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Abstract. Heterogeneous face recognition aims to recognize faces across
different sensor modalities. Typically, gallery images are normal visi-
ble spectrum images, and probe images are infrared images or sketches.
Recently significant improvements in visible spectrum face recognition
have been obtained by CNNs learned from very large training datasets.
In this paper, we are interested in the question to what extent the fea-
tures from a CNN pre-trained on visible spectrum face images can be
used to perform heterogeneous face recognition. We explore different
metric learning strategies to reduce the discrepancies between the differ-
ent modalities. Experimental results show that we can use CNNs trained
on visible spectrum images to obtain results that are on par or improve
over the state-of-the-art for heterogeneous recognition with near-infrared
images and sketches.
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1 Introduction

Heterogeneous face recognition aims to recognize faces across different modal-
ities. In most cases gallery of known individuals consists of normal visible
spectrum images. Probe images may be forensic or composite sketches, which
are useful in the absence of photos in a forensic context [8,14]. In compari-
son to the visible spectrum (VIS) images, near-infrared (NIR) and shortwave-
infrared images are less sensitive to illumination variation. Midwave-infrared and
longwave-infrared (LWIR), also referred to as “thermal infrared”, is suitable for
non-intrusive and covert low-light and nighttime acquisition for surveillance [9].
Differences between the gallery and probe modality, make heterogeneous face
recognition more challenging than traditional face recognition, see Fig. 1 for an
examples of VIS and NIR images, as well as sketches.

Visible spectrum face recognition has been extensively studied, and recently
much progress has been made using deep convolutional neural networks
(CNN) [18,21,23,25]. In part, this progress is due to much larger training
datasets. For example, Schroff et al. [21] report an error of 0.37 % on Labeled
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Fig. 1. Top: Example images of an individual in the CASIA NIR-VIS dataset (NIR
left, VIS right). Bottom: Examples from e-PRIP: (left to right) photo, FACES sketch,
and IdentiKit sketch.

Faces in the Wild (LFW) dataset [5], using a CNN trained on a proprietary
dataset of 200 million face images. Earlier state-of-the-art work [22] used only
10 thousand train images, yielding an error in the order of 7 %.

Large visible spectrum datasets can be constructed from internet resources,
such as e.g. IMDb [25], or social media websites. This is, however, not possible
for IR images or sketches. For the same reason, it is even harder to establish large
cross-modal datasets where we have individuals with images in both modalities.
The question we address in this paper is how we can leverage the success of
CNN models for visible spectrum face recognition to improve heterogeneous face
recognition. We evaluate a number of strategies to use deep CNNs learned from
large visible spectrum datasets to solve heterogeneous face recognition tasks.
We obtain results that are on par or better than the state of the art for both
VIS-NIR and VIS-sketch heterogeneous face recognition.

2 Related Work

Most heterogeneous face recognition work falls in one of two families discussed
below.

Reconstruction Based Methods. These methods, see e.g. [7,20], learn a map-
ping from one modality (typically that of the probe) to the other. Once this map-
ping has been performed, standard homogeneous face recognition approaches can
be applied. Sarfraz and Stiefelhagen [20] learn a deep fully-connected neural net-
work to regress densely sampled local SIFT descriptors in the VIS domain from
corresponding descriptors in the LWIR domain. Once the local descriptors in a
probe image are mapped to the gallery domain, face descriptors are matched
using the cosine similarity. Juefei-Xu et al. [7] learn a dictionary for both VIS
and NIR domains while forcing the same sparse coefficients for corresponding
VIS and NIR images, so that the coefficients of the NIR image can be used to
reconstruct the VIS image and vice-versa. The advantage of reconstruction-based
methods is that allow re-use of existing VIS face recognition systems. On the
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Layer C11 C12 P1 C21 C22 P2 C31 C32 P3 C41 C42 P4 C51 C52 P5 S

Filters 32 64 64 64 128 128 96 192 192 128 256 256 160 320 320 10,575

Fig. 2. CNN architecture: convolutions (C) use 3 × 3 filters and stride 1, max-pooling
(P) act on 2 × 2 regions and use stride 2. The final soft-max classification layer is
denoted as S.

other hand, the problem of cross-modality reconstruction may prove a harder
problem than cross-modality face recognition in itself.

