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ABSTRACT 


Recent empirical evidence suggests that the interdaily volatility clustering for most 
speculative returns are best characterized by a slowly mean-reverting fractionally 
integrated process. Meanwhile, much shorter lived volatility dynamics are typically 
observed with high frequency intradaily returns. The present article demonstrates, 
that by interpreting the volatility as a mixture of numerous heterogeneous short-run 
information arrivals, the observed volatility process may exhibit long-run depen- 
dence. As such, the long-memory characteristics constitute an intrinsic feature of the 
return generating process, rather than the manifestation of occasional structural 
shifts. These ideas are confirmed by our analysis of a one-year time series of five- 
minute Deutschemark-U.S. Dollar exchange rates. 

Among the most puzzling issues is the behavior of  volatility. While the 
general properties of volatility remain elusive, perhaps the most intriguing 
feature revealed by empirical work on volatility is its longpersistence. Such 
behavior has sparked a search, almost akin to that for the Holy Grail, for 
the perfect GARCH model, but the underlying question of  why such vola- 
tility persistence endures remains unanswered. We conjecture that the 
ability to analyze higher frequency data may be particularly useful in 
pursuing this issue. (Goodhart and O'Hara (1997)) 

THEPRONOUNCED VOLATILITY CLUSTERING is arguably one of the most striking 
features of financial price series recorded at daily or weekly intervals, and a 
large body of literature seeking to characterize this aspect of speculative 
returns has emerged over the past decade.1 At the same time, convincing 
theoretical explanations for the underlying sources of long-run persistence in 
volatility remain elusive. The recent advent of comprehensive high-frequency 
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data sets has added substantially to our knowledge of the higher frequency 
features of the returns process, but the findings have tended to deepen rather 
than resolve the puzzle surrounding the persistence in the volatility dynamics. 
In particular, while studies using daily or lower frequency returns generally 
point to a very high degree of intertemporal volatility dependence, the dynamic 
impact of identifiable intraday volatility shocks seem rather low, with any 
noticeable effects on the overall volatility typically gone in a matter of hours or 
less.2 

These findings have led to a certain fragmentation of the literature, with 
most market microstructure studies focusing predominantly on the highly 
significant patterns in the intradaily price movements (time-of-day effects), 
ignoring the longer-run inter-daily volatility dependencies. This separation 
may appear entirely natural, if not inevitable. High-frequency returns gener- 
ally cover only shorter time-spans, and given the evidence of near covariance 
non-stationarity of the return volatility process, as indicated by the findings of 
(near) integrated general autoregressive conditional heteroskedasticity 
(IGARCH) type models (Bollerslev and Engle (1993)), it may seem futile to 
search for insights regarding volatility persistence over a short horizon. This 
intuition is further bolstered by the lessons from the extant time series liter- 
ature, which has documented that only very long time-spans, as opposed to 
more frequent observations, can provide genuine information about the pres- 
ence of a unit root in a borderline stationary series.3 At the same time, the 
assumption of structural stability, or invariance of the return generating 
process, may be unreasonable for very long time-spans. Specifically, if a struc- 
tural break is present, and ignored, then the appearance of strong persistence 
may emerge artificially. This issue has been hotly debated in the context of 
modeling the level of economic time series and has led to the development of an 
extensive literature on testing for structural breaks; see e.g., Perron (1989). 
The same idea carries over to the volatility setting; see e.g., Lamoureux and 
Lastrapes (1990). 

This article advocates an approach that speaks directly to this important 
issue, while avoiding the analysis of excessively long time-spans of return 
data. The basic premise holds that shorter time-spans of high frequency 
returns-in contrast to widely, if implicitly, held notions-are in fact very 
informative about longer-run volatility dependencies. The rationale is closely 
related to the observation of Merton (1980), that whereas it is not possible to 
learn much about the drift (mean) of the price process by sampling more 
frequently, high frequency observations may greatly enhance estimates of the 
volatility (variance). In fact, in a strict diffusion setting volatility can be 
measured perfectly by sampling the price process continuously; see, e.g., Nel- 
son (1990, 1992). In reality, market microstructure features such as the bid- 
ask spread and discrete price quotes, combined with the presence of strong 
intraday volatility patterns render this infeasible. Moreover, these short-run 

For a recent survey of this literature see Goodhart and O'Hara (1997). 
Shiller and Perron (1985) provide some of the first simulation based evidence along these 

lines. 
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effects are generally large relative to the return component that provides 
information regarding the innovation in the long-run volatility. However, 
these effects may be controlled for in ways that allows an investigation of the 
long-run volatility features based on high-frequency return series covering 
only a relatively short time-span. 

