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ABSTRACT

Recently, graph neural networks have been widely used for network

embedding because of their prominent performance in pairwise

relationship learning. In the real world, a more natural and common

situation is the coexistence of pairwise relationships and complex

non-pairwise relationships, which is, however, rarely studied. In

light of this, we propose a graph neural network-based representa-

tion learning framework for heterogeneous hypergraphs, an exten-

sion of conventional graphs, which can well characterize multiple

non-pairwise relations. Our framework �rst projects the heteroge-

neous hypergraph into a series of snapshots and then we take the

Wavelet basis to perform localized hypergraph convolution. Since

the Wavelet basis is usually much sparser than the Fourier basis,

we develop an e�cient polynomial approximation to the basis to

replace the time-consuming Laplacian decomposition. Extensive

evaluations have been conducted and the experimental results show

the superiority of our method. In addition to the standard tasks

of network embedding evaluation such as node classi�cation, we

also apply our method to the task of spammers detection and the

superior performance of our framework shows that relationships

beyond pairwise are also advantageous in the spammer detection.

To make our experiment repeatable, source codes and related

datasets are available at https://xiangguosun.mystrikingly.com.
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1 INTRODUCTION

Recently, Graph Neural Networks (GNNs) have attracted signi�-

cant attention because of their prominent performance in various

machine learning applications [4, 37, 38]. Most of these methods

focus on the pairwise relationships between objects in the con-

structed graphs.In many real-world scenarios, however, relation-

ships among objects are not dyadic (pairwise) but rather triadic,

tetradic, or higher. Squeezing the high-order relations into pairwise

ones leads to information loss and impedes expressiveness.

To overcome this limitation, hypergraph [43] has been recently

proposed and achieved remarkable improvments[2]. Hypergraphs

allow one hyperedge to connect multiple nodes simultaneously so

that interactions beyond pairwise relations among nodes can be

easily represented and modelled. Figure 1 is an example of hetero-

geneous hypergraph re�ected in online social forums. Speci�cally,

61, 62 are two di�erent social groups, ?D,8 denotes the i-th post cre-

ated by user D, and 2D,8 is the i-th comment created by user D. There

exist both pairwise relationships and more complex relationships.

Despite the potentials of hypergraphs, only a few works shift at-

tentions to representation learning on hypergraphs. Earlier works,

[40–42] mostly design a regularizer to integrate hypergraphs into
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Figure 1: A heterogeneous hypergraph on online social fo-

rums. There are several types of hyperedges, including all

posts and comments created by a speci�c user (the purple

circles), all posts and comments in the same group (the or-

ange circles), and a post with all its comments (the blue cir-

cles).

speci�c applications, which are domain-oriented and hard to be gen-

eralized to other domains. Recently, some researches [11, 17] try to

design more universal learning models on hypergraphs. For exam-

ple, Yadati et al. [36] transform a hypergraph into simple graphs and

then use convolutional neural networks for simple graphs to learn

node embeddings. Tu et al. [31] learn the embeddings of a hyper-

graph to preserve the �rst-order and the second-order proximities.

Zhang et al. [39] take the analogy with natural language processing

and learn node embeddings by predicting hyperedges. However,

they mostly focus on the same type of entities, or apply the con-

cept of heterogeneous simple graphs directly to hypergraphs. But

there are key di�erences between heterogeneous simple graphs and

heterogeneous hypergraphs. Even for those homogeneous simple

graphs like Figure 2, the same type nodes may also be connected

according to di�erent semantics that are represented by di�er-

ent types of hyperedges, making the hypergraph heterogeneous

(challenge 1).

Recently, graph neural networks have show great power on

graph learning, traditional GNN basedmethods take the assumption

that information should be aggregated via point-to-point channel

iteratively because links in simple graphs are pairwise. As shown

in Figure 2, messages can be directly aggregated from one-hop

neighbors in the simple graph. However, message di�usion is more

complex on hypergraphs. It should be �rst aggregated within the

same hyperedge, and then aggregated over all hyperedges connect-

ing to the target node. This di�erence makes traditional GNN-based

methods un�t for hypergraphs (challenge 2).

To address challenge 1, we �rst extract simple graph snapshots

with di�erent meta-path, then we construct several hypergraph

snapshots on these simple graphs according to hyperedge types.

After the decomposition, each snapshot is homogeneous, and they

can also be easily calculated in parallel, making the model scalable

to large datasets. To address challenge 2, we design a hypergraph

convolution by replacing the Fourier basis with a wavelet basis.

