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The development of social media has provided open and convenient platforms for people to express their opinions, which leads to
rumors being circulated. Therefore, detecting rumors from massive information becomes particularly essential. Previous methods
for rumor detection focused on mining features from content and propagation patterns but neglected the dynamic features with
joint content and propagation pattern. In this paper, we propose a novel heterogeneous GCN-based method for dynamic rumor
detection (HDGCN), mainly composed of a joint content and propagation module and an ODE-based dynamic module. The joint
content and propagation module constructs a content-propagation heterogeneous graph to obtain rumor representations by
mining and discovering the interaction between post content and propagation structures in the rumor propagation process. The
ODE-based dynamic module leverages a GCN integrated with an ordinary differential system to explore dynamic features of
heterogeneous graphs. To evaluate the performance of our proposed HDGCN model, we have conducted extensive experiments
on two real-world datasets from Twitter. The results of our proposed model have outperformed the mainstream model.

1. Introduction

Recent years have witnessed the prevalence of mobile In-
ternet technology and social networks, which provide a
convenient platform for users to obtain a large amount of
information and express their opinions. Since more people
have gotten involved in hot topics and exchanged their views
on social media, the rumors have been circulated. Mean-
while, rumors can be manipulated to spread widely and
mislead users for certain purposes [1, 2], which can damage
the reputations of individuals and have a detrimental effect
on society [3-5]. For example, during the COVID-19 out-
break, the world has been facing a large number of health-
related rumors about coronavirus. One of the typical rumors
is that a traditional Chinese medicine called Shuanghuan-
glian can prevent novel coronavirus, causing many citizens
to queue to buy overnight [6]. The presence of such rumors
on social media seriously affected social stability. Therefore,

it is urgent to come up with automatic detection methods to
identify rumors accurately and timely.

Most of the early detection methods adopt handcrafted
feature engineering to extract features from user profiles
[7, 8], content [9-12], and propagation patterns [13-15] to
train supervised classifiers. Corresponding methods are used
for training, such as Decision Tree [16], Random Forest [8],
and Support Vector Machine [7]. However, these methods
that rely on manual feature engineering consume both time
and workforce. Moreover, those methods cannot capture the
higher-dimensional feature representations from rumor
propagation.

Recently, deep learning has been successfully applied in
computer vision, natural language processing, and rec-
ommender system. Given its ability to automatically ex-
tract low- and high-order feature representations, many
studies have exploited deep learning methods in rumor
detection. The deep learning model, long short-term
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memory (LSTM), and gated recurrent unit (GRU) [17] are
applied to capture sequential features from rumor prop-
agation along time. It is the first time introducing deep
learning to obtain temporal representations of rumor
propagation. Then, Ma et al. [18] designed a tree-based
recursive neural network (RvNN) to learn the semantic
sequence and propagation structure from two directions
for rumor detection. These approaches focus on sequential
propagation but neglect dispersion. Bruna et al. [19]
pointed out that Convolutional Neural Network (CNN)
could obtain the relevant features of local neighbors.
Therefore, CNN-based methods [20, 21] were put forward
to mine the dispersion structure of the rumor propagation,
obtaining local correlation features representation from
neighbor retweets. However, these methods cannot deal
with the global structure of rumor propagation. In order to
capture global structure feature representations during
propagation, graph convolutional network (GCN) is
proposed [22]. Since GCN is widely used in complex
networks such as social networks and physical systems, Wu
et al. [15] proposed an undirected GCN model to obtain
global structural features of rumor propagation. Still, they
do not take the direction of propagation into account.
Therefore, Bian et al. [23] leveraged a GCN with a bidi-
rectional graph network to learn the global features of
patterns and diffusion of rumor propagation. These
methods mentioned above only take propagation structure
into consideration and ignore rumor content features
which are also vital for rumor detection [24, 25]. Since
these methods above do not take the heterogeneous in-
formation into consideration, a heterogeneity network-
based method [26] is proposed to tackle the complex
network, which makes positive performance to link pre-
diction. Huang et al. [27] proposed a heterogeneous
method by constructing a tweet-word-user heterogeneous
graph to make the most of content and propagation in-
formation. Besides, rumor propagation is a continuous-
time dynamic system [28]. Recent studies on rumor de-
tection do not pay attention to dynamic changes during
rumor propagation. Nevertheless, it is essential to delve
into dynamic changes of rumor propagation structure for
better performance. Shang et al. [29] found limitations of
the static graph in analyzing social network and explored
interaction evolution of the dynamic network. To date,
some studies have focused on using ordinary differential
equations to capture the continuous-time dynamic of the
complex networks [30-32] in other fields, such as fluid
mechanics [33, 34]. Yildiz [35] proposed a method based
on ordinary differential equations and an autoencoder to
learn high-dimensional complex continuous-time latent
dynamics. Choi et al. [36] leveraged neural ordinary dif-
ferential equations (NODEs) to learn user and product
coevolving embedding over time. The NODEs consider the
time variable ¢ as continues, which enables us to obtain the
continuous-time dynamic [37]. The results of the above
NODEs demonstrate better performance than only the
neural network method. This is because NODEs combine
the high-capacity function approximation of deep learning
and the high-efficiency dynamic acquisition of differential
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equations, which offers the best-of-both-worlds approach
to obtain dynamic features. The typical architecture of
NODE:s is shown in Figure 1.

