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Tiago de Freitas Pereira , Member, IEEE, André Anjos , and Sébastien Marcel, Senior Member, IEEE

Abstract— The task of Heterogeneous Face Recognition con-
sists in matching face images that are sensed in different
domains, such as sketches to photographs (visual spectra images),
and thermal images to photographs or near-infrared images to
photographs. In this paper, we suggest that the high-level features
of Deep Convolutional Neural Networks trained in visual spectra
images are potentially domain independent and can be used
to encode faces sensed in different image domains. A generic
framework for Heterogeneous Face Recognition is proposed by
adapting Deep Convolutional Neural Networks low-level features
in, so-called, Domain Specific Units. The adaptation using the
Domain Specific Units allows the learning of shallow feature
detectors specific for each new image domain. Furthermore,
it handles its transformation to a generic face space shared
between all image domains. Experiments carried out with four
different face databases covering three different image domains
show substantial improvements, in terms of recognition rate,
surpassing the state-of-the-art for most of them. This work is
made reproducible: all the source code, scores, and trained
models of this approach are made publicly available.

Index Terms— Face recognition, heterogeneous face recogni-
tion, reproducible research, domain adaptation, deep neural
networks.

I. INTRODUCTION

F
ACE recognition has existed as a field of research for

more than 30 years and has been particularly active

since the early 1990s. Researchers of many different fields

(from psychology, pattern recognition, neuroscience, computer

graphics and computer vision) have attempted to create and

understand face recognition [2].

Heterogeneous Face Recognition (H F R) consists in

matching faces from different image modalities. Figure 1

demonstrates possible H F R comparison scenarios. Use-cases

are many, even in situations where no real face even exists

such as in sketch recognition.

The key difficulty in matching faces from heterogeneous

conditions is that images of the same subject may differ in
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Fig. 1. Possible H F R comparison scenarios. (a) VIS-Sketches. (b) VIS-NIR.
(c) VIS-Thermal.

appearance due to changes in image domain, e.g. between

visual spectra images (VIS) and near-infrared images (NIR),

between VIS images and sketches. This shift introduces high

within class variations, and a direct comparison of images

across these domains can potentially degrade recognition

accuracies.

The contributions of this work are three fold. First, we ana-

lyze the effectiveness of some state-of-the-art Deep Convo-

lutional Neural Networks (DCNN) architectures trained with

VIS images in the H F R task. Such analysis establishes a base-

line for comparison. As a second contribution we introduce

a light weight framework that learns domain specific feature

detectors for H F R called Domain Specific Units. The appli-

cation of such framework in different H F R scenarios substan-

tially improves the recognition rates compared with DCNNs

trained with VIS images and with state-of-the-art. Finally we

aim to make this reproducible: all the source code, trained

models and scores are made publicly available. Details on how

to reproduce this work can be found on the provided link.1

1https://gitlab.idiap.ch/bob/bob.paper.tifs2018_dsu

1556-6013 © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7172-145X
https://orcid.org/0000-0001-7248-4014


1804 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 14, NO. 7, JULY 2019

The organization of the paper is the following. In Section II

we present prior work for Heterogeneous Face Recognition

and databases used in this work. In Section III we provide

an overview of Face Recognition using Deep Convolutional

Neural Networks establishing baseline recognition rates.

In Section IV we present our Domain Specific Units

framework followed by Section V with the presentation and

analysis of our experiments. Finally in Section VI, we address

conclusions and possible routes to pursue.

II. FORMALIZED RELATED WORK

In this section we formalize the task of Face and Het-

erogeneous Face Recognition using the notations from [12].

Then we review prior work in H F R by connecting it to the

introduced notation. We also introduce an overview of datasets

for H F R.

A. Formalization of H F R

Given a domain D composed by a d-dimensional feature

space X ∈ R
d and marginal distribution P(X), the face

recognition task T
f can be defined by a label space Y

whose conditional probability is P(Y |X,2), where X and Y

are random variables and 2 are model parameters. Given a

face dataset X = {x1, x2, . . . , xn} with their corresponding

identities Y = {y1, y2, . . . , yn}, P(Y |X,2) can be learnt via

any supervised machine learning strategy.

Let’s assume now that we have two domains Ds =

{X s , P(X s )} and Dt = {X t , P(X t )} called respectively source

domain and target domain with both sharing the same set of

labels Y . Hence, the goal of Heterogeneous Face Recognition

task T h is to find a 2, where P(Y |X s ,2) = P(Y |X t ,2).

Several assumptions to model 2 were proposed during

the last years and [1] organized such techniques into three

main categories and they are described in the following three

subsections.

B. Synthesis Methods

In these methods a synthetic version of D
s is generated

from Dt . Once a synthetic version from Dt is generated,

the matching can be done with regular face recognition

approaches. Wang et al. [9] proposed a patch based synthesis

in order to synthesize VIS images to sketches and vice-versa

using Multiscale Markov Random Fields. They evaluated the

synthetic images using several face recognition algorithms,

such as Eigenfaces, Fisherfaces, dual space L D A [23]

and Random Sampling L D A [24] with a combination of

three photo-sketch databases2 (CUHK, XM2VTS and the

AR database). Jin et al. [25] learnt a pixel level mapping

between VIS images and viewed sketches with Locally

Linear Embeddings (L L E). In [13], it was proposed a

model based on Generative Adversarial Networks (GANs) in

order to reconstruct thermogram images from visual spectra

images for further identification using the Pola Thermal

dataset [14]. The identification was carried out using the

Visual Geometry Group (VGG) network [15] embeddings and

2http://mmlab.ie.cuhk.edu.hk/archive/facesketch.html

achieving an average Equal Error Rate of 34.58%. Similarly,

Zhang et al. [16] also proposed a strategy based on GANs

to synthesize thermograms to visual light images for further

comparison using the VGG embeddings. Experiments using

the the Iris dataset3 (with 29 subjects in total) showed a rank

one recognition rate of 19%.

C. Crafted Features-Based Methods

In these methods raw face images from both domains

(Ds and Dt ) are encoded with descriptors that are invariant

between them. Liao et al. [17] proposed a method that

normalizes both VIS and NIR images using Tan & Triggs

filter [18]. The local descriptor MutiScale Local Binary Pat-

terns (MLBP) [19] (with different radii) is extracted from each

one of the pre-processed images and after a feature selection

step, L D A is used to classify each subject. A verification rate

of 67.5% was reported under a false acceptance rate of 0.1%

on the CASIA-HFB [8] database. Similarly, Sifei et al. [20]

used a set of different band-pass filters to “normalize” both

VIS and NIR images for subsequent recognition. A rank

one recognition rate of 98.51% was reported in the same

dataset. Inspired in gravitational fields to model pixel val-

ues, Roy et al. [6] proposed a illumination invariant feature

extractor that requires no training. Experiments carried out

with CUHK-CUFS with a biased protocol (see Section II-E.1)

and the CASIA HFB [8] showed a rank one recognition rate

of 99.96% and 99.78% respectively.