Compared with methods in the vertex domain, this spectral method

does not need to consider the complex message passing pattern

in hypergraphs and can also perform localized convolution. Since

Figure 2: Comparison between the hypergraph (left) and the

simple graph (right) which share the same type of nodes. A

node in the hypergraph usually has di�erent types of neigh-

bors even when they are the same type of nodes, while a

node in the homogeneous simple graph usually has one type

of neighbors.

the Wavelet basis is much sparser than the Fourier basis, it can be

e�ciently approximated by polynomials without Laplacian decom-

position. In summary, the main contributions of this paper are as

follows:

• We focus on the heterogeneity of hypergraphs, and address

the problem via simple graph snapshots and hypergraph

snapshots according to di�erent meta-paths and hyperedge

types respectively.

• We propose a novel heterogeneous hypergraph neural net-

work to perform representation learning on heterogeneous

hypergraphs. To avoid the time-consuming Laplacian decom-

position, we introduce a polynomial approximation-based

Wavelet basis to replace the traditional Fourier basis. To the

best of our knowledge, we are the �rst paper to introduce

wavelets in hypergraph learning.

• Extensive evaluations have been conducted, and the experi-

mental results on three datasets demonstrate the signi�cant

improvement of our model over six state-of-the-art methods.

Even in a sparsely labeled situation, our method still keeps

ahead. We also evaluate the performance of our model in

the task of spammer detection, and it produces much higher

accuracy than three competitive baselines, which further

demonstrates the superiority of hypergraph learning.

2 PRELIMINARY AND PROBLEM
FORMULATION

In this section, we �rst introduce some necessary de�nitions and

notations, and then formulate the problem of heterogenous hyper-

graph embedding.

Definition 1. (Simple Graph Snapshots). According to the

selected meta-paths, we can extract the corresponding subgraphs from

the original heterogeneous simple graph. Take Figure 3a as an example,

we represent the social network with users (U), and departments (D)

as nodes, where edges represent friendships (U-U), and a�liation (U-

D) relationships. We extract paths according to meta-path U-U and

meta-path U-D, then we can generate two subgraphs as two snapshots

for the simple graph.

Definition 2. (Heterogeneous Hypergraph). A heterogeneous

hypergraph can be de�ned as G = {V, E,TE,T4 ,W}. Here V is a



(a) Simple graph snapshots (b) Hypergraph snapshots

Figure 3: Snapshots generation for heterogeneous simple

graphs and hypergraphs

set of vertices, and TE is the vertex type set. E is a set of hyperedges,

and T4 is the set of hyperedge types. When |TE | + |T4 | > 2, the hy-

pergraph is heterogeneous. Hypergraphs allow more than two nodes

to be connected by a hyperedge. For any hyperedge 4 ∈ E, it can be

denoted as {E8 , E 9 , · · · , E: } ⊆ V . We use a positive diagonal matrix

W ∈ R |E |×|E | to denote the hyperedge weights. The relationship

between nodes and hyperedges can be represented by an incidence

matrix H ∈ R |V |×|E | with entries de�ned as:

H(E, 4) =

{

1, if E ∈ 4

0, otherwise

Let DE ∈ R |V |×|V | and D4 ∈ R |E |×|E | denote the diagonal matri-

ces containing the vertex and hyperedge degrees respectively, where

DE (8, 8) =
∑

4∈E W(4)H(8, 4) and D4 (8, 8) =
∑

E∈V H(E, 8). Let Θ =

D
− 1

2

E HWD−1
4 H)D

− 1

2

E , then the hypergraph Laplacian is Δ = I − Θ.

Definition 3. (Hypergraph Snapshots). A snapshot of the hy-

pergraph G = {V, E} is a subgraph which can be de�ned as G4 =

{V4 , E4 }. Here V4 and E4 are the subsets of V and E respectively.

Di�erent from simple graph snapshots, hypergraph snapshots are gen-

erated according to hyperedge types, which means all the hyperedges

in E4 should belong to the same hyperedge type. As shown in Figure

3b, for example, there are three kinds of hyperedges in the original

hypergraphs, and each hypergraph snapshot contains one type of

hyeredges.

Problem 1. (HeterogenousHypergraphEmbedding forGraph

Classi�cation). Given a heterogeneous hypergraph G, we aim to

learn its representation ZG ∈ R |V |×� , where each row of this matrix

represents the embedding of each node. This representation can be used

for downstream predictive applications such as nodes classi�cation.

3 HETEROGENEOUS HYPERGRAPH
EMBEDDING

The overview of our heterogeneous hypergraph embedding frame-

work is shown in Figure 4. The input is a simple graph. If the simple

graph is heterogenous, we �rst extract simple graph snapshots

with di�erent meta-paths. Afterwards, we construct hypergraphs

on these simple graphs and then decompose them into multiple

hypergraph snapshots. We use our developed Hypergraph Wavelet

Neural Network (HWNN) to learn node embeddings in each snap-

shot and then aggregates these snapshots into a comprehensive

representation for the downstream classi�cation.