To deal with both heterogeneous information and dy-
namic features of rumor detection, in this paper, we propose
a novel heterogeneous graph convolutional network-based
method for dynamic rumor detection (HDGCN), which
integrates an ordinary differential equation system with
GCNs to capture the dynamic evolution of the heteroge-
neous graph. We first construct a heterogeneous graph based
on combining content and propagation structures with
learning rumor representations, as shown in Figure 2. Then,
we design an ODE-based graph convolutional network to
learn dynamic representations of nodes during the propa-
gation process. Finally, we introduce a meaning-pooling
layer and a fully connected layer to predict rumor classes.

Compared with existing methods, the proposed ap-
proach HDGCN is capable of (1) exploiting rumor repre-
sentation with joint content and propagation pattern; (2)
precisely modeling continuous-time dynamic relevance by
an ordinary differential equation system to obtain the in-
stantaneous rate of changes in the heterogeneous graph; (3)
effectively capturing and leveraging propagation trending
and content for rumor classification. To summarize, the
main contributions of this work are as follows:

(1) This novel method constructs the joint post content
and rumor propagation structure as a heteroge-
neous graph to obtain rumor representation, con-
taining textual information and initial propagation
information.

(2) We explore a novel ODE-based graph convolutional
network method that integrates an ordinary differ-
ential system and GCNs to acquire dynamic changes
of the heterogeneous graph. Moreover, this is the
first work to leverage the differential equation to
obtain the dynamic evolution of heterogeneous
graph for rumor detection.

(3) We perform extensive experiments on real-world
Twitterl5 and Twitterl6 datasets. The result dem-
onstrates better effectiveness of our proposed method
HDGCN compared to mainstream methods.

The rest of the paper is organized as follows: in Section 2,
related works are reviewed; in Section 3, details of our
proposed model HDGCN are introduced; we present the
experimental results and discussions in Section 4; finally,
Section 5 is the conclusion.

2. Related Work

In recent years, automatic rumor detection on social media
has attracted considerable attention. Previous works for
rumor detection on social media have focused on hand-
crafted feature engineering, extracting rumor features from
text content, user profiles, and propagation structures to
design a classifier. Castillo et al. [16] pioneered engineering
features and classified the rumor using Support Vector
Machine and so on, which represented the starting point for
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F1Gure 1: The typical architecture of NODEs. Feature extractor provides the initial state h,, and h, is the dynamic state calculated by NODE

methods.