D. Feature Learning Based Methods

The idea of these approaches is to learn a joint mapping

between Ds and Dt where the image projections from those

domains can be directly compared. Klare et al. [1] proposed

a generic framework in which faces are represented in

terms of nonlinear similarities (via a kernel function) to a

collection of prototype face images from different modalities.

The proposed approach, called prototype random subspace

(P-RS) was benchmarked on three different heterogeneous

scenarios: NIR to VIS, thermal images to VIS, sketch to

VIS. VIS-sketch reference results were reported using the

CUHK-CUFS database with a rank one recognition rate

of 99%. As a VIS-NIR reference, the CASIA HFB was used

and a rank one recognition rate of 98% was reported.

Jin et al. [26] proposed a filter learning approach where

the goal is to find the convolutional filter α where the pixel

difference between images from different modalities are the

minimum. Experiments with CUHK-CUFSF showed an aver-

age rank one recognition rate of 81.3%.

Based on DCNNs to model the joint mapping between

D
s and D

t , [54] proposes a framework for VIS-NIR face

matching where the low level feature detectors are learnt

with VIS images only. The high level feature detectors are

jointly learnt with VIS and NIR images and it is divided

in: NIR layers, VIS layers and NIR-VIS shared layers

3IEEE OTCBVS WS Series Bench; DOE University Research Program in
Robotics under grant DOE-DE-FG02-86NE37968; DOD/TACOM/NAC/ARC
Program under grant R01-1344-18; FAA/NSSA grant R01-1344-48/49; Office
of Naval Research under grant N000143010022.
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(which are domain invariant). Experiments carried out using

the CASIA NIR-VIS 2.0 dataset showed an average rank one

recognition rate of 95.82%. An extension of this work is

presented in [56], where the Wasserstein distance between the

NIR and VIS signal distributions is incremented to cost func-

tion. Experiments with CASIA NIR-VIS 2.0 dataset showed

an average rank one recognition rate of 98.7%.

Built on top of Gaussian Mixture Models (GMMs), [27]

model the map between Ds and Dt as a channel offset of

GMM mean supervectors. Experiments with CUHK-CUFS

and CASIA NIR-VIS 2 showed an average recognition rate

of 96.93% and 72.39% respectively.

Based on Geodesic Flow Kernels (GFK) the work in [28]

models Ds and Dt in separated d-dimensional linear sub-

spaces (φs and φt ) and embeds them onto a Grassmann

manifold. Then, an explicit map between these subspaces

is built (called Geodesic Flow); such map is encoded in a

kernel G. The comparison between projected samples from the

source domain (xs) and target domain (xt ) is carried out by the

kernalized dot product φs(xs)· G· φt (xt). An Equal Error Rate

of 1.65% was achieved under the Cross-Spectral Iris/Periocular

Recognition Competition [28].

E. H F R Databases

Several databases were built along the years to support

Heterogeneous Face Recognition research. This work reports

experimental results and analysis under five different image

databases publicly available covering three different pairs of

image domains: VIS to Sketches, VIS to NIR and VIS to

Thermal. The next subsections describe each one and their

respective evaluation protocols.

1) CUHK Face Sketch Database (CUFS): CUHK Face

Sketch Database (CUFS) is composed by viewed sketches.

The viewed sketches are made by an artist looking to the

corresponding photograph of a subject. It includes 188 faces

from the Chinese University of Hong Kong (CUHK) student

database, 123 faces from the AR database and 295 faces from

the XM2VTS database. There are 606 face images in total. For

each face image there is a sketch drawn by an artist based on a

photo taken in a frontal pose, under normal lighting condition

and with a neutral expression.

Unfortunately there is no defined evaluation protocol estab-

lished for this database. Each work that uses this database

implements a different way to report results. For comparison

reasons, we will follow the same strategy as in [1] and do

5 fold cross-validation splitting the 606 identities in two

sets with 404 identities for training and 202 for testing and

use the average rank one recognition rate, in the evaluation

set as a metric. For reproducibility purposes, this evaluation

protocol is published in a python package format.4 Hence,

future researchers will be able to reproduce exactly the same

tests with the same identities in each fold.

2) CASIA NIR-VIS 2.0 Face Database (CASIA): CASIA

NIR-VIS 2.0 database [7] offers pairs of mugshot images

and their corresponding NIR photos. The images of this data-

base were collected in four recording sessions: 2007 spring,

4https://pypi.python.org/pypi/bob.db.cuhk_cufs

2009 summer, 2009 fall and 2010 summer, in which the first

session is identical to the CASIA HFB database [8]. It consists

of 725 subjects in total. There are from one to twenty two VIS

and five to fifty NIR face images per subject. The eye positions

are also distributed with the images.

This database has a well defined protocol and it is publicly

available for download. We also organized this evaluation

protocol in the same way as for CUFS database and it is

also freely available for download.5 The average rank one

recognition rate in the evaluation set (called view 2) is used

as evaluation metric.

3) Near-Infrared and Visible-Light (NIVL) Dataset: Col-

lected by University of Notre Dame, the NIVL contains VIS

and NIR face images from the same subjects. The capturing

process was carried out over the course of two semesters

(fall 2011 and spring 2012) [22]. The dataset contains a total

of 574 subjects with 2,341 VIS and 22,264 NIR images.

A total of 402 subjects had both VIS and NIR images acquired

during at least one session during both the fall and spring

semesters.

Originally this dataset was designed and released with

the intention of evaluate the error rates of commercial face

recognition matchers in the VIS-NIR task under different

image processing algorithms. Since there is no need to train

background models for commercial matchers, the original

database evaluation protocol does not have a training set.

In order to evaluate our proposed approach we designed a

5-fold cross-validation strategy, where the 574 subjects were

split in 344 identities for training and 230 identities for test.