3.1 HWNN: Hypergraph Wavelet Neural
Networks

For each vertex E8 ∈ V , we �rst lookup its initial vector representa-

tion, v8 ∈ R
�×1, via a global embedding matrix and then project it

into sub-spaces of di�erent types of hyperedges. The representation

of vertex E8 in the hyperedge-speci�c space with hyperedge type

C4 ∈ T4 is computed as:

v
C4
8 = MC4 v8 (1)

whereMC4 ∈ R�×� is the hyperedge-speci�c projection matrix of

C4 .

3.1.1 Hypergraph convolution via Fourier basis. For each snapshot

G4 = {V4 , E4 ,W} extracted from the original heterogeneous hyper-

graph, the laplacian matrix is computed as ∆G4
= I − ΘG4 , where

ΘG4
= (D

G4

E )−
1

2HG4W(D
G4

4 )−1 (HG4 )) (D
G4

E )−
1

2 . Let x
G4

C (E8 ) =

v
C4
8 (C). where C is the index of elements in v

C4
8 , C = 1, · · · ,� , then

x
G4

C = [v
G4

1
(C), · · · , v

G4

|V |
(C)]) . According to [10], the hypergraph

Laplacian ∆G4 is a |V| × |V| positive semi-de�nite matrix, it can

be diagonalized as:

∆G4
= UG4ΛG4 (UG4 ))

where UG4 is the Fourier basis, which contains the complete set of

orthonormal eigenvectors ordered by its non-negative eigenvalues

ΛG4
= diag(_0, · · · , _=−1). According to the convolution theorem,

the convolution operation ∗ℎ� of x
G4

C and a �lter y can be written

as the Fourier inverse transform after the element-wise Hadamard

product of their Fourier transforms:

x
G4

C ∗ℎ� y = UG4 (((UG4 )) xG4 ) ⊙ ((UG4 )) y))

= UG4Λ
G4

\
(UG4 )) x

G4

C

(2)

Here (UG4 )) y = [\0, · · · , \=−1]
) is the Fourier transform of the

�lter, and Λ
G4

\
= diag(\0, · · · , \=−1).

However, the above operation has the following twomajor issues.

First, it is not localized in the vertex domain [35], which cannot fully

empower the convolutional operation. Secondly, eigenvectors are

explicitly used in convolutions, requiring the eigen-decomposition

of the Laplacian matrix for each snapshot in � . To address these

issues, we propose to replace the Fourier basis with a Wavelet basis.

The rationale of choosingwavelet basis instead of original Fourier

basis is as follows. First of all, theWavelet basis is much sparser than

the Fourier basis and most suitable for modern GPU architectures

for e�cient training [24]. Moreover, by the nature of wavelet basis,

the e�cient polynomial approximation can be achieved more easily.

Based on this feature, we thus able to further propose a polynomial

approximate to the graph wavelets so that the eigen-decomposition

of the Laplacian matrix is not needed anymore. Last but not least

wavelets represent information di�usion process, which are very

suitable for implementation of localized convolutions in the vertex

domain, which has been theoretically proved and empirically vali-

dated in the recent studies [10, 35]. Next, we introduce the details

of altering this basis.

3.1.2 Hypergraph convolution based on wavelets. With the above

discussion, let k
G4

B = UG4Λ
G4

B (UG4 )) be a set of wavelets with



Figure 4: The �owchart of our framework.

scaling parameter −B . Here Λ
G4

B = diag(4−_0B , · · · , 4−_=−1B ) is the

heat kernel matrix, and _0 ≤ _1 ≤ · · · ≤ _=−1 are eigenvalues

of hypergraph laplacian Δ
G4 . Then, the hypergraph convolution

based on the Wavelet basis can be obtained from Equation (2) after

replacing the Fourier basis withk
G4

B :

x
G4

C ∗ℎ� y = k
G4

B (((k
G4

B )−1xG4 ) ⊙ ((k
G4

B )−1y))

= k
G4

B Λ
G4

V
(k

G4

B )−1xG4

(3)

where (k
G4

B )−1y is the spectral transform of the �lter, and Λ
G4

V
=

diag(V0, · · · , V=−1). In the following, we further introduce the Stone-

Weierstrass theorem [10] to approximate graph wavelets without

requiring the eigen-decomposition of the Laplacian matrix, making

our method much more e�cient.

