)

PDK2 - no. (%) p = 0.299 / P = 0.001
Negative 15 (13) 8 (30) 7 (7)
Positive 102 (86) 17 (65) 85 (93)
Missing 1 (1) 1 (4) 0 (0)

PDK3 - no. (%) p = -0.046 / P = 0.625
Negative 13 (11) 2 (8) 11 (12)
Positive 99 (84) 21 (80) 78 (85)
Missing 6 (5) 3 (12) 3 (3)

PDK4 - no. (%) p = 0.206 / P = 0.031
Negative 14 (12) 6 (23) 8 (9)
Positive 96 (81) 17 (65) 79 (86)
Missing 8 (7) 3 (12) 5 (5)
Spearsman's correlation p (95% Cl) / P value; AR, Androgen receptor.
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efficiently inhibited by DCA (59). Whether DCA selectively
targets PDK2 in PCa cells needs to be tested. It cannot be ruled
out a DCA antiproliferative effect in PCa cells mediated by
Frontiers in Oncology | www.frontiersin.org 8
other PDKs. Dedicated studies are required to ascertain the
involvement of inhibition of specific PDKs in the sensitivity to
current anti-PCa therapies.
1A 1B 1C 1D 1E

2A 2B 2C 2D 2E

3A 3B 3C 3D 3E

4A 4B 4C 4D 4E

FIGURE 2 | Expression of PDKs in PCa specimens. Immunohistochemical staining of expression of PDKs in four representative prostate carcinoma patient samples
(1-4). Hematoxylin and eosin (H&E) staining (1A, 2A, 3A, 4A). High expression of all PDKs (case 3: 3B, 3C, 3D, 3E). Low expression of all PDKs (case 2: 2B, 2C, 2D,
2E). High expression of PDK2 and PDK4 (case 1: 1C, 1E), and low expression of PDK1 and PDK3 (case 1: 1B, 1D). High expression of PDK2 and PDK3 (case 4:
4C, 4D), and low expression of PDK1 and PDK4 (case 4: 4B, 4E). Magnification: X100.
FIGURE 3 | Immunohistochemical profile of a prostate adenocarcinoma specimen, showing positive staining for androgen receptor (AR, nuclear), PDHA1 and PDP1
(cytoplasmic), and negative for PDP2. Magnification: X400.
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FIGURE 4 | Expression and subcellular localization of PDK2 and PDK3 in PCa cells. (A) Immunoblot of ectopically expressed PDK2-Flag, PDK3-Flag, and Flag-PTEN (as
a control) in COS-7 and LNCaP cells using anti-Flag antibody. (B) Immunofluorescence of PDK2-Flag, PDK3-Flag, and Flag-PTEN in COS-7 cells, using anti-Flag
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PDK2-Flag and PDK3-Flag (green) in LNCaP cells, with Mitotracker as a mitochondria marker (red). In (B–D) nuclei were stained with DAPI (blue). Note the punctuated
and mitochondrial localization of PDK2 and PDK3, as compared to the cytoplasmic PTEN localization.
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