Our empirical findings along these lines clearly points towards the existence 
of long-run volatility persistence in high frequency return^.^ Meanwhile, the 
empirical analysis also provides distinct evidence for the existence of multiple 
volatility components at  the intradaily frequencies. This evidence of multiple 
volatility components, along with the apparent long-memory characteristics, 
motivates our theoretical developments, in which we formulate a version of the 
mixture-of-distributions hypothesis (MDH) for returns that explicitly accom- 
modates numerous heterogeneous information arrival processes. Even though 
each of the constituent information flow processes exhibit only short-run 
memory, we demonstrate how the aggregate volatility process may display the 
dependency associated with a long-memory process. In addition, we show that 
this degree of volatility persistence should be invariant to temporal aggrega- 
tion. 

The MDH interpretation of market volatility as resulting from the aggrega- 
tion of numerous components type processes apply equally well across most 
financial markets and instruments. However, for concreteness the empirical 
analysis in the article is focused on the foreign exchange market, and a 
one-year time-span of five-minute Deutschemark-U.S. Dollar (DM-$) returns. 
While our empirical analysis is performed predominantly in the frequency 
domain, we also develop a low-pass filtering technique that purges all intraday 
volatility components with periodicities of less than one day. As such, the 
low-pass filter is designed to annihilate the strong intraday patterns, while 
retaining all the low-frequency information that pertains to the interdaily 
frequencies. The resulting high-frequency series thus speaks directly to the 
long-run features of the return series, and affords a direct time-domain anal- 
ysis of the volatility persistence from the high frequency data. We verify that 
this approach yields results that are consistent with more standard frequency- 
based procedures, and also illustrate the usefulness of the filtered series for 
direct analysis of the longer run volatility implications of different macroeco- 
nomic announcements. The fact that our estimates for the degree of long-run 
volatility persistence are very similar across all intradaily sampling frequen- 
cies, and strikingly close to the estimates for a daily time series covering a 
much longer time-span, lend further support to the notion of long-memory 
dependence as an inherent feature of the return generating process, rather 
than an artifact of infrequent structural shifts, or changes in regimes. 

The plan for the remainder of the article is as follows. Section I briefly 
reviews some of the existing literature on the intradaily dependencies in the 

*This is consistent with the recent findings of long-memory in the volatility of different daily 
return series, as formally modeled by Baillie, Bollerslev, and Mikkelsen (1996) and Ding and 
Granger (19961, among others. 
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foreign exchange market. This section also presents preliminary estimation 
results for specific announcement effects that point to the existence of multiple 
volatility components and long-run dependencies. The mixture-of-distribu- 
tions hypothesis and the temporal aggregation argument are presented in 
Section 11, where we show that, under suitable assumptions concerning the 
underlying component structure, the spectrum for the overall volatility process 
implies an eventual slow hyperbolic rate of decay in the autocorrelations for 
the absolute returns, irrespective of the sampling frequency. The theoretical 
developments are validated by the empirical analysis in Section 111, which 
reports the results obtained from two alternative spectral-domain estimators 
for the degree of fractional integration in the volatility process across a range 
of different intradaily sampling frequencies. These findings are entirely con- 
sistent with the time-domain estimate for the fractional order of integration 
determined by the hyperbolic rate of decay in the autocorrelations for the 
low-pass filtered absolute returns presented in Section IV. This section also 
illustrates how the low-pass filtered absolute returns allow for important new 
insights into the structure behind the determination of the observed volatility. 
Section V concludes. 