The average rank one recognition rate in the test set is used as

evaluation metric. This evaluation protocol is equally available

for download.6

4) Polarimetric and Thermal Database (Pola Thermal):

Collected by the U.S. Army Research Laboratory (ARL),

the Polarimetric Thermal Face Database (first of this kind),

contains polarimetric LWIR (long-wave infrared) imagery and

simultaneously acquired visible spectrum imagery from a set

of 60 distinct subjects [14].

Two types of thermal images are provided in this database,

the first one is the Conventional Thermal [Figure 1 (c)] and

the Polarimetric Thermal. In this work, we present results only

using the Conventional Thermal images. As opposed to the

original protocol, that proposes a 100-fold cross-validation

evaluation, we applied a 5-fold cross validation evaluation

protocol where the 60 clients are split in 25 identities for

training and 35 identities for testing. The average rank one

recognition rate in the test set is used as evaluation metric. The

protocol called “overall”, which probes data from the 3 ranges,

is used in this work. This evaluation protocol is also available

for download.7

III. FROM FACE RECOGNITION TO HETEROGENEOUS

FACE RECOGNITION

The success of Deep Convolutional Neural Networks

in computer vision research, the availability of several

5https://pypi.python.org/pypi/bob.db.cbsr_nir_vis_2
6https://pypi.python.org/pypi/bob.db.nivl
7https://pypi.python.org/pypi/bob.db.pola_thermal
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TABLE I

AVERAGE RANK ONE RECOGNITION RATE UNDER SIX FACE RECOGNITION CNN SYSTEMS

frameworks to instrument such networks and the possibility

to work with massive amounts of labeled data (CASIA

WebFace [29], MS-Celeb [30] and Megaface [31]) made face

recognition error rates decrease steadily.

Despite the lack of deep understanding on why such neural

networks work so well in several different pattern recognition

tasks [35], practical heuristics were developed in the last five

years to regularize the training and they are responsible for its

success in practice. Among those, we would like to highlight

three that, in our experience, have direct impact in boosting

face recognition rates:

A. VGG Networks

The VGG networks [45] were the first to use small kernels

in each convolutional layer (3×3). Chained in a long sequence

of convolutions, such small filters followed by sub-samplings,

are able to detect image symmetries in larger areas of the

face image that was thought possible only via larger kernels

(9 × 9 or 11 × 11) such as in the Alexnet [47].

B. Inception Modules

Szegedy et al. [32] introduced Inception modules.

Composed by a parallel combination of different convolutional

kernels (1 × 1, 3 × 3, and 5 × 5), such idea allows a dramatic

reductions of free parameters to be learnt, increasing the

recognition accuracies and generalization for several computer

vision tasks.

C. Residual Connections

Practical evidences in several areas of computer vision have

shown that depth of a DCNN seems to be a crucial factor

in terms for accurate learning. One of the main obstacles to

explore depth in CNNs is the well know gradient vanishing/

exploding [33] problem. He et al. [34] approached this issue by

passing the output of one intermediate layer and concatenating

as the input of one of the layers ahead (two or three layers).

Such approach allowed the training of CNNs larger than

1000 layers.

Grounded by the aforementioned seminal improvements,

several face models with remarkable recognition rates in

various face databases were made public available.

In this work, we will explore six different DCNN models

based on three base architectures for H F R. This set of

experiments establishes the baseline results for further analy-

sis. The first is the VGG16-Face network [15], which was

made publicly available by the Visual Geometry Group8 and

consists of 16 hidden layers where the first 13 are composed

by convolutions and pooling layers. The last three layers

are fully-connected (named fc6, fc7, and fc8). As a feature

representation, we use the embeddings produced by the ‘fc7’

layer. The input signal of such network are RGB images of

224×224 pixels. Since all our databases are one channel only

(NIR, Sketch and Thermal), we convert them from one channel

images to three channels by replicating the signal along the

extra channels.

The second network used is the Light CNN.

Xiang et al. [36] proposed an architecture that has ten

times less free parameters than the VGG16-Face and claimed

that it is naturally able to handle mislabeled data during

the training (very common in datasets mined automatically).

This is achieved through the use of a newly introduced

Max-Feature-Map (MFM) activation. The input signal of such

network are gray scaled images of 112 × 112.

The third one is the Facenet by David Sandberg [51].

This is the closest open-source implementation of the model

proposed in [37], where neither training data or source

code were made available. Sandberg’s FaceNet implements

an Inception-ResNet v1 and Inception-ResNet v2 CNN

architectures [38]. For this evaluation we have used the

20170512-110547 model (Inception-ResNet v1), trained on

the MS-Celeb-1M dataset [30], which input signals are RGB

images of 160×160 pixels. Furthermore, we trained ourselves

two Inception-ResNet v2 models, one with gray scaled images

and one with RGB using the CASIA WebFace [29] dataset

and one Inception-ResNet v1 with gray scaled images. Both

models work with images of 160 × 160 pixels as input and

its source code is available for download.9

Summarizing, we have six different deep face models

representing the VIS source domain Ds , the VGG16-Face,

LightCNN, Inception-ResNet v1, Inception-ResNet v1,

Inception-ResNet v2 and Inception-ResNet v2-gray. Com-

parisons between samples are made with the embeddings

of each DCNN using the cosine similarity metric. Given

the embeddings es and et from source and target domains

respectively, the similarity S is given by Equation 1.

S(es , et ) =
es · et

kesk2 · ketk2
(1)

Table I presents the average rank one recognition rate for

each face recognition baseline with their corresponding best

8http://www.robots.ox.ac.uk/ vgg/
9https://gitlab.idiap.ch/bob/bob.bio.face_ongoing
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Fig. 2. Domain Specific Units learnt with Siamese neural networks given a pair of samples xs and xt from source and target domain respectively. (a) Forward
pass behaviour. (b) Backward pass behaviour.

state-of-the-art recognition rates (Best SOTA). It’s possible to

observe, that despite the fact such DCNNs don’t have any prior

knowledge about Dt , the feature detectors of such models were

still able to detect discriminant features in all them (above

a hypothetical random classifier). However, those recognition

rates are lower than the state-of-the-art recognition rates in

each image database (which consider a joint modeling of both

Ds and Dt ).

The VIS-NIR databases (CASIA and NIVL) presented the

highest rank one recognition rates in the majority of the tests.

For instance, the best DCNN model in CASIA (Inception-

ResNet v1) achieved a rank one recognition rate of 81.79%.

For NIVL, which compared with CASIA has higher resolu-

tion images, the average rank one recognition rate is even

better (92.77%). Among all image domains, NIR seems to be

visually similar to VIS images, which can explain why the

feature detectors from our Ds are very accurate in this target

domain.

