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This paper proposes the end-to-end detection of a deep network for far infrared small target detection. The problem of detecting
small targets has been a subject of research for decades and has been applied mainly in the field of surveillance. Traditional methods
focus on filter design for each environment, and several steps are needed to obtain the final detection result.Most of themwork well
in a given environment but are vulnerable to severe clutter or environmental changes. This paper proposes a novel deep learning-
based far infrared small target detectionmethod and a heterogeneous data fusion method to solve the lack of semantic information
due to the small target size. Heterogeneous data consists of radiometric temperature data (14-bit) and gray scale data (8-bit), which
includes the physical meaning of the target, and compares the effects of the normalization method to fuse heterogeneous data.
Experiments were conducted using an infrared small target dataset built directly on the cloud backgrounds. The experimental
results showed that there is a significant difference in performance according to the various fusion methods and normalization
methods, and the proposed detector showed approximately 20% improvement in average precision (AP) compared to the baseline
constant false alarm rate (CFAR) detector.

1. Introduction

The problem of the robust detection of small targets is an
important issue in surveillance applications, such as infrared
search and track (IRST) and infrared (IR) remote sensing.
Information about the objects that can be obtained from the
image is extremely limited due to the small target size. In
particular, targets located on a long distance have a low signal-
to-clutter ratio (SCR) and eventually have an adverse effect
on the detection performance. In addition, because of the
small target size, it is relatively vulnerable to noise of the
surrounding environment, such as sun glint, sensor noise,
cloud, etc., making it difficult to detect accurately.

The problem of detecting small targets has been directed
mainly at using the most suitable filter among themany filters
available or to design a new filter. To solve the problem of a
fixed filter, which does not reflect the size change according to
the movement of the target, studies have been carried out to
consider the scale. Moreover, studies have been conducted on
using the classifier together with the conventional machine

learning based method. On the other hand, because of
the characteristics of the hand-crafted, the small target is
confined to a specific environment and severe noise prevents
its detection.

This paper proposes a small target detection method
based on deep learning capable of end-to-end training. The
network structure and training strategy are inspired by the
single shot multibox detector (SSD) [1], and the network
structure is transformed to a single-scale because it deals only
with small targets. The proposed network learned a small
target dataset that was constructed directly with the various
background clusters. By learning various backgrounds of the
sky, this study solved the problem caused by the uncertain
heterogeneous background, which was a problem in previous
research. This study also compared the result of the fusion
of radiometric temperature data by directly constructing raw
infrared data aswell as gray-scale data that is generally used as
the input of a detector network. In addition, the performance
was assessed and compared according to the normalization
method in heterogeneous data fusion.
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The contribution of this paper is summarized as follows.

(i) A dataset targeting various backgrounds of the sky
was constructed for the detection of far infrared
small targets. Unlike other research areas, where open
datasets exist, there is no dataset to detect and classify
far infrared small targets.

(ii) The dataset constructed in this paper includes
infrared raw data. Unlike previous studies that used
only intensity-based gray data (8 bits), raw data (14
bits) can be used together. Temperature information
is available by applying a radiometric calibration to
the raw data. The use of gray-scale and temperature
data with physical meaning together as input to the
network allows the use of more information and
better detection results through fusion.

(iii) A deep learning-based network for far infrared small
target detection that can train and detect from end-
to-end beyond conventional hand-crafted method is
proposed. Using the proposed network, this study
analyzed the effects of pixel-level fusion of gray-scale
and radiometric temperature data and the effects of
efficient normalization methods for data fusion.

The remainder of this paper is organized as follows. Section 2
briefly introduces previous studies related to the detection
and recognition of small targets. Section 3 outlines the pro-
posed method. Section 4 introduces the experimental results
and datasets. Finally, Section 5 reports the conclusions.

2. Related Works

Object detection is an important research area of computer
vision. Among them, the detection of small targets is a
challenging problem because of the limited information. The
research directions to solve this problem can be classified
broadly into the traditional machine learning-based methods
and deep learning-based methodologies, in which recent
studies will be conducted.