I. Preliminary Data Analysis 

In order to motivate the subsequent theoretical developments, the following 
section describes the salient empirical features of the volatility in the DM-$ 
foreign exchange market. However, the general ideas and empirical results 
apply equally well to other financial markets and high frequency return series; 
see, e.g., Andersen and Bollerslev (1997a) for a discussion of the parallels 
between the empirical properties of high frequency foreign exchange and 
equity index returns. The DM-$ exchange rate data under study consist of all 
the quotes that appeared on the interbank Reuters network during the October 
1, 1992 through September 29, 1993 sample period. The data were collected 
and provided by Olsen and Associates. Each quote contains a bid and an ask 
price along with the time to the nearest even second. The exchange rate 
corresponding to the endpoint of a given five-minute interval was determined 
as the interpolated average between the preceding and immediately following 
quotes weighted linearly by their inverse relative distance to this endpoint. 
The nth five-minute return for day r, R,,, is then simply defined as the 
difference between the midpoint of the logarithmic bid and ask at the appro- 
priately spaced time intervals. All 288 five-minute returns during the 24-hour 
daily trading cycle are used, but in order to avoid confounding the evidence by 
the decidedly slower trading patterns over the weekends, all returns from 
Friday 21:OO Greenwich Mean Time (GMT) through Sunday 21:OO GMT were 
excluded; see Bollerslev and Domowitz (1993) for a detailed analysis of the 
quote activity in the DM-$ interbank market and a justification for this 
"weekend" definition. Similarly, to preserve the number of returns associated 
with one week we make no corrections for any worldwide or country specific 
Holidays that occurred during the sample period. All in all, this leaves us with 
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a sample of 260 days, for a total of 74,880 five-minute intraday return obser- 
, 74,880, where R(,-,,.vations; i.e., R,, t = 1, 2, . . . - R , , ,  for n = 1, 28, = 

2, . . . , 288, and T = 1,2,  . . . , 260. For further discussion of the data construc- 
tion we refer to Andersen and Bollerslev (1997a), where the same dataset has 
previously been analyzed from a different perspective. 

Aside from the numerically small, but statistically significant, negative first 
order autocorrelation coefficient of -0.040, the five-minute returns appear to 
be well approximated by a However, the returns martingale p r o ~ e s s . ~  are 
clearly not independent, as the first order autocorrelation coefficient for IR,I 
equals 0.309. Also, the Ljung-Box statistic for up to tenth order serial corre- 
lation in the absolute returns takes a value of 36,680, which is highly signif- 
icant in the corresponding asymptotic chi-square distribution. 

While the latter statistics are strongly suggestive of intraday volatility 
clustering, their overwhelming significance is in part attributable to the strong 
intradaily volatility pattern that is present in most financial markets. The 
importance of this phenomenon for the DM-$ rates is obvious from Figure 1, 
which graphs an estimate of the spectrum for the intradaily absolute five- 
minute returns.6 The spectrum has a distinct peak at  the daily frequency of 
approximately 2 . ~ 1 2 8 8= 0.0218, along with well defined peaks at  the corre- 
sponding seasonal harmonics of 4 .  d288 = 0.0436, 6 .  d288 .-: 0.0654, 8 .  
d288 .-: 0.0873. This pronounced daily periodicity is also evident in the 
autocorrelogram for the absolute 5-minute returns depicted out to a lag of 
2880, or ten days, in Figure 2. The intradaily pattern induces a distorted 
U-shape in the sample autocorrelations across each day, with the autocorre- 
lations spaced half-a-day apart actually turning negative. The shape of the 
underlying intradaily volatility pattern over the 24-hour trading cycle in the 
foreign exchange market, and the close connection to the market activity in the 
various financial centers around the world, have previously been documented 
by Andersen and Bollerslev (1997a), Baillie and Bollerslev (1991), Dacorogna 
et al. (1993), Ito, Lyons, and Melvin (1996), among others.7 

Taken together, these results clearly point to the importance of appropri- 
ately accounting for the strong intradaily volatility patterns when analyzing 

The small negative autocorrelation may be explained by the asymmetric positioning of quotes 
by the foreign exchange dealers as a way to manage their inventory positions, thus causing the 
midpoint of the quoted prices to move around in a fashion analogous to the well documented 
bid-ask bounce effect on organized exchanges. This is also consistent with the results in Bollerslev 
and Domowitz (1993), who find similarly constructed five-minute DM-$ returns over a 3-month 
period in 1989 to be negatively correlated, while the first order autocorrelation for artificial 
constructed five-minute pseudo transactions price returns is actually positive. Similarly, the 
foreign exchange transactions prices analyzed by Goodhart, Ito, and Payne (1996) show no 
negative correlation between subsequent returns. 