FIGURE 2: The heterogeneous graph combines post content and
rumor propagation structure as rumor representation. The edge
between two nodes is the content representations built with the
word frequency and the inverse post frequency. The red point is the
original post. The nodes sharing the same father node have the
same rumor content information.

many later works. Yang et al. [7] formulated rumor clas-
sification by extending emotional features to enhance the
strength of rumor credibility assessment. Dayani et al. [38]
proposed a method for obtaining user features and content
features by K-Nearest neighbor and Naive Bayes classifier,
respectively. Wu et al. [15] modeled the propagation
structures by using the random walk method to extract
features of the propagation process. Ma et al. [14] con-
structed a propagation tree kernel to detect rumors by
evaluating similarities among the structures of the propa-
gation tree. However, these methods all rely on manual
feature engineering to obtain valid information, which is
inefficient and cannot extract high-dimensional feature
representations.

In order to automatically learn high-dimensional fea-
tures, many rumor detection methods based on deep
learning have been proposed. For propagation structures,
Ma et al. [17] leveraged recurrent neural networks (RNN) to
capture hidden feature representations of variation tweet
content over time. Liu et al. [39] proposed a time-series
classifier that incorporates both CNN and RNN, capturing
the global and local variations of content features and user
features, respectively. Ma et al. [18] designed a tree-based
recursive neural network (RvNN) to learn the semantic
sequence and propagation structure from two directions for
rumor detection. Guo et al. [40] proposed a hierarchical
bidirectional long short-term memory model combined
with an attention mechanism for learning representations.

For content preprocessing, Varshney et al. [41] developed an
automated system to distinguish fake and real news from
content resemblance features. Kaliyar et al. [42] proposed
the FakeBERT model based on TextCNN [24, 25] and BERT
[43] to learn news textual information for detection. Apart
from text content, Meel et al. [44] proposed a multimodal
fake news detection framework to analyze multimodal data,
such as textual information and image features. Besides,
Varshney et al. [45] also proposed a scheme to extract text
information from the videos to classify fake videos with user
profiling and human consensus features.

However, deep learning models mentioned above have
no ability to process graph-structural data of rumor prop-
agation, but graph neural network lends itself to learning
graph features [22]. Wu et al. [15] proposed a GCN model to
obtain global structural features of rumor propagation.
Malhotra et al. [46] leverage GCN to classify the constructed
propagation graph and use RoBERTa- based word embed-
ding [47] to understand linguistic cues. Additionally, Dou
et al. [48] proposed a method based on BERT [43] and GCN,
which captures various signals from user preferences. These
methods, however, are inefficient in learning the dynamics
of rumor propagation.

Compared to the GCN models mentioned above, neural
ODEs (NODEs) contribute to capturing dynamic features
from neural network architecture. NODEs are able to learn
the derivative of hidden state with neural networks and
change discrete hidden layers into the continuous-depth
network and continuous-time latent variable models for
supervised learning [49]. Learning from neural ODEs, Ma
et al. [50] leveraged entity recognition, sentence reconfi-
guration, and an ODE network to construct a rumor de-
tection framework. It is the first time introducing neural
ODE into rumor detection field and getting a promising
performance. Zang et al. [28] combined an ODE and GNNs
to learn continuous-time dynamics on complex networks for
predicting continuous-time network dynamics. Yildiz [35]
proposed a latent second-order ODE method integrated
with an autoencoder to learn high-dimensional trajectories
and complex continuous-time latent dynamics. In the rec-
ommendation field, Choi et al. [36] extended the linear GCN
method with neural ordinary differential equations
(NODE:) to learn user and item coevolving embedding over
time. Besides, Wang et al. [51] proposed a temporal influ-
ence kernel function based on the derivation and decay
exponential function to obtain the dynamics of users’
preference from sequential records, which derives from the
idea of differential equations.



3. Methodology

3.1. Preliminaries. We now introduce a formal description
of our problem settings and preliminary knowledge to
understand our work. The notations and symbols used are
summarized in Table 1.