3.1.3 Stone-Weierstrass theorem and polynomial approximation.

Note that Equation (3) still needs the eigen-decomposition of the

hypergraph Laplacianmatrix. As thewavelet matrix is much sparser

than Fourier basis, we can easily achieve an e�cient polynomial

approximation according to the Stone-Weierstrass theorem [10],

which states that the heat kernel matrix Λ
G4

B restricted to [0, _=−1]

can be approximated by:

Λ
G4

B =

 
∑

:=0

U
G4

:
(ΛG4 ): + A (ΛG4 ) (4)

where  is the polynomial order. ΛG4
= diag(_0, · · · , _=−1) con-

tains the eigenvalues of hypergraph Laplacian Δ
G4 , and A (ΛG4 ) is

the residual where each entry has an upper bound:

|A (_) | ≤
(_B) +1

( + 1)!
(5)

Then, the graph wavelet is polynomially approximated by:

k
G4

B ≈

 
∑

:=0

U
G4

:
(∆G4 ): (6)

Since ∆G4 can be seen as a �rst-order polynomial of ΘG4 , Equation

(6) can be rewritten as:

k
G4

B ≈ Θ
G4

Σ
=

 
∑

:=0

\: (Θ
G4 ): (7)

Obviously, we can replace −B in Λ
G4

B with B so that (k
G4

B )−1 can

be simultaneously obtained. However, Equation (7) places the pa-

rameter B into the residual item, which can be ignored if we take B

as a small value. Therefore, we use a set of parallel parameters to

approximate (k
G4

B )−1 as:

(k
G4

B )−1 ≈ (Θ
G4

Σ
)
′

=

 
′

∑

:=0

\
′

:
(ΘG4 ): (8)

With the above transform, Equation (3) can be deduced as:

x
G4

C ∗ℎ� y = Θ
G4

Σ
Λ
G4

V
(Θ

G4

Σ
)
′

xG4 (9)

When we have a hypergraph signal XG4
= [x

G4

1
, · · · , x

G4

�
] with

|V| nodes and � dimensional features, our hyperedge convolution

neural networks can be formulated as:

(^
G4

[:, 9 ]
)<+1

= ℎ

(

ΘΣ
G4

?
∑

8=1

�
<
8,9 (ΘΣ

G4 )
′

(^
G4

[:,8 ]
)<

)

(10)

where �<8,9 is a diagonal �lter matrix, and (^G4 )< ∈ R |V |×�< is

the input of the m-th convolution layer. We can further reduce

the number of �lters by detaching the feature transform from the

convolution, and Equation (10) can be simpli�ed as:

(^G4 )<+1
= ℎ

(

ΘΣ
G4�

< (ΘΣ
G4 )

′

(^G4 )<W
)

(11)

WhereW is a feature project matrix. Let ZG4 ∈ R |V |×�<+1 be the

output of the last layer ZG4
= (^G4 )<+1, then for all snapshots of

� = {G1, · · · ,G|T4 |}, we have graph representations as:

Z = ZG1 ⊕ · · · ⊕ ZG|T4 | (12)

Here ⊕ is the concatenation operation, andZ is the concatenation of

ZG8 , 8 = 1, · · · , |T4 |. Finally, the representation of the heterogeneous

hypergraph G can be calculated by the summation over all its

snapshots as:

ZG
= 5 (Z) (13)

where 5 is a multilayer perceptron, and ZG ∈ R |V |×�<+1 . In the

task of node classi�cation, �<+1 should be equal to the number of

classes. The loss function can be combined with the cross-entropy

error over all labeled examples and the regularizer on projection

matrices:

L = −
∑

E∈V;

�<+1
∑

8=1

YE,8 lnZ
G
E,8 + [tr(M

)
C4
MC4 ) (14)



where V; is the set of labeled nodes, YE,8 is the label value of node

E in terms of the category 8 . If node E belongs to category 8 , YE,8 = 1,

otherwise, 0. [ is a trade-o� parameter of the regularizer. Here, we

follow [41] and use the trace of M)C4MC4 as the regular term, which

can be also replaced by the !2 regularization.

3.2 Model Analysis and Discussion

In this section, we provide an analytical discussion about our model

from multiple perspectives to show its advantages.

3.2.1 ΘG4 plays a role like an adjacency matrix. Our method can

achieve more profound learning results because we leverage the

power of ΘG4 for higher-order relations in hypergraphs, and ΘG4

can be treated as an adjacency matrix of the hypergraph.