The spectrum is estimated as the smoothed sample periodogram based on a triangular kernel 
with a bandwidth of ten; see, e.g., Hamilton (1994) or Priestley (1981). To allow for easier 
interpretation of the subsequent results, the plot is given on a double logarithmic scale. 

Equally pronounced patterns have been documented for other financial markets, including the 
well known intradaily U-shape for equity market volatility; see e.g., Wood, McInish, and Ord 
(1985) and Harris (1986). 
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Frequency 

Figure 1. The figure graphs the spectrum for the five-minute absolute returns on an 
open position in the Deutschemark-U.S. Dollar spot exchange rate market from October 
1,1992 through September 29,1993; i.e., wtI - Jln(P,)- ln(Pt-,)I where t = 1,2,.. . ,74,880. 
The spectrum is estimated as the smoothed sample periodogram using a triangular kernel with 
bandwidth of ten. 

high frequency dynamic dependencies, both within and across different mar- 
kets. However, even after explicitly modeling the typical intradaily patterns, 
several recent studies have found that the estimation of standard GARCH type 
models for the nonperiodic intradaily volatility clustering tends to falter, in the 
sense that the estimated parameters obtained for different intradaily sampling 
frequencies are a t  odds with the temporal aggregation results developed by 
Drost and Nijman (1993) and the continuous record asymptotic in Nelson 
(1990); for existing evidence along these lines pertaining to the DM-$ rates 
analyzed here, see Andersen and Bollerslev (1997a). Thus, it appears that 
multiple volatility components are necessarily required in order to fully ex- 
plain the complex intradaily dependencies that are present in all the major 
financial markets.8 

The attempt to associate each of the underlying volatility components with 
explicit economic factors seems destined to fail. Meanwhile, the regularly 
scheduled releases of macroeconomic figures have been shown to induce 
heightened overall volatility immediately following the "news" release for a 
number of different financial instruments; for studies on the impact of mac- 
roeconomic announcements on high-frequency foreign exchange rates see e.g., 

Multiple components ARCH models have been proposed by Miiller et al. (1997)and Ghose and 
Kroner (1996) to capture this phenomenon in the modeling of high-frequency foreign exchange 
returns. 
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Dally Lag 

Figure 2. The figure graphs the sample autocorrelogram for the five-minute absolute 
returns on an open position in the Deutschemark-U.S. Dollar spot exchange rate mar- 
ket from October l ,  1992 through September 29,1993; i.e., IRtl = Iln(P,) - In(P,-,)I where 
t = l , 2 , .  . . ,74,880. 

Andersen and Bollerslev (1997b), Ederington and Lee (1993), Goodhart et al. 
(1993), Hogan and Melvin (1994), and Ito and Roley (1987). Not surprisingly, 
the actual effect tends to vary according to the type of announcement. From the 
analysis in Andersen and Bollerslev (1997b) the three regularly scheduled 
macroeconomic announcements with the largest instantaneous impact on 
DM-$ volatility during the present sample period are the U.S. Employment 
Report, the biweekly Bundesbank meetings, and the U.S. Durable Goods 
figures.9 To gauge the dynamic impact of each of these events, we consider the 
following simple AR(1) model for the standardized five-minute DM-$ absolute 
returns, augmented by a separate short-lived AR(1) component, 

where the I&)indicator variable equals unity if an announcement of the given 
type, N ,  occurred during the tth time interval and zero otherwise, while the 
"news" dummy, Ddt ) ,  equals unity for the two hours immediately following 
the event; i.e., D d t )  = I&) + I& - 1) + . . . + I d t  - 23). In order to 
avoid confounding the dynamic dependencies by the strong intradaily volatil- 
ity patterns, the returns in equation (1) are standardized by the average 
absolute return for the particular five-minute interval; i.e., I R , [  = 