We  define the rumor  detection  dataset
X= {xl,xz, e ,xm}, where each x; corresponds to the i-th
event and |X| is the number of all events. Each event
comprises two independent sets, namely, rumor content and
propagation structure. So the event x; can be denoted as x;
={P;,G;}, where P;P; and G; represent the content and
propagation structure of i-th event. The i-th event propa-
gation structure is denoted as G; = {C;, E;, A;}, where C; =
{cip»€i1r€ip - - - ciny} represents the nodes in the propagation
structure of event ;. ¢;, is the original post, and ¢;; is the j-th
responsive post during propagation. E; = {ey|s,t =0,1,2

N} denotes a set of all links. Then, according to the
nodes and edges, Ae{0,1}"*N is denoted as an adjacency
matrix. Specifically, A, = 1 means the edge from node c; to
¢; exists. Then, combining content and propagation
structure, we set A" as the adjacency matrix of the hetero-
geneous graph, which is detailed in the next section.

Moreover, we formulate this task as a supervised clas-
sification problem. Each event is associated with a ground-
truth y; and learns classifier f from ground-truth labels; that
is, f: x; — y;, where y; is one of the four classes {NR, FR,
TR, UR}, representing nonrumor, false rumor, true rumor,
and unverified rumor, respectively. Our goal is to train a
model f(-) to predict the label of a given post and
propagation.

3.2. Model Overview. The basic idea of HDGCN is to learn
dynamic changes from joint post content and rumor
propagation structure for accurate rumor classification. In
this section, we present the construction of our proposed
framework for rumor detection based on the continuous-
time dynamic on rumor heterogeneous graph.

As shown in Figure 3, the proposed rumor detection
model consists of three main components: rumor repre-
sentation capturing, dynamic propagation modeling, and
rumor classification. Firstly, HDGCN encodes rumor rep-
resentations by constructing a joint content and propagation
structure graph. In order to build the heterogeneous graph,
we learn rumor content representations via TE-IDF [52],
encode propagation node vectors via adjacency matrix,
combine content and propagation information together, and
then embed the union graph into a low-dimensional space.
Secondly, we use an undirected GCN to learn the initial
status of the heterogeneous graph. Meanwhile, we devise an
ordinary differential equation system with GCNs to obtain
continuous-time dynamics of the heterogeneous graph.
Finally, a mean-pooling layer is used to concatenate the
hidden dynamic features and predict rumor classification.
Next, we will elaborate on the details of each component.

3.3. Rumor Representations Capturing. We build a joint
rumor content and propagation structure graph, named
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TaBLE 1: Symbols used in this work.

Symbol Description
X x; is the i-th event in the event set X

! as well as the joint graph
P; P; is the i-th post content

G, G; is the propagation graph of the i-th event x;
Ae{O 1N The adjacency matrix of rumor propagation graph
Al The adjacency matrix of heterogeneous graph
Ay The edge weight from node ¢, to ¢;
¥ The label of event x;
) Mapping functions

content-propagation heterogeneous graph, to encode rumor
representation. The heterogeneous graph combines rumor
content information (the weights of edges) and rumor
propagation structures, which is shown in Figure 2.

To obtain rumor content representation for each post,
we adopt the TF-IDF method, which is used for text mining
by static word frequency and inverse document frequency.
Firstly, we filter the stopped words and construct the corpus.
Then, we formulate the term frequency as ¢ f;; = n;;/ 3,y
where 7;; is the number of times the i-th word appeared in
post j. And the inverse document frequency is formulated as
idf; =log|D|/1+ |{k: t; € p;}|, where D denotes the total
number of posts in the corpus and |{k: t; € p}| is the
number of posts containing word t;. The weight of word ¢; is
computed as t; =t f;; i d f;. So the content representation
of post j can be denoted as p; = [t,,t,,...,ty ], where [W]
is the number of corpora. Then, because the representation
of p; is high-dimension and sparse, we employ an em-
bedding layer to map them into low-dimension space to
acquire dense real-value vectors. Formally, the dense vector
of each rumor content is defined as

=W;pj (1)

where W denotes the weight of embedding layer and v; is
considered as the content representation of post j.