As previously mentioned, we use H ∈ R |V |×|E | to denote the

presence of nodes in di�erent hyperedges. If E ∈ 4 , we haveH(E, 4) =

1, and otherwise, the corresponding entries are set as 0. In nature,

H indicates the relations between nodes and hyperedges, then we

can use HH) to describe connections between nodes. A normal-

ized version can be written like: HWD−1
4 H) . In order to remove

self-loops in hypergraphs, we change the above formula by:

Aℎ = HWD−1
4 H) − DE (15)

Then a normalized version of Equation (15) can be rewritten by:

A=>A<0;8I43 = D
− 1

2

E HWD−1
4 H)D

− 1

2

E − IE = Θ − I (16)

From the above formula, we can �nd Θ has the similar meaning as

the adjacency matrix.

3.2.2 Higher-order relations for hypergraphs. In order to elaborate

on the advantages of our method, we �rst introduce a prior work [5]

on hypergraph neutral network, and then we discuss the relation-

ships between our work and prior work. A simpli�ed hypergraph

convolution can be generated via extending simple graph convolu-

tion to the hypergraph. Recall that the typical GCN framework in

simple graphs is de�ned as:

X;+1 = D− 1

2AD− 1

2X;W (17)

Here D contains all nodes’ degree of the graph. A is the adjacency

matrix. Following Observation 2, we can e�ectively model hyper-

graph convolution in a similar way:

X;+1 = ΘX;W (18)

Here X; is the signal at the ;-th layer, andW is a feature projection

matrix. The traditional convolutional neural network for simple

graphs is a special case of this work because the Laplacian Δ can

be degenerated as the simple graph Laplacian.

When the �lter Λ in Equation (11) is initialized from value 1, it

is close to an identity matrix I. Let  = 1 and  
′
= 0 for Equation

(7) and Equation (8) respectively, then Equation (11) degenerates

to Equation (18). That means we employ the polynomial of Θ to

extend prior works based on the hypergraph theory only, and this

extension makes our method more profound for node representa-

tion learning. Since Θ actually serves a similar role as an adjacency

matrix, the power of Θ can learn higher-order relations for hy-

pergraphs. Furthermore, the �lter Λ improves the performance in

one more step via suppressing trivial components and magnifying

rewarding components.

The complexity of Equation (11) is O(# + ?@) where # is the

number of nodes, ? and @ are input dimensions and output di-

mensions respectively. Inspired by the formula (18) and (11), the

complexity of our model can be further reduced to O(?@) with a

simpli�ed version:

(^G4 )<+1
= ℎ

(

 
∑

:=0

(ΘG4 ): (^G4 )<W

)

(19)

where  is the polynomial approximation order, W ∈ R?×@ is

feature transformation matrix.

4 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we introduce related setup for our experiment and

discuss the evaluation restuls.

4.1 Experimental Setting

4.1.1 Datasets.

• Pubmed1: The Pubmed dataset [27] contains 19, 717 aca-

demic publications with 500 features. These publications are

treated as nodes and their citation relationships are treated

as 44,338 links. Each node falls into one of three classes (three

kinds of Diabetes Mellitus).

• Cora2: The Cora dataset [21] contains 2,708 published pa-

pers in the area of machine learning, which are divided into 7

categories (case based, genetic algorithms, neural networks,

probabilistic methods, reinforcement learning, rule learning,

and theory). There are 5,429 citation links in total. The paper

nodes have 1,443 features.

• DBLP3: The DBLP dataset [28] is an academic network from

four research areas. There are 14,475 authors, 14,376 papers,

and 20 conferences, among which 4,057 authors, 20 confer-

ence and 100 papers are labeled with one of the four research

areas (database, data mining, machine learning, and infor-

mation retrieval). We use this dataset to predict the research

areas of authors.

Note that the above four datasets cover all kinds of hypergraph

heterogeneities we have mentioned: homogeneous simple graph

with heterogeneous hypergraphs (Pubmed and Cora), and hetero-

geneous simple graph with heterogeneous hypergraphs (DBLP).

4.1.2 Baselines. We choose six state-of-the-art graph and hyper-

graph embedding methods as baselines:

• Hypergraph Embedding Methods

– HyperEmbedding [43]. This method selects the top-:

eigenvectors derived from the Laplacian matrix of the

hypergraph as the representation of the hypergraph.

– HGNN [11]. It is a convolution network for hypergraphs

based on the Fourier basis. The reason why we choose it as

our baseline is that their reported performance exceeds a

variety of hot methods such as GCN [18], Chebyshev-GCN

[8], and Deepwalk [26].