The images taken from sketches are basically composed

by shapes, and because of that, have lots of high frequency

components. Moreover, all the texture of the image comes

from the texture of the paper where the sketch was drawn.

Because of those two factors, it’s reasonable to assume that

the feature detectors of our baseline DCNNs are not suitable

for VIS-Sketch task. However, in practice, we observe the

opposite. The Inception-ResNet v1 CNN presented an average

rank one recognition rate of 81.48% in the CUFS database.

These experiments show that such feature detectors are very

robust, even though the recognition rates are lower than the

state-of-the-art.

The most challenging task seems to be the VIS-Thermal

domain. For this one, the best CNN (Inception-ResNet v1-rgb)

achieved an average recognition rate of only 27.68%.

In this section we presented an overview of Face Recog-

nition using DCNNs and we analysed the effectiveness of

six different face models trained with VIS face images in the

H F R task (covering three different image domains). It was

possible to observe that despite those new image domains were

not used to train the DCNN, their feature detectors achieved

recognition rates way above a random guess. For some of

them, it was possible to achieve recognition rates above 80%.

With those experiments we argue that some set of feature

detectors suitable for VIS (Ds) are also suitable for different

spectral domains (Dt ).

Fig. 3. Domain specific units - general schematic.

IV. PROPOSED APPROACH

Many researchers pointed out that DCNNs progres-

sively compute more powerful feature detectors as depth

increases [35]. Yosinski et al. [39] and Li et al. [48] demon-

strated that feature detectors that are closer to the input signal

(called low level features) are base features that resemble

Gabor features, color blobs, edge detectors, etc. On the other

hand, features that are closer to the end of the neural network

(called high level features) are considered to be more task

specific and carry more discriminative power.

In the last section we observed that the feature detectors

from Ds (VIS) have some discriminative power over all three

target domains we have tested; with VIS-NIR being the “eas-

iest” ones and the VIS-Thermal being the most challenging

ones. With such experimental observations, we can draw the

following hypothesis:

Hypothesis 1: Given Xs = {x1, x2, . . . , xn} and X t =

{x1, x2, . . . , xn} being a set of samples from Ds and Dt ,

respectively, with their corresponding shared set of labels Y =

{y1, y2, . . . , yn} and 2 being all set of DCNN feature detectors

from Ds (already learnt), there are two consecutive subsets:

one that is domain dependent, θt , and one that is domain

independent, θs , where P(Y |Xs ,2) = P(Y |X t , [θs, θt ]).

Such θt , that can be learnt via back-propagation, is so called

Domain Specific Units

A possible assumption one can make is that θt is part of

the set of low level features, directly connected to the input

signal. In this paper we test this assumption. Figure 3 presents
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Fig. 4. Domain specific units learnt with triplet neural networks given a triplet of samples: xa
s from Ds , and x

p
t and xn

t from Dt . (a) Forward pass behaviour.
(b) Backward pass behaviour.

a general schematic of our proposed approach. It is possible

to observe that each image domain has its own specific set

of feature detectors (low level features) and they share the

same face space (high level features) that was previously learnt

using VIS.

Our approach consists in learning θt , for each target domain,

jointly with the DCNN from the source domain. In order to

jointly learn θt with Ds we propose two different architectural

arrangements described in the Figures 2 and 4.

In the architecture described in Figure 2, θt is learnt using

Siamese Neural Networks [40]. During the forward pass,

Figure 2 (a), a pair of face images, one for each domain

(either sharing the same identity or not), is passed through the

DCNN. The image from the source domain is passed through

the main network [the one at the top in Figure 2 (a)] and the

image from the target domain is passed first to its domain

specific set of feature detectors and then amended to the main

network. During the backward pass, Figure 2 (b), errors are

backpropagated only for θ t . With such structure only a small

subset of feature detectors are learnt, reducing the capacity of

the joint model. The loss L is defined as:

L(2) = 0.5

[

(1 − Y )D(xs, xt ) + Y max(0, m − D(xs, xt ))

]

,

(2)

where m is the contrastive margin, Y is the label (1 when

xs and xt belong to the same subject and 0 otherwise) and D

is defined as:

D(xs, xt ) = ||φ(xs) − φ(xt )||
2
2, (3)

where φ are the embeddings from the jointly trained DCNN.

In the architecture described in Figure 4, θt is learnt

using Triplet Neural Networks [37]. During the forward pass,

Figure 4 (a), a triplet of face images are presented as inputs

to the network. In its figure, xa
s consist of face images sensed

in the source domain, and x
p
t and xn

t are images sensed in the

target domain, where xa
s and x

p
t are from the same identity

and xa
s and xn

t are from different identities. As before, face

images from the source domain are passed through the main

network [the one at the top in Figure 4 (a)] in and face

images from the target domain are passed first to its domain

specific set of feature detectors and then amended to the main

network. During the backward pass, Figure 4 (b), errors are

backpropagated only for θ t , that is shared between the inputs

x
p
t and xn

t . With such structure only a small subset of features

are learnt, reducing the capacity of the model. The loss L is

defined as:

L(θ) = ||φ(xa
s ) − φ(x

p
t )||22 − ||φ(xa

s ) − φ(xn
t )||22 + λ, (4)

where λ is the triplet margin and φ are the embeddings from

the DCNN.

Algorithm 1 presents a generic pseudo-code of the training

procedure that is independent of architectural arrangements. It

is worth noting that only the Domain Specific Units (θt ) are

updated.

Algorithm 1 Training Strategy Given a Pretrained DCNN

2s , Loss Function L and the Number of Layers to be

Adapted n_layers. θt Is Split Between the Convolutional

Kernels W and the Biases β

Data: 2s , L, n_layers

Result: θt

θt = 2s[1 : n_layers] ; // Domain Spec. Units

θs = 2s[n_layers :] ; // Domain Indep. Units

while has_data do

batch = get_batch();

[ ∂L
∂θs

, ∂L
∂θt

] = forward_backward(batch, θs , θt , L);

θt [β] = θt [β] + λ ∂L
∂θt

[β];

if adapt_kernels then

θt [W ] = θt [W ] + λ ∂L
∂θt

[W ]

end

end

For our experiments, one DCNN is chosen for Ds : the

Inception Resnet v2. Such network presented one of the

highest recognition rates under different image domains. Since

our target domains are one channel only, we selected the gray

scaled version of it. Details of such architecture is presented

in the Supplementary Material.

Our task is to find the set of low level feature detectors, θt ,

that maximizes the recognition rates for each image domain.