Next, we can construct the rumor propagation structure
G;= {C]-, Ej, A} based on the spreading path of retweets and
responses. Since adjacency matrix Ae{0, 1} can be on
behalf of rumor spreading, we can obtain the adjacency
matrix A’ of joint rumor content and propagation graph
from A and v;, which is defined as

Ast = Astvj’ (2)

where A is the value of edge from node ¢, to ¢
Then, we can obtain the initial rumor representation r
formulated as

]'3

o 2 Aw (3)

€jsrjt€C;

where M is the number of edges in the propagation of post j.

3.4. Initial State Acquiring. After obtaining rumor repre-
sentation, we acquire the initial state of the heterogeneous by
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FIGURE 3: The workflow of the proposed model HDGCN. HDGCN consists of three steps: (1) obtaining rumor representation by joint
content and rumor propagation structure graph, (2) modeling dynamic propagation by ODE-based GCN, and (3) predicting rumor

classification.

a GCN method. We firstly build the operators of con-
volutional graph neural network A, which is defined as

1 1
®=D 24D 2,
(4)
A=A +1,

where A" and I are the adjacency matrix and identity matrix
of the heterogeneous graph, respectively. D is the degree
matrix of A.

Then, we obtain the initial state representation of the
union graph. The equation is written for the model as
follows:

H, = a(CDr]-WO), (5)

where H represents the initial state of rumor propagation.
W, is the filter weight. And we adopt the ReLU function as
the activation function o (-). The dropout is applied in the
GCN layer to avoid overfitting.

3.5. ODE-Based Dynamic Propagation Modeling. As we
know, the propagation of rumor events can be seen as a
continuous-time dynamic complex network. To obtain the
dynamic features in joint rumor content and propagation
graph, we combine the ordinary differential equation system
and graph convolutional networks to learn the continuous-
time dependency of propagation progress.

Firstly, we describe the dynamic system of the propa-
gation by a differential equation, formulated as [53]

dH (t)
dt

= f(H,G,W,1t),t> =0, (6)

where H (t) represents the state of the propagation network
at time t, with t € [0,00]. G denotes the heterogeneous
graph, capturing how nodes interact with each other. W are
parameters which are the weight demonstrating how the
progress evolves over time. dH (¢)/dt is the derivative of
time, denoting the instantaneous rate of rumor propagation
dynamic system changes. H(0) = H, is initial states of
propagation progress at time t=0.

The nonlinear mapping function f(H,G,W,t) , cap-
turing the dynamic changes, is modeled by a GCN, which is
defined as

f(H,G,W,t) = o (OH W, +b), 7)

where @ is the operators of convolutional graph neural
networks, W, denotes the parameters of GCN, b is the bias,
and o(-) is the ReLU activation function.

After getting the initial state, we encode the graph
network node state H, from the original hidden state H; and
obtain a continuous-time dynamic state at an arbitrary time
by integrating dH (t)/dt over time t, which is defined as

t
H, :H0+J- f(H,G,W,t)dr, (8)
0

where H, denotes the current state at arbitrary time f in
rumor propagation. The rumor propagation is a time-
varying dynamic system in the differential system when
coefficient W changes over time. And we can obtain the
hidden state at any time by setting time ¢.

3.6. Rumor Classification. With the rumor dynamic hidden
representation, we employ a mean-pooling operator to ag-
gregate information from an ordinary differential equation
system grouped by each interval time, which is formulated as

1 T
H:T;H(t), (9)

where T is the number of time points t € {t,t,,...,t} of
the ODE solver.
Then, we apply a fully connected layer and a softmax

layer for rumor classification, which is defined as

y = softmax (W gcH + bgc), (10)

where W oW e and by are the weight and bias of the last
hidden layer. ¥ denotes a vector of probabilities for all classes
used to predict the label of the rumor event.