1https://github.com/jcatw/scnn/tree/master/scnn/data/Pubmed-Diabetes
2https://relational.�t.cvut.cz/dataset/CORA
3http://web.cs.ucla.edu/ yzsun/Publications.html



Table 1: Results on node classi�cation (50% labeled)

Recall (%) F1 (%)

Methods Pubmed Cora DBLP Pubmed Cora DBLP

HWNN 85.59 88.52 90.03 85.15 88.60 91.45

GWNN 81.02 85.12 87.23 80.93 85.04 87.20

HyperEmbedding 59.27 54.01 54.22 60.31 57.84 54.59

HGNN 82.32 82.87 86.34 82.08 84.09 85.47

PME 55.17 76.49 82.75 55.06 75.94 78.42

HHNE 76.86 70.74 86.66 79.94 69.95 86.03

metapath2vec 74.48 66.68 82.22 74.97 68.13 82.20

random guess 34.67 14.47 34.79 30.48 10.33 32.75

Accuracy (%) Precision (%)

Methods Pubmed Cora DBLP Pubmed Cora DBLP

HWNN 86.48 89.73 93.41 84.78 89.12 93.61

GWNN 82.51 85.82 90.11 80.88 85.20 90.50

HyperEmbedding 67.49 64.55 74.73 78.32 79.35 87.63

HGNN 83.51 85.82 89.01 82.19 85.95 86.13

PME 59.21 77.25 80.22 55.40 75.86 76.07

HHNE 81.32 71.64 83.24 81.32 75.95 87.32

metapath2vec 76.86 70.31 86.81 75.96 70.72 87.36

random guess 42.45 31.09 48.35 37.55 11.58 41.59

• Simple Embedding Methods

– PME [6]. It is a heterogenous graph embedding model

based on the metric learning to capture both �rst-order

and second-order proximities in a uni�ed way. It learns

embeddings by �rstly projecting vertices from object space

to corresponding relation space and then calculates the

proximity between projected vertices.

– HHNE [33]. This method learns node embeddings in Hy-

perbolic space instead of Euclidean space. It follows the

idea of word2vec [22] and generates the corpus via bias

random walk on the networks.

– metapath2vec [9]. It extends the Deepwalk model to

learn representations on heterogeneous networks through

meta path guided random walks.

– GWNN [35]. It is a graph convolution network based on

the Wavelet basis, but it is designed for simple homoge-

neous graphs. It was reported to beat GCN, Spectral CNN

[3], MoNet [23], and achieved the best results on homoge-

neous simple graphs.

4.1.3 Parameter Se�ings. The optimal hyper-parameters in all the

models are selected by the grid search method on the validation

set. Our model achieves its best performance with the following

setup. There are two convolution layers. The activation function of

the �rst layer is ReLU, and the second layer is Softmax. The feature

dimension of the hidden layer is set as 64, with a drop rate of 0.5.

We use Adam optimizer with learning rate 0.001, regularization

coe�cient 0.0001, and 400 epochs. For PME, metapath2vec, and

HHNE, we choose three meta-paths on DBLP dataset: P-C (paper-

conference), P-A (paper-author), and A-P-A. (paper-conference-

author). Other datasets have homogeneous simple graphs so we

just use V-V (vertex-vertex) as the meta-path. For PME, we set

< = 100, and the number of negative samples for each positive

Table 2: Performance on Cora w.r.t  (30% labeled)

Recall (%) F1 (%) Accuracy

(%)

Precision

(%)

K=1 70.77 72.53 74.30 84.46

K=2 86.75 87.53 89.59 88.71

K=3 86.17 87.84 89.07 88.68

K=∞ 86.44 87.10 89.37 88.54

We use K=∞ to denote the case without approximation.

edge is set  = 10. The initial nodes features are generated from

nodes’ attributes provided by these datasets.

4.1.4 Hypergraph Construction. We de�ne the following four types

of hyperedges to construct the corresponding heterogeneous hy-

pergraphs for the datasets:

• Neighbor-based hyperedges.We �rst obtain each node’s

q-hop neighbors and connect them in one hyperedge.q is set

as 3 in our experiments. All these hyperedges belong to the

same hyperedge type if the simple graph is homogeneous.

If the simple graph is heterogeneous, a node has di�erent

types of neighbors following di�erent meta-paths, and thus

we can generate di�erent types of hyperedges.

• Attribute-based hyperedges. LetA denote all the discrete

attributes. For each attribute 0 ∈ A, it has 20 values. Then,

we build a type of hyperedges for each attribute 0, and each

hyperedge connects the nodes sharing the same attribute

value. So there are 20 hyperedges generated for attribute 0.

Each hyperedge type is treated as a hypergraph snapshot,

and we �nally generate |A| hypergraph snapshots accord-

ingly.