The U.S. Employment Report, Durable Goods figures, and Business Inventories analyzed 
below, are all announced on a monthly schedule. 
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260 lR(,_,, 288+n/)-1 for n = 1, 2, . . . , 288, and 7 =. 288+nl . (~:6011R(~-~). 
1, 2, . . . ,260.10 The first order sample autocorrelation for these standardized 
returns, i.e., I d t )  and D d t )  = 0 for all t ,  equals 4 = 0.273. However, the 
estimates obtained from the simple descriptive model in equation (1)suggest 
that the three major announcements result in their own distinct volatility 
response pattern. Specifically, for the Employment Report 9, = 5.346 (1.424) 
and 4, = -0.081 (0.050), respectively, where the numbers in parentheses 
represent robust standard errors. These estimates therefore indicate an im- 
mediate increase in the volatility, but largely unaltered short-run dynamic 
dependencies in the two hours following the release of the report. Meanwhile, 
the estimates for the Bundesbank biweekly meetings are 1.394 (0.651) and 
0.102 (0.054), suggestive of a slower rate of decay in the volatility component 
associated with this "news" release. The Durable Goods report also elevates 
volatility, 9, = 1.801 (0.687), but the estimated short-run decay is actually 
faster than average with 4, = -0.130 (0.037), or 4 + 4, = 0.144. Many other 
announcements share this dynamic pattern. For instance, for the Business 
Inventory figures the same two parameters are 0.021 (0.110) and -0.094 
(0.045), respectively. 

This relatively rapid decay of the readily identifiable "news" effects at  the 
intradaily frequencies is in sharp contrast to the well documented highly 
persistent volatility clustering that is present a t  the lower interdaily sampling 
frequencies. In fact, the daily dependencies have often been modeled by an 
integrated autoregressive conditional heteroskedasticity (ARCH) variance pro- 
cess; see Bollerslev, Chou, and Kroner (1992) for a survey of this voluminous 
literature. More recently however, Baillie, Bollerslev, and Mikkelsen (1996), 
Dacorogna et al. (1993), and Harvey (1994), have questioned these earlier 
findings, on the grounds that the long-run dependence in the volatility of 
interdaily foreign exchange returns is better characterized by a slowly mean- 
reverting fractionally integrated process.ll While shocks to the daily volatility 
process are highly persistent, it appears that they eventually dissipate, albeit 
a t  a very slow hyperbolic rate. As discussed in Section 111, the approximate 
linear behavior of the estimated spectrum for lR,l, when plotted on the double 
logarithmic scale in Figure 1, is consistent with this long-memory type depen- 
dence. Similarly, the rapid initial decay followed by the decidedly slower rate 
of dissipation for the longer-run autocorrelations in Figure 2 also indicate the 
existence of long-memory type dependencies, although the marked intradaily 
periodicity severely complicates the interpretation of the overall pattern in the 
autocorrelogram for the raw absolute returns. 

loMuch more elaborate standardization procedures for characterizing the average intradaily 
volatility patterns have recently been developed by Andersen and Bollerslev (1997a, 1997131 and 
Dacorogna et al. (1993). 

l1 Similar long-run dependencies in daily stock market volatility have been observed by Boller- 
slev and Mikkelsen (19961, Breidt, Crato, and de Lima (19971, Ding, Granger, and Engle (19931, 
Granger and Ding (1996, 19971, among others. 
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11. The Theoretical Volatility Model 

This section demonstrates that the mixture-of-distribution hypothesis, orig- 
inally advocated by Clark (19731, Epps and Epps (1976), and Tauchen and 
Pitts (1983) provides a framework for rationalizing the complicated, and seem- 
ingly conflicting, behavior of the return volatility dynamics that exist a t  the 
inter- and intradaily frequencies; see also the analyses in Andersen (1996), 
Harris (1987), Ross (1989), and Taylor (1994). Intuitively, the mixture-of- 
distributions hypothesis stipulates that the return generating process reflects 
the impact of a large number of innovations to the information processes 
associated with the economic factors of relevance for the valuation of the asset 
in question. While the innovations, by definition, are serially uncorrelated, 
they are not likely to be independent since information of a particular kind 
tends to be positively autocorrelated, thus inducing the kind of dependence in 
the absolute, or second order, moments of the returns discussed above. 