We train our model by minimizing the cross-entropy of
the predictions y and ground-truth distributions y. L,
regularizer is applied in the loss function to prevent
overfitting.



4. Experiments

In this section, we conduct the experiment on two real-world
datasets to evaluate the effectiveness of our proposed
HDGCN method in comparison with several baseline
models.

4.1. Data Description. For experimental evaluation, we use
two public datasets collected from real-world social media to
verify our proposed method. They are Twitterl5 and
Twitter16 [14], which contain 1490 and 818 propagation
graphs for each and are annotated with four classes. In the
graph, nodes represent users, and edges refer to replies and
retweets. Each graph is labeled as one of the four classes, that
is, nonrumor, true rumor, false rumor, and unverified ru-
mor. The statistic of the two datasets is given in Table 2.

4.2. Baselines. We compare our proposed model HDGCN
with some baselines on rumor detection, which is shown as
follows:

DTC [16]: this is a method using a Decision Tree clas-
sifier based on manually engineering features to obtain the
tweet information.

RFC [54]: this is a method using a Random Forest
classifier that uses features related to user, linguistic, and
structure characteristics of news for rumor detection.

SVM-TS [55]: this is a method based on an SVM
classifier with a constructed time-series kernel of hand-
crafted features.

SVM-HK [15]: this is a rumor detection method with an
SVM classifier using a graph kernel based on the similarity of
propagation structures.

GRU-RNN [17]: this is a rumor detection method based
on recurrent neural networks with GRU units to capture the
variation of contextual information of relevant tweet posts
over time.

BU-RVNN and TD-RvNN [14]: a rumor detection
method adopts two-directional tree-structured recursive
neural models based on a top-down and a bottom-up tree
neural network with GRU units to learn rumor information.

Rumor2vec [56]: a rumor detection method adopts a
CNN-based model to combine textual content with prop-
agation structures, capturing joint representation learning
for rumor detection.

ESODE [50]: a rumor detection method integrates se-
mantic information and an ordinary differential equation
network to obtain statistical features for rumor detection.

4.3. Experiment Setup. We implement all deep learning
models using PyTorch and GCN models with PyTorch
Geometric package. We use TF-IDF [52] with 5000 words
for the content representation of the posts. Embedding sizes
of nodes and hidden layers are searched in [64,128,256,512].
At last, we choose 128 as our model embedding size, and the
batch size is the same size. The categorical cross-entropy is
chosen as the loss function. The maximal tolerance of the
ODE solver is 0.01, and the time intervals are set to 5
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TABLE 2: Statistics of the datasets.

Statistic Twitterl5 Twitterl6
Number of posts 331612 204820
Number of original tweets 1490 818
Number of nonrumors 372 205
Number of true rumors 374 203
Number of false rumors 370 205
Number of unverified rumors 374 205

TaBLE 3: Experimental results of rumor detection on Twitterl5/
Twitter16. (NR: nonrumor; FR: false rumor; TR: true rumor; UR:
unverified rumor).

Method Acc. Ij:? 1;:1? F;If L;{{
(a) Twitterl5 dataset

DTC 0.454 0.733 0.355 0.317 0.415
REC 0.565 0.810 0.422 0.401 0.543
SVM-TS 0.544 0.796 0.472 0.404 0.483
SVM-HK 0.493 0.650 0.439 0.342 0.336
GRU-RNN 0.641 0.684 0.634 0.688 0.571
BU-RvVNN 0.708 0.695 0.728 0.759 0.653
TD-RvNN 0.723 0.682 0.758 0.821 0.654
Rumor2vec 0.796 0.883 0.746 0.836 0.723
ESODE 0.824 0.778 0.834 0.888 0.789
HDGCN 0.834 0.853 0.868 0.859 0.823
(b) Twitterl6 dataset