• Cluster-based hyperedges. Given each node’s feature vec-

tors, we �rst calculate the cosine similarity between each pair

of nodes and obtain several clusters by K-means. Then each

cluster serves as a hyperedge. All the hyperedges belong to

the same hyperedge type.

• Community-based hyperedges. We use the Louvain al-

gorithm [1] to discover communities in the corresponding

simple graph via modularity maximization. Then each com-

munity is treated as a hyperedge. All these hyperedges be-

long to the same hyperedge type.

4.2 Overall Performance in Node Classi�cation

The comparison results in terms of F1, Recall, Accuracy, and Pre-

cision are reported in Table 1, which show that our solution con-

sistently outperforms all baselines on all the datasets. Note that

the di�erences between our solution and the other comparison

methods are statistically signi�cant (? < 0.01). Speci�cally, on the

Pubmed dataset, our method exceeds the baselines at least 4.0% in

Recall, 3.7% in F1, 3.6% in Accuracy, and 3.2% in Precision. On the

Cora dataset, our solution also outperforms all baselines, and the

relative improvements are 4.0% (Recall), 4.2% (F1), 4.6% (Accuracy),

and 3.7% (Precision). On the DBLP dataset, the relative improve-

ments achieved by our model are at least 3.2% (Recall), 4.9% (F1),

3.7% (Accuracy), and 3.4% (Precision).
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Figure 5: Results w.r.t. Ratio of labeled nodes.

Impact of Label Sparsity. We further study the impact of the

label sparsity (i.e., label ratio) by varying the ratio of labeled nodes

from 10% to 90%. We only report the results on the Cora dataset and

similar comparison results/trends are also observed on the other

datasets. Figure 5 shows the comparison results on the Cora dataset,

from which we can observe that even in a lower label ratio, our

method still outperforms the baselines, which is particularly useful

because most real world datasets are sparsely labeled.

4.3 Analysis of the Polynomial Approximation
to the Wavelet Basis

In this section, we study the impact of the polynomial approxima-

tion order  on the classi�cation performance. Since the Wavelet

basis is much sparser than the Fourier basis, we develop an e�-

cient polynomial approximation method to approximate it. In this

experiment, we set di�erent orders of the polynomial approxima-

tion to the Wavelet basis and report their performance in Table 2.

When  increases from 1 to 2, the performance of our model climb

signi�cantly. However, when  increases from 2 to 3, the perfor-

mance has become steady and is very close to the original Wavelet

basis without any approximation, which indicates that our model

training can be super-e�ciently done without any performance

compromise. Please note that when  = 2, both ΘΣ
G4 and (ΘΣ

G4 )
′

in Equation (11) are set as 2 orders.

Figure 6: Hypergraph snapshots on Cora (10% labeled).

4.4 Impact of Hypergraph Construction

As we propose four general hypergraph construction methods

which do not depend on domain knowledge, we study the per-

formance of each type of constructed hypergraphs and their jointly

formed heterogeneous hypergraph in this experiment. Figure 6

shows the nodes classi�cation results on Cora dataset, and we ob-

serve that the best performance is achieved on the heterogeneous

hypergraph, showing the advantage of exploiting heterogeneous

hypergraphs over the homogeneous hypergraphs. Another that the

community-based hypergraph has only 28 hyperedges but achieve

comparable performance with neighbor-based snapshot (1000 hy-

peredes). This indicates the potential superiority of the hypergraph-

based method when dealing with large-scale networks because the

number of hyperedges is much smaller than the numbers of nodes

and edges on the simple graphs.

4.5 Training E�ciency

Impact of snapshot number. In order to evaluate the training

e�ciency of our model, we �rst study the convergence rate of our

model training with di�erent number of hypergraph snapshots. As

shown in Figure 7, our model converges faster and the training loss

becomes lower when it processes more snapshots. That means more

available snapshots are helpful for our model to fast learn high-

quality node embedding, thus accelerating the model convergence.

Figure 7: Training loss w.r.t snapshot numbers.

E�ciency of the polynomial approximations. In order to eval-

uate computation time of our model and Fourier-based model on

the experiment datasets. We record the model training time in

100 epoch and report the results in Table 3. Our model shows ef-

�cient training performance. Here we let the order of polynomial



approximation equal to 4, which means both ΘΣ
G4 and (ΘΣ

G4 )
′

in Equation (11) are set as 4 orders. The simpli�ed version has

much faster speed, and considering hypergraph snapshots can be

assembled �exibly, we can leverage distributed computation for

even larger datasets.