DE FREITAS PEREIRA et al.: HFR USING DOMAIN SPECIFIC UNITS 1809

In order to find such set, we exhaustively try, layer by layer

(increasing the DCNN depth), adapting both Siamese and

Triplet Networks. Five possible θt sets are analysed and

they are called θt [1−1], θt [1−2], θt [1−4], θt [1−5] and θt [1−6].

A full description of which layers compose θt is presented

in the Supplementary material of the paper. The Inception

Resnet v2 architecture batch normalize [41] the forward signal

for every layer. For convolutions, such batch normalization

step is defined, for each layer i , as the following:

h(x) = βi +
g(Wi ∗ x) + µi

σi

, (5)

where β is the batch normalization offset (role of the biases),

W are the convolutional kernels, g is the non-linear function

applied to the convolution (ReLU activation), µ is the accu-

mulated mean of the batch and σ is the accumulated standard

deviation of the batch.

In the Equation 5, two variables are updated via back-

propagation, the values of the kernel (W ) and the offset (β).

With these two variables, two possible scenarios for θt [1−n]

are defined. In the first scenario, we consider that θt [1−n]

is composed by the set of batch normalization offsets (β)

only and the convolutional kernels W are shared between

Ds and Dt . We may hypothesize that, since the target object

that we are trying to model has the same structure among

domains (frontal faces with neutral expression most of the

time), the feature detectors for Ds and Dt , encoded in W , are

the same and just offsets need to be domain specific. In this

work such models are represented as θt [1−n](β). In the second

scenario, both W and β are made domain specific (updated via

back-propagation) and they are represented as θt [1−n](β + W ).

V. RESULTS AND DISCUSSION

In this section we discuss the results of our proposed

approach under the four different image databases covering

three different domains. As mentioned in Section III, the input

of Inception Resnet v2 is 160 × 160 × 1 (width, height and

number channels). All the DCNNs are trained using Stochastic

Gradient Descend for 100 epochs. The learning rate update

strategy and the batch size are the same as in [51]. The

learning rate is 0.1 for 75 epochs, then it goes to 0.01 for

15 epochs and finally runs for 10 epochs at 0.001. The size of

the batch is 90 (pairs or triplets). More implementation details

and how this DCNN was trained for VIS can be found in the

supplementary material. Furthermore, the source code of this

paper is available.10 Once those DCNNs are trained, the same

comparison procedure applied in Section IV (Equation 1) is

applied.

The following subsections describe the experiments for each

database. For the sake of brevity, we present the Cumulative

Match Characteristic plots (CMC) for the best performed

system.

A. CUHK CUFS (VIS-Sketch)

Figure 5 presents the CMC curves with adaptation of the

biases only for the Inception Resnet v2 using the Siamese

10https://gitlab.idiap.ch/bob/bob.bio.face_ongoing

Fig. 5. CUFS - Average CMC curves (with error bars) for the adaptation of
biases only - Siamese networks with Inception Resnet v2.

Fig. 6. Average rank one recognition rate vs number of parameters learnt.

Networks. Such DCNN, with no adaptation, has an average

rank one recognition rate of 67.03%. Adapting only the biases

(β in Equation 5) of the first layer (θt [1−1](β) in the plots) it

was possible to get this benchmark improved to ≈ 70%. The

biases adaptation for θt [1−2] and θt [1−4] improved the average

rank one recognition rate to ≈ 78% for both. Experiments

with θt [1−5] get its best average rank one recognition rate with

82.2%. For θt [1−6] the average rank one recognition rate drops

drastically to ≈ 55%. A possible overfitting can be suggested

for θt [1−6]. Figure 6 shows the plot of the average rank one

recognition rates and the number of parameters learnt as a

function of θt [1−n] for the Siamese net using the Inception

Resnet v2 as a basis. We can observe the drop, in terms

of average rank one recognition rate, from θt [1−5] to θt [1−6]

when the number of parameters learnt drastically grows (from

928 to 3328). More details about the number of parameters

for all θt can be checked in Table VI.

We also observed the same trends using Triplet Networks

as a base trainer. Adapting θt [1−1] the average rank one recog-

nition rates is improved ≈ 72%. For θt [1−2] and θt [1−4] the

improvement are ≈ 78% and ≈ 79% respectively. For θt [1−5]

the average rank one recognition rate improved to 82.9% and

then drastically drops to ≈ 59% for θt [1−6].

With this set of experiments it was possible to observe that

the adaptation of batch normalization offsets only improve the

recognition rates. This could naturally imply that Ds and Dt

for VIS-Sketch share the same set of feature detectors and the
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Fig. 7. CUFS - Average CMC curves (with error bars) for the adaptation of
kernel and biases - Siamese networks with Inception Resnet v2.

difference is a matter of bias shifting. In order to investigate

if there are domain specific feature detectors, the next set of

experiments we perform the same experimental procedure, but

instead of adapting only β we do adapt β and W (Equation 5).

Figure 7 presents the CMC curves with adaptation of

convolutional kernels and biases for the Inception Resnet v2

using the Siamese Networks. Such DCNN, with no adaptation,

presents an average rank one recognition rate of 67.03%.

Adapting both, biases and kernels (β and W in Equation 5),

of the first layer (θt [1−1](β + W ) in the plots) it was possible

to improve this benchmark to ≈ 74%. The adaptation for

θt [1−2] and θt [1−4] improved the average rank one recognition

rates to ≈ 87% and ≈ 89% respectively. Experiments

with θt [1−5] get its best average rank one recognition rate

with 97.7%. For θt [1−6] the average rank one recognition

rate drops drastically to ≈ 60%. The same aforementioned

overfitting can be suggested for θt [1−6].

As before, with the Siamese Networks, we also observed

the same trend using Triplet Networks as training strategy.

Adapting θt [1−1] the average rank one recognition rates

improved to ≈ 75%. For θt [1−2] and θt [1−4] the improvements

are ≈ 78% and ≈ 81% respectively. For θt [1−5] the average

rank one recognition rate improved to 81.5% and then

drastically drops to ≈ 51% for θt [1−6]. For the sake of

completeness, in this experiment we also adapted all layers.

In the Figure 7 this is represented as θt [1−all]. It is possible to

observe a severe degradation in terms of rank one recognition

rate. Compared with θt [1−6] it dropped from ≈ 51% to

≈ 6.5%, confirming our assumption about overfitting.