Common Subspace Methods. These methods learn a mapping from both
the probe and the gallery modality to a common subspace, where matching
and retrieval among images across the domains can be performed. Mignon and
Jurie [14] adapt the metric learning objective function of PCCA [15] to only take
into account cross-domain pairs. We explore similar metric learning approaches,
but explicitly investigate the relative importance of using intra and inter domain
pairs, and separate projection matrices. Crowley et al. [2] use a triplet-loss simi-
lar to LMNN [24] to learn projections to map photos and paintings to a common
subspace. Using CNN face descriptors [18] they obtain better performance, but
do not observe improvements by subspace learning. We also use of CNN features,
but instead of simply using the penultimate network layer, we also investigate
the effectiveness of different layers and find these to be more effective.

Domain Adaptation. Heterogeneous face recognition is also related to domain
adaptation, we refer the reader to [19] for a general review thereof. We do high-
light the unsupervised domain adaptation approach of Fernando et al. [3], which
aligns PCA bases of both domains. Despite its simplicity, this approach was
shown to be a state-of-the-art domain adaptation method. We use it as a base-
line in our experiments.

3 Cross-Modal Recognition Approach

We describe our CNN model and how we use metric learning to align modalities.

Learning a Deep CNN Model. We use the CASIA Webface dataset [25]
which contains 500 K images of 10,575 individuals collected from IMDb. The
images display a wide range of variability in pose, expression, and illumination.
We use 100 × 100 input images to train a CNN with an architecture, detailed
in Fig. 2, similar to [25]. The only difference with the network of [25] is that we
use gray-scale images as input to the network to ensure compatibility with NIR
and sketch images. We use the trained CNN to extract image features at layers
ranging from P3 to the soft-max layer. Representations from other layers are
very high-dimensional and do not improve performance.

We explore fine-tuning the network to adapt to the target domain. We keep
the weights fixed throughout the network, except for the topmost soft-max layer,
and possibly several more preceding layers. When fine-tuning the model we use
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images from subjects for which we have images in both modalities. In this manner
images of the same subject in the two domains are mapped to similar outputs
in the last layer.

Metric Learning to Align Modalities. Nuisance factors such as pose, illu-
mination, and expression, make face recognition a challenging problem. The
problem is further complicated in heterogeneous face recognition, since images
in different modalities differ even if they were acquired at the same moment
under the same viewpoint. In single-modality face verification, metric learning
has been used extensively used to deal with these difficulties [4,10,18,22,25].
Most methods learn a Mahalanobis distance, which is equivalent to the �2 dis-
tance after a linear projection of the data. In our work we use LDML [4] to learn
Mahalanobis metrics from pairwise supervision.

Shared vs. Separate Projection Matrices. In the multi-modal case we can
treat the acquisition modality as another nuisance factor. This naive approach
requires the use of the same features for both modalities. Alternatively, we can
learn a separate projection matrix for each domain which allows us to learn a
common subspace in cases where domain-specific features of different dimen-
sionality are extracted in each domain. For e.g. features at different layers of the
CNN for the two modalities.

Inter-domain and Intra-domain Pairs. Another design choice in the metric
learning concerns the pairs that are used for training. We make a distinction
between intra-domain pairs, which are pairs of images that are both from the
same domain, and inter-domain pairs, which consist of one image from each
domain. Our goal is to match a probe in one modality with a gallery image
of the other modality, the inter-domain pairs directly reflect this. Intra-domain
pairs are not related to the multi-modal nature of our task, but as we show in
experiments they provide a form of regularization.