Table 3: Model Training Time (second)

Cora Pumbed DBLP

Our method 0.91 433.14 526.83

Fourier basis method 1.41 632.76 764.73

speed-up ratio 1.55 1.46 1.45

4.6 Case Study: Online Spammer Detection

Online spammer detection is an important research area. Previ-

ous researches [19, 20, 34] usually take pairwise relationships into

considerations, ignoring non-pairwise relationships, and thus their

performance can be further improved by applying our method here.

In this section, we apply our method into spammer detection on

the Spammer dataset from Liu et al. [19]. The dataset consists of 14,

774 users in Sina platform4, and 3, 883 users are labeled as spammer

or normal users. Spammers take up to 23.3% of the total labeled

users. We construct an adjacency matrix according to the following

edges and each row serves as the �rst part of the feature vector. The

remaining features come from the feature collection calculated by

[19], including folllowee/follower number, lifetime, mutual friends,

number of tweets and so on. All these features are concatenated

and then fed into an autoencoder to generate a feature matrix with

100 dimensions. We construct the hypergraph snapshots according

to the second part of features, the similarity of all features, and the

topological neighbors.

Figure 8: Performance of Spammer Detection.

We compared our method with other famous baselines like

S3MCD [20], DetectVC [34], and CMSCA [19]. Results are reported

in Figure 8, from which we can demonstrate the validity of our

method for the spammer detection. Compared with other baselines,

HWNN achieved an average of 86.02% in the F1 score, 89.88% in

the Precision score, and 76.11% in the Recall score, exceeding to

the second by 21.8%, 20.5%, and 6.6% respectively. These results

4https://www.sina.com.cn

point out a new direction when studying spammer detection, that

considering relationships beyond pairwise can further improve the

�nal performance.

5 RELATED WORK

In this section, we brie�y review simple graph embedding methods

and hypergraph embedding methods.

Simple Graph Embedding Methods. Earlier methods for sim-

ple graph embedding such as LINE [30], DeepWalk [26], Node2Vec

[13], Metapath2vec [9], PTE [29] mainly focus on capturing neigh-

bourhood proximities among vertices. Recently, graph convolu-

tional neural networks have achieved remarkable performance

because of their powerful representation ability. Existing methods

can fall into two categories, spatial methods and spectral methods.

Spatial methods build their frameworks as information propagation

and aggregation. Recently, various neighborhood selection meth-

ods and aggregation strategies have been proposed. In the work

of Niepert et al. [25], the number of neighborhood nodes is �xed

according to pairwise proximity. Hamilton et al. [14] put forward a

GraphSAGEmethod, where neighboring nodes are selected through

sampling and then fed into an aggregate function. Petar et al. [32]

learn the aggregate function via the self-attention mechanism. Spec-

tral methods formulate graph convolution in the spectral domain

via graph Fourier transform [3]. To make the method computation-

ally e�cient and localized in the vertex domain, De�errard et al. [8]

parameterize the convolution �lter via the Chebyshev expansion

of the graph Laplacian. Xu et al. [35] further take Wavelet basis

instead of the Fourier basis to make the graph convolution more

powerful. However, existing graph neural networks only consider

pairwise relationships between objects, and they cannot apply to

non-pairwise relation learning. Recently, hypergraph methods have

been emerging.

HypergraphEmbeddingMethods. Some researchers construct

a hypergraph to improve the performance of various tasks like video

object segmentation [15], cancer prediction [16], and multi-modal

fusion [12, 41]. Most of them add a hypergraph regularizer into

their �nal objective functions, and the regularizer is usually the

same as in the spectral hypergraph partitioning [43], in which the

representations of connected nodes should be closer than those

without links [42]. Unlike the above works, Chu et al. [7] learn

their hypergraph embeddings through the analogy between hyper-

edges and text sentences. Then they maximize the log-probability

of the centroid generated by its context vertices. In recent years,

some works have explored the hypergraph learning via hypergraph

neural networks. Feng et al. [11] introduced the concept of hy-

pergraph Laplacian, and then proposed a hypergraph version of

graph convolution based on simple graph convolution [8]. Jiang

et al. [17] propose a hyperedge convolution method so that they

learn a dynamic hypergraph. Yadati et al. [36] treat a hyperedge as

a new kind of node and then the hypergraph can be changed as a

simple graph. Tu et al. [31] design a framework for hypergraphs to

preserve the �rst-order proximity and the second-order proximity

of hypergraphs.

https://www.sina.com.cn


6 CONCLUSION

In this paper, we proposed a novel graph neural network for het-

erogeneous hypergraphs with a Wavelet basis. We further propose

a polynomial approximation-based wavelets so that we can avoid

the time-consuming Laplacian decomposition. Extensive evalua-

tions have been conduct and experimental results demonstrate the

advantage of our method.
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