One of the traditional methodologies is the filter-based
method [2–9]. First, previous studies [2–5] examined the
filter itself. For example, Barnett [3] evaluated a promising
spatial filter for point target detection in infrared images and
used a median subtraction filter. Schmidt [5] examined a
modified matched filter (MMF) composed of a product of a
nonlinear operator called an inverse Euclidean distance and
a least-mean-square (LMS) filter to suppress cloud clutter.
Studies on adaptively improved filters have been conducted
[6–8]. Yang et al. [7] proposed a Butterworth high-pass filter
(HPF) that can adaptively determine the cut-off frequency.
Zhao et al. [9] proposed another method using a filter to fuse
the results of several filters with different directions. Other
methods [10–15] were based on the contrastmechanismof the
humanvision system (HVS).Qi et al. [10] were inspired by the
attention mechanism to produce a color and direction-based
Boolean map to fuse, and Chen et al. [11] proposed a method
of obtaining a local contrast map using a new local contrast
measure that measures the degree of difference between the
current location and neighbors. After that, a target is detected

with an adaptive threshold inspired by the contrast. Han et
al. [12] increased the detection rate through size-adaptation
preprocessing and calculated the saliency map using the
improved local contrast measure, unlike the conventional
method using only the contrast. Deng et al. [13] improved
the contrast mechanism by the weighted local difference
measure, and a method that applies a classifier was proposed
[14]. Han et al. [15] proposed a multiscale relative local
contrast measure to remove the interference region at each
pixel.

Another approach was to solve the size variation problem
that occurs when the target moves [16–18]. For example,
Kim et al. [17] proposed a Tune-Max of the SCR method to
consider the problem of scale and clutter rejection inspired
by the HVS. In the predetection step, target candidates
maximizing Laplacian-scale space images are extracted and
in the final-detection step.The scale parameterswere adjusted
to find target candidates with the largest SCR value. This
method has shown good performance, but it consists of
complicated steps.

The following methodologies [19–21] deal with methods
for making the best use of features. Dash et al. [19] proposed
a feature selection method that can use features efficiently
in a classifier rather than directly relating to the problem of
detecting a small target. Kim [20] analyzed various target
features to determine which feature is useful for detecting
small targets and proposed a machine learning-based target
classification method. Bi et al. [21] used multiple novel
features to solve the problem of many false alarms (FAs) that
occur when existing methods consistently use single metrics
for complex backgrounds. A total of seven features were used
and a method to identify the final target through a classifier
was proposed.

A range of machine learning-based methodologies can
be used for small target detection [22–32]. Gu et al. [23]
proposed a method to apply a constant false alarm rate
(CFAR) detector to the target region after suppressing the
clutter by predicting the background through a kernel-based
nonparametric regression method. Qi et al. [29] proposed
a directional saliency-based method based on observations
that the background clutter has a local direction and treat it
as a salient region-detection problem. The existing methods
still raise the problem of not separating the background
completely. Zhang et al. [30] used an optimization approach
to separate the target from the background.

Over the last few decades, research has been conducted
in various directions mentioned above and more studies
are being conducted based on deep learning. Liu et al. [33]
proposed that training a sample using a signal-to-noise ratio
(SNR) with an appropriate constant value helps improve the
performance over training with a randomly sampled SNR.
The targets were generated and synthesized randomly and
were not actual targets. Chen et al. [34] used a synthetic
aperture radar (SAR) image and treated it as a convolutional
neural network- (CNN-) based classification problem not a
detector network. Because there is little data, it adopts a fully
convolution structure except for a fully connected layer to
prevent overfitting. Generative adversarial networks (GAN),
which is not a general CNN-based structure, were proposed
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Figure 1: Proposed network structure and pixel-level fusion of temperature data.

[35]. The generator trains to transfer the representation of
a small object similar to a large object. The discriminator,
however, competes with the generator to identify the repre-
sentation generated by the generator and allows the generator
to have a representation that is useful for detection. Hu et al.
[36] proposed a way to use the features extracted from other
levels of features. Bosquet et al. [37] proposed the problem
of a loss of target information as existing detector networks
undergo downsampling. After several convolution layers, it
assumes that the feature map has sufficient information to
determine the area where the target exists and proposes a
new concept called the region context network (RCN). In the
feature map that passes the shallow convolution, the region
with the highest possible likelihood of the target is extracted
along with the context to perform a late convolution. The
subsequent steps are similar to the general detector net-
work.

Deep learning-based methodologies have been active in
many areas in recent years. On the other hand, the problem
of detecting small targets has not been actively researched
because not only are there no publicly available datasets that
can be verified, the information available from the image is
limited and it is difficult to produce a situationwhere a dataset
can be constructed.