4 Experimental Evaluation

We present the datasets and evaluation protocols and image pre-processing
used in our experiments in Sect. 4.1, followed by evaluation results in Sects. 4.2
and 4.3.

4.1 Dataset, Protocols, and Pre-processing

Labeled Faces in the Wild. This dataset [5] consists of 13,233 images of
5,749 subjects and is the most widely used benchmark for uncontrolled face ver-
ification. We use the standard “un-restricted” training protocol to validate our
baseline CNN model. We experimented with features extracted from different
CNN layers and present the results in supplementary material. The most impor-
tant observation is that while using only gray scale images instead of color ones,
our network (96.9 %) performs comparable to that of Yi et al. [25] (97.7 %).
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CASIA NIR-VIS. This is the largest heterogeneous NIR-VIS face recognition
dataset [11] and contains 17,580 visible spectrum and near-infrared images of 725
subjects. The images present variations in pose, age, resolution, and illumination
conditions. See Fig. 1 for example face images. We follow the standard evaluation
protocol, and report the report the rank-1 recognition rate, i.e. for which fraction
of probes the right identity is reported first, and the verification rate (VR) at
0.1 % false accept rate (FAR).

ePRIP VIS-Sketch. This dataset [16] contains composite sketches for the 123
subjects from AR dataset [13]. There are two types of composite sketches released
for evaluation, see Fig. 1 for example faces and corresponding sketches. We use
the standard evaluation protocol and report the mean identification accuracy at
Rank-10.

Face Alignment and Normalization. We align the images in all datasets
using a similarity transform, based on facial landmarks. We also apply an addi-
tive and multiplicative normalization, so as to match the per-pixel mean and
variance of the CASIA Webface images. This normalization step gives a signifi-
cant boost in performance by correcting for differences in these first and second
order statistics of the signal.

Table 1. Evaluation on the CASIA NIR-VIS dataset of features from different layers
of the CNN (columns) and different metric learning configurations (rows).

S P5 C52 C51 P4 C42 C41 P3

Inter+Intra Shared 72.6 75.3 80.6 82.9 85.9 84.8 83.5 79.5

Separate 66.6 70.4 78.6 80.0 82.4 80.7 76.6 69.2

Inter Shared 70.0 74.3 79.8 81.7 83.6 82.0 78.6 72.3

Separate 73.0 75.7 77.9 76.8 76.91 74.7 63.1 52.9

4.2 Results on the CASIA NIR-VIS Dataset

Metric Learning Configurations. In Table 1 we consider the effect of (a)
using intra-domain pairs in addition to inter-domain pairs for metric learning,
and (b) learning a shared projection matrix for both domains, or learning sepa-
rate projection matrices.

The results show that learning a shared projection matrix using both
inter+intra domain pairs is the most effective, except when using S or P5 fea-
tures. The overall best results are obtained using P4 features. Unless stated
otherwise, below we will used shared projection matrices below, as well as both
intra and inter domain pairs.

Combining Different Features. The optimal features might be different
depending on the modality. Therefore, we experiment with using a different
CNN feature for each modality. We learn separate projection matrices, since the
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feature dimensionalities may differ across the domains. Experimental results for
the evaluation are reported in the supplementary material. The best results are
obtained by using P4 features in both domains. Therefore, we will use the same
feature in both domains in further experiments.

Fine-Tuning. In the supplementary material we evaluate the effect of fine-
tuning the pre-trained CNN using the training data of the CASIA NIR-VIS
dataset. The results show that fine-tuning improves the S, P5, and C52 features.
Fine-tuning layers deeper than that results in overfitting and inferior results.
The best results, however, are obtained with the P4 features extracted from the
pre-trained net (85.9). In the remainder of the experiments we do not use any
fine-tuning.

Table 2. Comparison on CASIA NIR-VIS of our approach, using raw CNN features,
and unsupervised domain adaptation. For the latter, projection dimensions are set on
the validation set.