DTC 0.473 0.254 0.080 0.190 0.482
REC 0.585 0.752 0.415 0.547 0.563
SVM-TS 0.574 0.755 0.420 0.571 0.526
SVM-HK 0.511 0.648 0.434 0.473 0.451
GRU-RNN 0.633 0.617 0.715 0.577 0.527
BU-RvNN 0.718 0.723 0.712 0.779 0.659
TD-RvNN 0.737 0.662 0.743 0.835 0.708
Rumor2vec 0.852 0.857 0.769 0.927 0.850
ESODE 0.851 0.771 0.856 0.927 0.857
HDGCN 0.865 0.820 0.863 0.930 0.863

snapshots {H (t,),H(t,),...,H(t5)|0< =, <ty < --- <tg
< =T} in [0, T] of the continuous-time dynamic propa-
gation graph. We use DOPRI5 [57] method as the ODE
solver to calculate the differential equation in our HDGCN
model. We grid search the best terminal time T € [1.5,2.5]
and get our terminal time T =2. To make a fair comparison,
we split the datasets into five parts and conduct 5-fold cross-
validation to obtain robust results. For Twitterl5 and
Twitter16 datasets, we evaluate accuracy over four categories
and F, on each class. Besides, we optimize the model by the
Adam algorithm. The dropout is 0.5, and the learning rate is
0.005. The training is iterated upon 100 epochs. To prevent
overfitting, we apply early stopping when the validation stop
is reduced by 10 epochs.

4.4. Performance Comparison. In this section, the result of
our proposed method HDGCN is compared with the
baselines on Twitter15 and Twitter16 datasets. From Table 3,
we can draw the following observations.

Firstly, it is shown that the baselines based on deep
learning methods like GRU-RNN, BU-RvNN, Rumor2vec,
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TaBLE 4: The rumor detection performances of with or without dynamic systems on Twitter15 and Twitter16. -wo refers to “without” ODE-

based dynamic module.

NR FR TR UR
Method Acc. F, F, F, F,
(a) Twitterl5 dataset
HDGCN-wo dynamic 0.785 0.784 0.791 0.796 0.762
HDGCN 0.834 0.783 0.868 0.859 0.823
(b) Twitter16 dataset
HDGCN-wo dynamic 0.793 0.744 0.772 0.883 0.756
HDGCN 0.865 0.781 0.863 0.930 0.863
Twitter15 dataset Twitter16 dataset

1.00 1.00

0.95 4 0.95 4

0.90 4 0.90 4

0.85 1 0.85 1

0.80 4 0.80 4

0.75 4 0.75 4

0.70 4 0.70 4

0.65 0.65 4

0.60 - 0.60 -

ACC. NR_F1 FR_F1 TR_F1 UR_F1 ACC. NR_F1 FR_F1 TR_F1 UR_F1
mm ODGCN mm ODGCN

mm Only Content
mm  Only Propagation

mmm Only Content
mmm Only Propagation

FIGURE 4: The contribution analysis of post content and rumor propagation structures.

and our model outperform the methods using traditional
handcrafted features, such as DTC, RFC, SVM-TS, and
SVM-HK. This is because the deep learning methods have an
excellent ability to automatically learn effective and high-
dimensional feature representations of rumors, which
demonstrates that the deep learning method benefits from
improving the effectiveness of rumor detection.

Secondly, our proposed method HDGCN performs best
on accuracy among all baselines on two datasets. Our model
achieves an accuracy of 83.4% and 86.5%, respectively, in-
creasing by 4.8% and 1.6% compared with the latest base-
lines Rumor2vec. The comparison between Rumor2vec and
our model demonstrates the effectiveness of incorporating
the dynamic features into the model for rumor detection.
Since CNN cannot process data with dynamic features,
Rumor2vec ignores the importance of dynamic changes
during rumor propagation, which causes worse accuracy for
rumor detection. Additionally, only for the nonrumor class,
the performance of Rumor2vec is better than our proposed
model. Because nonrumors are always released or responded
by users who have higher authority and credibility, the paths
and content of nonrumor propagation are more likely to be
fixed. So the dynamics of nonrumor propagation do not
significantly affect the performance.