3. Proposed Method

This section introduces the proposed network structure for
the detection and fusion of small targets in the far-infrared
region and compares the intensity-based gray-scale data with
the radiometric temperature data obtained from the con-
structed data. This section also introduces the normalization
method to fuse heterogeneous data.

Proposed Network Architecture. The proposed network was
inspired by the SSD and uses a single-scale feature structure
instead of a multiscale feature structure, which is an advan-
tage of SSD because only small targets of up to 20 pixels are
handled. The blue dashed line in Figure 1 represents input
data and four cases where pixel-level fusion is possible. In
addition, the first feature map is a feature map that passes
through Resnet-34 [38], the base network. Subsequently, it
goes through six convolution layers, and the detection result
is obtained by removing redundant detection through the
non-maximum suppression (NMS) in the last feature map.
In Figure 1, x2 represents two convolutional blocks, so there
are six convolutional layers in total. To minimize the loss of
information, Resnet-34 was used up to a ĳ scale. Bounding
box regression and score prediction for obtaining the final
detection results have the same structure as the general object
detectionnetwork but theNMS standard is somewhat relaxed
because of the small target size. For training, the learning
rate is set to 0.0001 and is a fully convolutional structure
consisting only of a 3x3 convolution layer. The optimization
method uses Adam optimizer [39], and He initialization [40]
is used.

Comparison of Fusion Methods. The blue dotted box in
Figure 1 shows the pixel-level fusion method for the fusion
of an intensity-based gray-scale and radiometric temperature
data.The gray-scale data has one channel and the radiometric
temperature data is also made up of one channel, so the
heterogeneous data can be concatenated in channel direction.
Another common method is to try the feature-level fusion
method. Hou et al. [41] used the late-fusion method and it
is a method of concatenating feature maps using RGB and
gray-scale data as inputs to different networks with the
same structure. On the other hand, this paper used the
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Figure 2: Comparison of the seasonally distorted target temperature data. (a) Midsummer in August, and (b) a midwinter in February.

pixel-level fusion method because the feature-level fusion
method has not been detected properly. In addition to
the pixel-level fusion method, which proposes a range of
combinations based on three channels, there is also a method
of accumulating three gray scale data, such as RGB and one
radiometric temperature data, for a total of four channels.
The pretrained deep network cannot be used when this
fusion method is applied. Therefore, this paper compares
several fusion methods that can fuse heterogeneous data with
three channels. Proper normalization methods are required
because gray scale data (8-bit) and radiometric temperature
data (14-bit) with different ranges of values must be fused
together at the pixel-level.

Thermal Normalization. Radiometric temperature data
should be normalized. Kim. [42] dealt with temperature
data for the problem of detecting pedestrians. At this time,
a normalization method was used assuming a maximum
temperature of 40∘C due to human thermoregulation. On the
other hand, the radiometric temperature data was distorted
because the experimental environment of this paper dealt
only with distant small targets. As a result, even in the same
sky, as shown in Figure 2, there is a significant temperature
deviation in the air according to the season. The temperature
difference between the target and the surrounding air is
not large at mid-summer (August, Figure 2(a)), whereas
the difference is 20∘C or more at mid-winter (February,
Figure 2(b)).

At this time, both targets in Figures 2(a) and 2(b) were
located in the same sky background and distance with
different seasons. Owing to the distorted temperature data,
the temperature of the target does not have a constant
range. Therefore, the normalization method in the methods
reported elsewhere cannot be used and normalized [42], as
expressed in (1), to have a value of a specific range. The
following were used to compare the results according to
the various normalization methods: a normalization method
with a specific range of−1 to 0,−1 to 1, and 0 to 1; amethod
of normalizing the mean and standard deviation to 0.5;
and a precalculated mean and standard deviation of large

scale data. 𝐼𝑛(𝑥, 𝑦) is the input data and min(𝐼),max(𝐼) are
the minimum and maximum values, respectively, for the
entire input data, and subscripts 𝑥, 𝑦 mean each pixel. The
abbreviations, 𝑢𝑏 and 𝑙𝑏, represent the upper and lower
bounds of the normalization range, respectively. This makes
𝑙𝑏 when each pixel of the input data 𝐼 is the min value, and
𝑢𝑏 when it is the max value, and the rest has a value between
them. For example, if the input data should be normalized
between -1 and 1, set 𝑢𝑏 to 1 and 𝑙𝑏 to -1.