S P5 C52 C51 P4 C42 C41 P3

Raw features 63.1 62.7 63.8 51.0 29.4 26.8 18.8 14.8

Domain adapt. [3] 63.1 62.7 64.2 51.8 31.8 28.6 19.1 13.7

Our approach 72.6 75.3 80.6 82.9 85.9 84.8 83.5 79.5

Comparison to the State of the Art. In Table 2, we compare our results of
the (Shared, Inter+Intra) setting to the state-of-the-art unsupervised domain-
adaptation approach of Fernando et al. [3], and a �2 distance baseline that uses
the raw CNN features without any projection. From the results we can observe
that our supervised metric learning results compare favorably to the results
obtained with unsupervised domain adaptation. Moreover, we find that for this
problem unsupervised domain adaptation improves only marginally over the raw
features. This shows the importance of using supervised metric learning to adapt
features of the pre-trained CNN model to the heterogeneous face recognition
task.

Table 3. Comparison of our results with the state of the art on CASIA-NIR dataset.

Rank-1 VR at 0.1 % FR

Jin et al. [6] 75.7 ± 2.5 55.9

Juefei-Xu et al. [7] 78.5 ± 1.7 85.8

Lu et al. [12] 81.8 ± 2.3 47.3

Yi et al. [26] 86.2± 1.0 81.3

Ours 85.9 ± 0.9 78.0
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In Table 3 we compare our results to the state of the art. For the identification
experiments, we obtain (85.9±0.9) rank-1 identification rate which is comparable
to the state of the art reported by Yi et al. [26] (86.2± 1.2). Yi et al. [26] extract
Gabor features at some localized facial landmarks and then use a restricted
Boltzman machine to learn a shared representation locally for each facial point.
Our approach is quite different from them, since we do not learn our feature
representations on CASIA-NIR dataset rather we only learn a metric on top of
features from a pre-trained CNN. For the verification experiments, our result
(78.0 %) is below the state of the art performance of Juefei-Xu et al. [7] (85.8 %),
their Rank-1 accuracy however (78.5 %) is far below ours (85.9 %).

4.3 Results on the ePRIP VIS-Sketch Dataset

For this dataset we found the P3 features to be best, in contrast to the CASIA
NIR-VIS dataset where Pool4 was better. The fact that here deeper CNN fea-
tures are better may be related to the fact that in this dataset, the domain shift
is relatively large compared to CASIA NIR-VIS dataset. Detailed results are
given in supplementary material.

Faces(In) IdentiKit(As)

Bhatt et al . [1] 24.0 ± 3.4 15.4 ± 3.1

Mittal et al . [16] 53.3 ± 1.4 45.3 ± 1.5

Mittal et al . [17] 60.2 ± 2.9 52.0 ± 2.4

Ours 65.6 ± 3.7 51.5 ± 4.0
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Fig. 3. Rank-10 identification accuracy on the e-PRIP composite sketch database (left),
and CMC curve for the Faces(In) database (right) for our result reported in the table.

In Fig. 3 (left panel) we compare our results to the state of the art on the
e-PRIP dataset. We obtain the best performance on the Faces(In) sketches,
outperforming the previous state-of-the-art result of Mittal et al. [17] by 5%. For
the IdentiKit(As) sketches our results are on par with those reported by Mittal
et al. [17]. In Fig. 3 (right panel) we plot the CMC curve for our method compared
to the existing approaches on Faces(In) dataset, curves for other methods are
taken from [17]. The figure shows that we obtain significant gain at all ranks
compared to the state of the art.
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5 Conclusion

We studied different aspects of leveraging a CNN pre-trained on visible spec-
trum images for heterogenous face recognition, including extracting features from
different CNN layers, finetuning the CNN, and using various forms of metric
learning. We evaluate the impact of these design choices via means of extensive
benchmark results on different heterogenous datasets. The results we obtained
are competitive with the state of the art for CASIA-NIR, and improve the state
of the art on e-PRIP.
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