With these set of experiments it was possible to observe that,

despite the adaptation of only the β 0s increase the recognition

rates, the joint adaptation of β and W increases even more

this benchmark. We can suggest that there are domain specific

feature detectors and such feature detectors need to be taken

in to account for the Heterogeneous Face Recognition task.

From the experiments above, the best average rank one

recognition rate is achieved with using Siamese Networks as a

base trainer. The model θt [1−5] achieved an average recognition

rate of 97.72%(0.6).

Table II shows the average rank one recognition rate com-

paring different configuration of our proposed approach (the

best ones for each setup) with with five reference systems from

TABLE II

CUHK-CUFS - AVERAGE RANK ONE RECOGNITION RATE

the literature. The first two are from [1] (P-RS and FaceVACS).

Unfortunately, the source code of those approaches are not

available for reproducibility. Hence, for these we only report

the performance. For the other three references, the source

code was made available and it can be checked in the corre-

sponding publications.

Comparing with P-RS, in terms of average rank one, the dif-

ference is ≈ 1%, which represents ≈ 2 miss classifications.

The HFR approach implemented in P-RS is composed by

a score a fusion of 180 different face recognition systems

(6 systems with 30 bags each). In the approach each face

image is geometric normalized with 250 × 200 pixels keeping

an inter-pupil distance of 75 pixels. Three preprocessing strate-

gies are applied: Difference of Gaussian Filter (DoG) [18],

Center Surround Divisive Normalization (CSDN) [42] and a

Gaussian Filter. For each preprocessed image two different

features are extracted: MLBP features [19] (uniform pat-

tern with 59 bins) with 4 different radius (1, 3, 5, 7) and

SIFT features [50] (128 features). Each of these features are

extracted in patches of 32 × 32 pixels with a patch overlap of

16 × 16. Summing up, all these features combined with the

preprocessing mechanisms leads to more than 40,000 feature

descriptors. Compared with our approach, which is com-

posed by only one system instead of 180 complex systems

(several bags, different types of feature, different image

processing algorithms), the difference of 2 miss classifications

doesn’t look an enormous gap. Furthermore, our proposed

approach performs better than the I SV (≈ 97%) and the

G F K (≈ 93%).

B. CASIA (VIS-NIR)

Figure 8 presents the CMC curves with adaptation of the

biases only for the Inception Resnet v2 using the Siamese

Networks. Such DCNN, with no adaptation, presents an aver-

age rank one recognition rate of 73.80%. Adapting only the

biases (β in Equation 5) of the first layer (θt [1−1](β) in the

plots) it was possible to improve this benchmark to ≈ 77%.

The biases adaptation for θt [1−2] and θt [1−4] improved the

average rank one recognition rates to ≈ 83% and ≈ 86%

respectively. Experiments with θt [1−5] get its best average

rank one recognition rate with 88.5%. For θt [1−6] the average

rank one recognition rate drops drastically to ≈ 35%. The

same overfitting hypothesis suggested before can be applied

for θt [1−6].



DE FREITAS PEREIRA et al.: HFR USING DOMAIN SPECIFIC UNITS 1811

Fig. 8. CASIA - Average CMC curves (with error bars) for the adaptation
of biases only - Siamese networks with Inception Resnet v2.

Fig. 9. CASIA - Average CMC curves (with error bars) for the adaptation
of kernel and biases - Siamese networks with Inception Resnet v2.

We also observed the same trends using Triplet Networks

as a base trainer. Adapting θt [1−1] the average rank one

recognition rates is improved ≈ 74%. For θt [1−2] and θt [1−4]

the improvement are ≈ 74% and ≈ 75% respectively.

For θt [1−5] the average rank one recognition slightly drops

to ≈ 68% and then drastically drops to ≈ 15% for θt [1−6].

The same trend observed in Section V-A, with VIS-

Sketeches, was observed in VIS-NIR. The adaptation of the

batch normalization offsets only improve the recognition

rates. In the next set of experiments we investigate if there

are domain specific feature detectors by adapting β and W

(Equation 5)

Figure 9 presents the CMC curves with adaptation of

convolutional kernels and biases for the Inception Resnet v2

using Siamese Networks. Such DCNN, with no adaptation,

presents an average rank one recognition rate of 73.8%.

Adapting both, biases and kernels (β and W in Equation 5),

of the first layer (θt [1−1] in the plots) it was possible to get this

benchmark improved to ≈ 80%. The adaptation for θt [1−2]

and θt [1−4] improved the average rank one recognition rates

to ≈ 91% and ≈ 93% respectively. Experiments with θt [1−5]

get its best average rank one recognition rate with 96.3%. For

θt [1−6] the average rank one recognition rate drops drastically

TABLE III

CASIA - AVERAGE RANK ONE RECOGNITION RATE AND VERIFICATION

RATE AT FALSE ACCEPTANCE RATE OF 0.1%

to ≈ 49%. A possible overfitting can be suggested for θt [1−6].

In this experiment we also adapted all layers. In the Figure 9

this is represented as θt [1−all]. It is possible to observe a severe

degradation in terms of rank one recognition rate. Compared

with θt [1−6] it dropped from ≈ 49% to ≈ 10.9% confirming

our assumption about overfitting for another image modality.

As before, with Siamese Networks, we also observed the

same trends using Triplet Networks as training strategy. Adapt-

ing θt [1−1] the average rank one recognition rates are improved

to ≈ 76%. For θt [1−2] and θt [1−4] the improvements are ≈ 79%

and ≈ 89% respectively. For Inception Resnet v2 the average

rank one recognition rate improved to 90.1% for θt [1−5] and

it drastically drops to ≈ 51% for θt [1−6].

With this set of experiments it was possible to observe

that, despite the adaptation of only βs increase the recognition

rates, the joint adaptation of β and W slightly increases such

figure of merit. We can argue that there are domain specific

feature detectors and such feature detectors need to be taken

in to account for the H F R task.

Table III shows the average rank one recognition rate

comparing different configurations of our proposed approach

with twelve reference systems from the literature. We also

report the Verification Rate at False Acceptance Rate of 0.1%,

since this is a common evaluation metric used in the literature

for this particular database. Unfortunately, the source code for

the first nine approaches is not available for reproducibility.

Hence, for these we only report the performance. For the other

three references, the source code is made available and it can

be checked in the corresponding publications.