𝐼𝑛 (𝑥, 𝑦) =
𝑢𝑏 − 𝑙𝑏

max (𝐼 (𝑥, 𝑦)) −min (𝐼 (𝑥, 𝑦)) × (𝐼 (𝑥, 𝑦)

−min (𝐼 (𝑥, 𝑦)) + 𝑙𝑏
(1)

4. Experimental Results

This section introduces the infrared small target dataset,
augmentation method for training, comparison of the results
with existing research directions, and various experiments.

4.1. Yeungnam University (YU) FIR Small Targets Dataset

Hardware Specifications.The FLIR T620 model in Figure 3(a)
was the thermal imaging camera equipment used to build
infrared small target data. FLIR T620 has a spatial resolution
of 640x480 and a temperature range between −40∘C and
650∘C and stores data at 14 bits operating at 30 frames per
second (FPS). Figure 3(b) presents small drones that serve
as simulated targets and use the DJI’s PHANTOM 4 PRO
model. The model was 1.38kg, including the battery and
propeller, and the size was not provided separately and was
approximately 30×30×16 (cm) whenmeasured directly. The
maximum flight time was approximately 30 minutes.

Experimental Environment and Data Acquisition. Experi-
ments were conducted on a specific location, and Figure 3(c)
shows the flight record by Google Earth�. The yellow line
indicates the accumulated path that the actual target has
flown. The target was experimented in various directions
and elevation angles at specific locations. When constructing
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Figure 3: Equipment used in the experiment and experimental environment. (a) is a FLIR T620 infrared camera, (b) is a PHANTOM4 PRO
drone model used as a target, and (c) is the flight trajectory of a target.

data under these circumstances, if all sequences are used, the
similarity between the adjacent frames was so large that the
frame was divided into 50m frames and frames up to 1km
in length. Because the near target can be detected well by
the conventional deep learning-based detector, the minimum
distance of the target was set to 100m and the maximum
distance was set to a maximum of 1km, corresponding to
the dot target. The distances used in this paper were the
actual distances between the infrared camera and the target.
As shown in Figure 3(c), the maximum experiment distance
was 1 km and most of the yellow lines (flight trajectory) were
performed at distances of less than approximately 500m.This
is because seasons other than winter have smaller targets and
less contrast with the surrounding backgrounds, making it
impossible to collect data from images.

Dataset Construction. Small infrared target datasets were
constructed around 1,000 images. Owing to the problems
mentioned above, most of the dataset was composed of less
than 500m, mainly from winter and summer. Figure 4 shows
the distance of the dataset from 100m to 900m.

AugmentationDataset.Because it takes considerable time and
effort to construct the data, less data can be accumulated
unconditionally. Therefore, amethod for increasing the num-
ber of data is needed. Because the target is small, the methods
of changing the image, such as random noise and blur, are
difficult to use because the signal of the target is likely to be
distorted. The augmentation method used in this paper is a
commonly used technique, and random crop augmentation
and flip augmentation were applied. An example shown
in Figure 5 performed flip augmentation for the original
image (a), as shown in (b). (c) and (d) are the results of
random crop augmentation for (a) and (b), respectively. The
two augmentations were applied together and approximately
7,000 data were used for training.

Label the Ground Truth. When data was extracted from the
infrared sequence file from a minimum distance of 100m to a
maximumdistance of 1km in 50m increments, themaximum
target size corresponded to 20 square pixels, a 1 or 2 pixels
minimum. The precise location information of the target
must be extracted from the constructed data. Considerable
effort is needed compared to the general object label for the
following two reasons. First, it is difficult to judge whether
there is a target, even if it is close (within 500 m) in the
case of a low contrast season or weather due to background
cluster, such as clouds. Second, if the target exceeds 500m,
the size of the target corresponds to several pixels; hence, it
is difficult to confirm the existence of the target. Therefore,
sequence data, radiometric temperature data, and intensity-
based gray-scale data should be considered together. First,
ground truth data is generated based on gray-scale data. If
the gray-scale data is difficult to identify with the naked eye,
the approximate position of the target is obtained through the
sequence, and the accurate position of the target is obtained
from the radiometric temperature data.