Finally, our method HDGCN is superior to the ESODE
method with a 1.2% and 1.6% improvement on two datasets.
As we all know, rumor propagation is seen as a graph

structure. The neural ODE method only uses NODE to get
dynamic features of propagation but cannot process the
graph-structural data, which prevents it from obtaining
efficient propagation features, resulting in worse perfor-
mance for rumor detection.

4.5. Impact of ODE-Dynamic. To analyze the effect of the
dynamic features of the heterogeneous graph, we compare
the proposed rumor detection method with the variants
without the dynamic system. The results are shown in Ta-
ble 4. By capturing the continuous-time dynamics on the
heterogeneous graph, our HDGCN achieves better perfor-
mance than without dynamic module, increasing by 6.2%
and 9.1% on Twitterl5 and Twitter16, respectively, which
indicates that the dynamic features of the heterogeneous
graph play an important role in rumor detection. This is
because the GCN model has only learned static represen-
tations of graph structures and failed to capture the con-
tinuous-time dynamic features precisely. In contrast, the
differential equation system can capture the dynamic fea-
tures by its derivative operator and allow our method to pay
more attention to dynamic changes over time, which helps
to improve the performance of our model.

Moreover, the effect of dynamic features on the non-
rumor class is less than that of other classes, which implies
fewer dynamic features of the nonrumor propagation



structure. This is because the nonrumors are usually released
or responded by an authority or government department,
and the propagation paths and content are more likely to be
fixed. Therefore, the dynamics of nonrumor propagation
have less effect on the performance.

4.6. Ablation Study. We perform the ablation studies over
our heterogeneous graph to analyze the importance of post
content and propagation structure for rumor detection. The
experimental results are presented in Figure 4. “Only con-
tent” refers to our model with post content features in the
network, while “only propagation” represents our model
with propagation structure only in the heterogeneous graph.

As shown in Figure 4, we can observe that the hetero-
geneous graph with post content and propagation performs
better than the only content or only propagation on accuracy
and F; of Twitter15 and Twitter16. This indicates that both
content and propagation structure benefit from increasing
accuracy of rumor classification. Moreover, the performance
of most “only content” is better than that of “only propa-
gation.” Since the dynamic change of rumor content may
change the rumor meanings, post content dynamics play a
more critical role in rumor detection than propagation
dynamics. In general, it is necessary to combine the content
and propagation structure for rumor detection.

5. Conclusion

In this paper, we propose a graph convolutional network-
based dynamic rumor detection method named HDGCN,
which takes advantage of post content and rumor propa-
gation structure as well as the dynamic changes of the
heterogeneous graph when the rumor is spreading. Con-
sidering that the rumor content and propagation structure
play essential roles in rumor classification, we combine the
two factors into a union graph to obtain more rumor in-
formation details. Besides, GCN has the ability to tackle
graph-structural data and learn higher-level representations,
and the ordinary differential equation can acquire contin-
uous-time dynamics on a complex graph. We design the
dynamic module using GCN as the derivative network to get
the dynamic representation of the heterogeneous graph.
Finally, we conduct extensive experiments on two real-world
datasets (Twitterl5 and Twitterl6), and the experimental
results demonstrate that our proposed method outperforms
mainstream models in rumor detection.

In the future, we will explore multimodal graphs, which
can integrate more information such as user profiles, images,
and semantic knowledge for rumor classification. Moreover,
we will continue to dive into the study of social media’s
rumor propagation dynamic system, building more efficient
methods to explore the dynamic changes of rumor spreading
to enhance the robustness of rumor classification.

Data Availability

The data underlying the results presented in the study are a
public dataset from the paper “Detect Rumors in Microblog
Posts Using Propagation Structure via Kernel Learning”
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produced by Jing MA, which is available at https://www.
dropbox.com/home/rumdetect2017/
rumor_detection_acl2017.
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