Using the average rank one recognition rate as reference

(closed-set identification task), different setups of our pro-

posed approach are substantially better than the most of

the state-of-the-art results. Our best setup (96.3% with the

model θt [1−5](β+W ) trained with Siamese Neural Networks and

Inception Resnet v2), presents a slightly better recognition

performance compared with the TRIVET system in [43]

(95.74%) and the IDR system in [54] (95.85%). The CDL

system in [55] and WCNN system in [56] presented slightly

better average rank one recognition rates; respectively 97.8%

and 98.8%. With respect to the Verification Rate at False
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Fig. 10. NIVL - Average CMC curves (with error bars) for the adaptation
of biases only - Siamese networks with Inception Resnet v2.

Acceptance Rate of 0.1% (verification task), our best setup

(98.4% with the model θt [1−5](β+W ) trained with Siamese

Neural Networks and Inception Resnet v2) presents equivalent

recognition performance compared with CDL system in [55]

and WCNN system in [56]; respectively 98.6% and 98.7%.

C. NIVL (VIS-NIR)

Figure 10 presents the CMC curves with adaptation of the

biases only for the Inception Resnet v2 using the Siamese

Networks. Such DCNN, with no adaptation, has an average

rank one recognition rate of 88.14%. Adapting only the biases

(β in Equation 5) of the first layer (θt [1−1](β) in the plots)

it was possible to improve this benchmark to ≈ 89%. The

biases adaptation for θt [1−2] improved the average rank one

recognition to ≈ 92%. Adapting θt [1−4] and θt [1−5] improved

this benchmark to 92.7% and 92.8% respectively. For θt [1−6]

the average rank one recognition rate drops drastically

to ≈ 51%. The same overfitting hypothesis suggested before

can be verified for θt [1−6].

Training with Triplet Networks the same trends are

observed. Adapting θt [1−1] and θt [1−2] the average rank one

recognition rates of both get improved to ≈ 91%. For θt [1−4]

the average rank one recognition rate improved to ≈ 92%.

Then, slightly decreased to ≈ 90% for θt [1−5] and it drastically

drops to ≈ 30% for θt [1−6].

The same trends observed in Section V-A and V-B was

observed for this database. The adaptation of the batch nor-

malization offsets only do improve the recognition rates. In the

next set of experiments we investigate if there are domain

specific feature detectors by adapting β and W (Equation 5).

Figure 11 presents the CMC curves with adaptation of con-

volutional kernels and biases for the Inception Resnet v2 using

the Siamese Networks. Such DCNN, with no adaptation, has

an average rank one recognition rate of 88.14%. Adapting

both, biases and kernels (β and W in Equation 5), of the first

layer (θt [1−1](β + W ) in the plots) it was possible to get this

benchmark improved to ≈ 91%. The adaptation for θt [1−2]

and θt [1−4] improved the average rank one recognition rates

to ≈ 94% and ≈ 94% respectively. Experiments with θt [1−5]

get its best average rank one recognition rate with 94.5%.

Fig. 11. NIVL - Average CMC curves (with error bars) for the adaptation
of kernel and biases - Siamese networks with Inception Resnet v2.

TABLE IV

NIVL - AVERAGE RANK ONE RECOGNITION RATE

For θt [1−6] the average rank one recognition rate drops dras-

tically to ≈ 59%. A possible overfitting can be suggested

for θt [1−6].

As before, with Siamese Networks, we also observed

the same trends using Triplet Networks as training strategy.

Adapting θt [1−1] and θt [1−2] the average rank one recognition

rates of both get improved to ≈ 90%. Then, the average rank

one recognition rates are improved to ≈ 92% for θt [1−4] and

θt [1−5] and it drastically drops to ≈ 54% for θt [1−6].

With this set of experiments it was possible to observe

that, despite the adaptation of only βs increase the recognition

rates, the joint adaptation of β and W slightly increased such

figure of merit. We can suggest that there are domain specific

feature detectors and such feature detectors need to be taken

in to account for the H F R task.

Table IV shows the average rank one recognition rate

comparing different configurations of our proposed approach

with three reference systems from the literature whose source

code is available. As mentioned in Section II-E.3, there is

no official evaluation protocol for this database. In terms of

average rank one recognition rate our proposed approach is

substantially better than the rest of the state-of-the-art results.

The best setup is the model θt [1−4] trained with Siamese

Neural Networks using the Inception Resnet v2 as a basis

and achieved a recognition rate of 94.9%.

D. Pola Thermal (VIS-Thermal)

Figure 12 presents the CMC curves with adaptation of the

biases only for the Inception Resnet v2 using the Siamese

Networks. Such DCNN, with no adaptation, has an average
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Fig. 12. Pola Thermal - Average CMC curves (with error bars) for the
adaptation of biases only - Siamese networks with Inception Resnet v2.

Fig. 13. Pola Thermal - Average CMC curves (with error bars) for the
adaptation of kernel and biases - Siamese networks with Inception Resnet v2.

rank one recognition rate of 17.8 %. Adapting only the biases

(β in Equation 5) of the first layer (θt [1−1](β) in the plots)

it was possible to improve this benchmark to ≈ 28%. The

biases adaptation for θt [1−2] achieved an average rank one

recognition to ≈ 31%. Adapting θt [1−4] and θt [1−5] the average

rank one recognition rates increased to ≈ 35% and 36.7%

respectively. For θt [1−6] the average rank one recognition rate

drops drastically to ≈ 14%.

Training with Triplet Networks the same trends are

observed. Adapting θt [1−1] and θt [1−2] the average rank one

recognition rate get improved to ≈ 26% and ≈ 34% respec-

tively. For θt [1−4] the average rank one recognition rate

improved to ≈ 39%. For Inception Resnet v2 the average

rank one recognition rate increased to 41.3% for θt [1−5] and

it drastically drops to ≈ 16% for θt [1−6].

The same trends observed in the previous subsections were

observed in this database. The adaptation of the batch normal-

ization offsets only improve the recognition rates. In the next

set of experiments we investigate if there are domain specific

feature detectors by adapting β and W (Equation 5)

Figure 13 presents the CMC curves with adaptation of

convolutional kernels and biases for the Inception Resnet

v2 using Siamese Networks. Such DCNN, with no adaptation,

TABLE V

POLA THERMAL - AVERAGE RANK ONE RECOGNITION RATE

presents an average rank one recognition rate of 17.7%.

Adapting both, biases and kernels (β and W in Equation 5),

of the first layer (θt [1−1](β + W ) in the plots) it was possible

to get this benchmark improved to ≈ 31%. The adaptation for

θt [1−2] and θt [1−4] improved the average rank one recognition

rate to ≈ 65% and 76.3% (its best) respectively. With θt [1−5]

the average rank one recognition rate drops to ≈ 67%. For

θt [1−6] the average rank one recognition rate drops drastically

to ≈ 33%.