4.2. Performance Evaluation of the Proposed Methods

Performance Comparison Pixel-Level Fusion and Normaliza-
tion Method. Figure 6 shows the performance according to
the normalization method and pixel-level fusion method.
The gray-scale data and the radiometric temperature data
showed inferior performance when they were normalized
to different ranges. Therefore, radiometric temperature data
and gray-scale data were fused at the pixel-level and the
same normalization method was then used. As a result, it
showed significant performance differences according to the
normalization method. In particular, normalization with the
mean and standard deviation calculated without normalizing
to a specific range showed poor performance. Normalization
to a specific range did not result in a significant difference
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Figure 4: Example of infrared small target detection dataset distance from 100m to 900m.

(a) (b)

(c) (d)

Figure 5: Examples of augmentation results. (a) Raw infrared, (b) flip augmented image, (c) image randomly cropped with respect to an
original, and (d) random cropped image for a flip augmented image.
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Figure 6: Continued.
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Figure 6: Performance comparison between the normalization and pixel-level fusion method. (a)-(e) are the results for the winter test set,
and (f)-(j) are the results for the summer test set. The first row was normalized with the mean and standard deviation of 0.5; the second
row is between 0 and 1; the third row is between -1 and 0; and the fourth row is between -1 and 1. The last row uses the precomputed mean
and standard deviation for large scale dataset. (a)-(j) are the performance results according to the normalization method and fusion method,
and (k) and (l) were obtained by collecting only the best performance of each normalization method for the summer and winter test set,
respectively.

in performance between normalization methods, but overall,
it was helpful to have the minimum of the normalization
range to include -1. Figure 6 also shows that robust detection
is possible without any significant effect on the seasonal
variations.

Experiments in aNetwork Optimization Perspective.To obtain
the optimized results, Table 1 compares the performance
according to the network structure, batch normalization,
and activation function. Because the ReLU [43] activation
function does not use negative data, this study used the Leaky
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Table 1: Performance comparison based on the network structure, batch normalization and Leaky ReLU.

# of Layers Batch normalization Leaky ReLU (𝛼:0.01) Average precision

5

0.7679

✓ 0.7757

� � 0.8784

7

0.7153

✓ 0.7365

✓ ✓ 0.7987

10

0.6564

✓ 0.6613

✓ ✓ 0.6709

14

0.6610

✓ 0.6821

✓ ✓ 0.6855

Table 2: Performance comparison based on the network structure, batch normalization and Leaky ReLU.

Batch normalization Leaky ReLU (𝛼:0.01) Average precision

Normalization and fusion methods � � +1% ∼ +10%

ReLU [44] activation function with a slope factor 𝛼 of 0.01
and applied batch normalization. In particular, approximately
10% of the Leaky ReLU activation function was improved
compared to ReLU. The performance of the table is based on
the normalization method with a value between -1 and 1, and
the lowest performance fusion method was used to make a
clear comparison. As listed in Table 2, the AP was improved
by between 1% and 10% for the various normalization and
fusion methods mentioned.

Experimental according to Fusion Method and Normalization
Method. Figure 7 shows the detection results according to the
data fusion method using the fixed normalization method
and Figure 8 shows the detection results according to the
normalization method using the fixed data fusion method.
The fixed normalization method and data fusion method use
the method that showed the best performance on average.
At this time, the normalization method is a method of
normalizing to a value between -1 and 1, and the data
fusion method is a method using two sets of radiometric
temperature data.

In Figure 7, (a) is the case when only radiometric temper-
ature data was used; (b) is for gray-scale data only; (c) is for
radiometric temperature data for one channel, and (d) is for
radiometric temperature data for two channels. Based on the
normalization method with a value between -1 and 1, a false
alarm did not occur in (d) using two radiometric temperature
data, which showed the best performance and in (c) based on
temperature data fusion. A false alarm occurs in (a) and (b)
because it uses only single data rather than fusion-based data.
On the other hand, detection was performed correctly in all
four cases.

In Figure 8, (a) shows the normalization method using
the previously calculated mean and standard deviation for
a large scale dataset; (b) normalizes the mean and standard
deviation to 0.5; (c) is the normalized value between 0 and

1; (d) is the normalized value between -1 and 0, and (e)
is the detection result according to the normalized value
between -1 and 1. From the detection results of (a) and (b),
which performed normalization based on a specific value,
it can be confirmed that although the detection is correct,
many false alarms are generated and the performance is
poor.