As before, with Siamese Networks, we also observed

the same trends using Triplet Networks as training strategy.

Adapting θt [1−1] and θt [1−2] the average rank one recognition

rate improved to ≈ 28% and ≈ 42% respectively. For θt [1−4],

the average rank one recognition rate improved to ≈ 48% and

to ≈ 51% for θt [1−5]. Finally for θt [1−6] the average rank one

recognition rates drastically drops to ≈ 27%.

With this set of experiments it was possible to observe that,

despite the adaptation of only the βs increase the recognition

rates, the joint adaptation of β and W drastically increased

even more such figure of merit. We can suggest that there are

domain specific feature detectors and such feature detectors

need to be taken in to account for the H F R task.

Table V shows the average rank one recognition rate

comparing different configurations of our proposed approach

with six reference systems from the literature. Unfortunately,

the source code for the first three approaches is not available

for reproducibility. Hence, for these we only report the recog-

nition rates. For the other three references, the source code

was made available alongside the corresponding articles.

Our best setup (Inception Resnet v2 model θt [1−4] trained

with Siamese Networks) presented an average rank one recog-

nition rate of 76.3%. Such recognition rate surpass all the

Reproducible Baselines average rank one recognition rates.

For the Paper Baselines, the results are competitive when

compared with DPM (≈ 75%) and CpNN (≈ 78%), although

the evaluation protocols are not exactly same.

E. Discussion

Compared to a DCNN with no adaptation, our approach

using Domain Specific Units systematically improved the

H F R recognition rates for all tested image domains. This

reinforces Hypothesis 1 where we argue that for a given set of

DCNN feature detectors 2 we can split them in two consecu-

tive subsets, one that is domain dependent, θt , and one that is
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Fig. 14. Average rank one recognition rate vs number of parameters learnt
using Inception Resnet v2 as a base DCNN and Siamese Neural Networks as
a training method.

domain independent, θs . Moreover, such improvements were

observed independently of training method (Siamese or Triplet

Neural Networks) and the way that the Domain Specific Units

were encoded [θt [1−n](β) or θt [1−n](β + W )].

With respect to the training method, we observed that the

pair Siamese Neural Networks and Inception Resnet v2 pre-

sented the highest average rank one recognition rates overall.

Hence, for following analysis we consider this particular setup.

By incrementally applying our proposed approach layer

by layer (θt [1−n]), we could observe improvements, in terms

of rank one recognition rate, until certain point. Overall,

such improvements could be observed until the layer set

θt [1−5]. In this case, the recognition rate started to decrease

concomitantly when the number of free parameters started

to exponentially grow. Figure 14 presents the average rank

one recognition rates for all databases as function of θt [1−n]

in parallel with the number of free parameters for each one

(dashed line). It is possible to observe that the average rank

one recognition rates for all databases drastically drops in

θt [1−5] when the number of free parameters is increased by

a factor of ≈ 4. Such models are possibly overfitted. Table VI

presents the number of free parameters that need to be learnt

for each θt [1−n].

Two configurations were considered for θt [1−n]. Either

θt [1−n] was composed by adaptation of the offsets

(θt [1−n](β)) or was composed by the adaptation of the

pair: convolutional kernels W and their corresponding offsets

(θt [1−n](β + W )). Substantial improvements were observed

adapting only θt [1−n](β) via back-propagation for all image

domains. For the VIS-NIR domain, which is our “less

challenging” task, the adaption of θt [1−5](β) provided high

recognition rates; it improved from ≈ 73% to ≈ 89% (see

Table III) and from ≈ 88% to ≈ 93% (see Table IV) for

CASIA and NIVL databases respectively. It is worth noting

that such Domain Specific Unit consists in the adaptation of

only 928 free parameters. The adaptation of the convolutional

kernels W and their corresponding βs, in this domain,

TABLE VI

INCEPTION RESNET V2 - NUMBER OF FREE PARAMETERS

LEARNT ADAPTING EITHER β OR β + W

provided higher recognition rates overall, but in comparison

with the adaption of only βs the improvements were slight.

For instance, for the model θt [1−5](β + W ) the recognition

rates were improved from ≈ 73% to ≈ 96% (difference of

7% in comparison with the adaptation of only βs) and from

≈ 88% to ≈ 94% (difference of 1% in comparison with

the adaptation of only βs) for CASIA and NIVL databases

respectively. Such Domain Specific Unit is more complex

and consists in the adaptation of 439, 488 free parameters.

Comparing with the VIS-Thermal task, which is our most

challenging one, the adaption of θt [1−5](β) improved the

recognition rates from ≈ 17% to ≈ 37% (see Table V) only,

with the same 928 parameters. On the other hand, the adaption

of θt [1−5](β+W ) improved this figure of merit from ≈ 17% to

≈ 76% (difference of 39% in comparison with the adaptation

of only βs). This analysis provide an evidence that tasks

such as VIS-Thermal are more challenging than VIS-NIR or

VIS-Sketch and more complex adaptations are required.

We used in our analysis only the Inception Resnet v2 as

a base DCNN architecture. For the sake of page constraints,

we provide, as Supplementary Material, the same analysis

using the Inception Resnet v1 as base architecture.

VI. CONCLUSION AND FUTURE WORK

With this work we first showed that DCNN high level

features trained with VIS face images provide discriminative

power in the Heterogeneous Face Recognition task. Tests

carried out in three different image domains have showed

that such DCNNs are very accurate for VIS-NIR task. The

VIS-Sketch task they are less accurate, but still better than a

random guess and better than some baselines in this dataset.

The VIS-Thermal task is the most challenging one, but these

DCNNs are still better than a random guess.

In order to improve these recognition rates using the

discriminative capabilities of such DCNNs already trained

for VIS, we introduced a method for H F R called Domain

Specific Units. Such units learn low level feature detectors

that are domain specific and share the same set of high level

features from the source domain without re-train them.

Using two different methods to train them (Siamese and

Triplet Neural Networks) and two ways to encode such

Domain Specific Units (θt [1−n](β) and θt [1−n](β + W )) we

showed recognition rates improvements in all image domains

that are comparable or better than the state-of-the-art.

For reproducibility purposes of the work, all the source

code, trained models and recognition scores are made publicly

available.11

11https://gitlab.idiap.ch/bob/bob.paper.tifs2018_dsu
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Future work will focus on the analysis on what such feature

detectors are learning for each image domain.
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