Comparison with Existing Techniques. Figure 9 presents a test
result image from a test dataset constructed on different days
and was configured to include various background clusters.
Figures 9(a), 9(b), and 9(c) show the result based on theCFAR
detector, high-boost (HB) method [45], and the detection
results of the proposed network using the best fusionmethod,
respectively. The CFAR detector showed 0.7621 AP, which
is similar to or less than that of the deep learning-based
method.TheHBmethodworkswell for locating small targets,
but there is a problem that the threshold parameters must
be changed according to the environment changes. This
paper used test datasets that were built by distance, but
the maximum distance of the test dataset was only 321m
because the test was done only to that distance. Robust
detection is possible using the proposed deep learning-
based network, even in complex and various environments,
where there is a strong clutter-like cloud. In addition, robust
detection is possible without being affected by seasonal
changes.

4.3. HowCan the Radiometric TemperatureData BeObtained?
The radiometric temperature data can be obtained using the
procedure shown in Figure 10. Variable x is the raw input
data and is a 14-bit digital count. The FLIR T620 infrared
camera, which receives 14-bit digital count input, internally
finds for a, b corresponding to the slope and intercept of
the calibration curve. This process is called a radiometric
calibration. The radiance y can be obtained using a and b of
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Figure 7: Comparison of detection results according to data fusion method. All the same normalization methods were used with values
between -1 and 1. The image (a) shows the case where only the radiometric temperature data is used for three channels, (b) shows the case
where only the gray scale data is used, (c) shows the case where the temperature data is fused using only one channel, and (d) is an example
in which temperature data is fused to two channels.

the calibration curve and the 14-bit digital count input. The
radiant energy emitted between T1 and T2, the temperature
range over which the FLIR T620 equipment operates, can be
obtained by integrating the function and can be expressed in
terms of 𝐿(𝜆). This shows Planck’s law as a function of the
wavelength. When the radiance value corresponding to y is
obtained through the calibration curve, 𝐿(𝜆) can be solved
using the equation for 𝐿𝑇 to obtain the temperature data for
the input data 14-bit digital count.

5. Conclusions

This paper proposed a deep learning-based method for the
far-infrared detection of small targets. The proposed method
directly constructs datasets containing raw IR data to include

a range of backgrounds. Therefore, this study could utilize
radiometric temperature data as well as commonly used
gray-scale data and attempted to use this temperature data
to solve the problem of a lack of information due to the
small target size. Various normalization and fusion methods
were examined to efficiently combine gray-scale data with
radiometric temperature data. In the case of normalization,
the performance was better than that using a specific value
or a precomputed value for a large scale dataset rather
than using a specific range. The use of data fused at the
pixel-level rather than using only single data resulted in
better overall performance. The seasonal performance can
be detected robustly by seasonal changes. The performance
of the proposed detector is similar to or better than that
of the conventional detector. A comparison of the detection
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Figure 8: Comparison of the detection results according to the normalization method. The same fusion method was used for the two
temperature channels from (a)-(e).The image (a) was normalized to a previously calculated mean and standard deviation for a large dataset;
(b) was normalized to an arbitrary value of 0.5; and (c) is a value between 0 and 1. In normalization, (d) is normalized to a value between -1
and 0, and (e) is normalized to a value between -1 and 1.
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Figure 9: Comparison of the results of proposed deep learning based detector, conventional CFAR detector, and HB-based detector. The
proposed detector is based on the fusion method using two sets of radiometric temperature data that showed the best performance and
normalization method with a value between -1 and 1. In case of HB, the threshold parameter for detection at 208m was applied to 321m as it
is.
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Figure 10: Process for obtaining radiometric temperature data. The radiance corresponding to the 14-bit digital count input data was
calculated through the radiometric calibration process. Using the Planck equation to find the temperature corresponding to that radiance,
the temperature is the target’s radiometric temperature data.

results confirmed that the clutter can be detected robustly
using the proposed deep learning-basedmethod, even in very
complicated and varying environments.
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The supplementary file compares the detection results of the
proposed detector with a constant false alarm rate (CFAR)
detector, which corresponds to the baseline method.The first
page compares the detection results of the proposed detector
with the CFAR detector for the winter season, and the upper
left represents the flight record for constructing the test demo
dataset. The yellow solid line is the flight record of the actual
target. The second page compares the results of the CFAR
detector with that of the proposed detector by comparing the
detection results for summer.The third page is a total seasonal
flight record for building a test demo dataset containing both
seasons. (Supplementary Materials)
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