To formalize these ideas, consider the following representation for the in- 
tradaily returns, 

where m, denotes the conditional mean of the raw returns, r,, Z, is an inde- 
pendent identical distribution (i.i.d.) stochastic process with mean zero and 
variance one, and the nonnegative, positively serially-correlated mixing vari- 
able, V,, serves as a proxy for the aggregate amount of information flow to the 
market. Equation (2) takes the typical form associated with the discrete time 
ARCH class of models in which both m, and Vt are assumed measurable with 
respect to the time t - 1observable information set, so that the conditional 
variance of the return equals Vart-,(R,) = Var,-,(rt) = V,. More generally, 
however, the information flow is not directly observable, and V, is naturally 
modeled as a latent, or stochastic, volatility process. Of course, lacking addi- 
tional assumptions regarding the temporal dependencies in the V, process, the 
model in equation (2) is void of testable empirical implications in regards to the 
observed volatility dynamics. 

The rest of this section develops a specific representation of equation (2)that 
affords an interpretation of volatility as governed by heterogeneous informa- 
tion arrivals, while retaining the capacity of reconciling the seemingly conflict- 
ing evidence regarding volatility at  the various return frequencies, and pro- 
ducing interesting empirical implications that are directly testable. 

A. Volatility as a Manifestation of Heterogeneous Information Arrivals 

Motivated by the empirical observations in Section I, we assume that the 
volatility process reflects the aggregate impact of N distinct information ar- 
rival processes; say V,,,2 0, where j = 1, 2, . . . ,N. Also, following Andersen 
(1994), the temporal dependence of each constituent component is expressed in 
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terms of a standard log-normal stochastic volatility, or Exponential SARV, 
model, 

where vj,t = - pj, pj = are assumed to be i.i.d. E[ln(V,,,)I, and the E ~ , ~ s  

N(0, 4)for all j = 1, 2, . . . ,N. The logarithmic formulation in equation (3) 
ensures that the number of information arrivals dictated by the jth component 
process, V,,, = exp(vj,, + pj), is positive. The autoregressive coefficient, aj, 
reflects the degree of persistence in the j th information arrival process. Con- 
sistent with the notion of positively serially-correlated but stationary "news" 
arrivals, we restrict these parameters to fall within the unit interval; i.e., 0 5 

aj < 1. 
According to the mixture-of-distributions hypothesis, each information ar- 

rival process has an effect on the aggregate latent volatility process. Assume 
that this combined effect may be represented by 

where vt = c:, vj,t and p, = zF1pj. Note, the spectrum for the aggregate vt 
process at  frequency o is simply given by the sum of the spectra for the N 
underlying independent AR(1) processes, i.e., 

where 0 5 oIT. For small values of N, this spectral representation for vt can 
in principle be used to maximize Whittle's frequency domain approximation to 
the likelihood function for ln(R:) = p, + vt + ln(Z:) as specified by equations 
(21, (3), and (4); see Breidt, Crato, and de Lima (1997) for an application of this 
frequency-domain based likelihood procedure in the estimation of a stochastic 
volatility model. Alternatively, the model may be estimated by any one of the 
Markov Chain Monte Carlo methods described in Jacquier, Polson, and Rossi 
(1994) and Shephard (1996), or by the Efficient Method of Moments developed 
by Gallant and Tauchen (1996). Yet, in the actual empirical implementation 
with high frequency data, a large number of heterogeneous information arrival 
processes is likely called for, rendering any of these direct estimation proce- 
dures for determining the ajs as well as the remaining model parameters 
intractable. 

In light of this, suppose that the heterogeneity in the individual component 
processes, as dictated by the AR(1) parameters, may be approximated by the 
normalized beta distribution, 
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where 0 5 a < 1, 0 <p,  1< q < 2, and the beta function is given by B(p, q) 
1 p - 1= SOx (1 - x ) ~ - '  d l  = r (p )  . r(q) - r ( p  + q)-l. This parametric density 

function allows for a wide variety of shapes in the bounded distribution of the 
ajs, and thus provides a flexible way of characterizing different forms for 
dynamic dependencies in the latent information arrival processes; see, e.g., 
Johnson and Kotz (1970) for a discussion of the beta distribution. Moreover, 
this particular distributional assumption regarding the heterogeneity in the 
underlying q,,processes has a number of testable implications in regard to the 
dynamic dependencies in the observable process for the absolute returns. 

Specifically, consider the situation in which the number of component pro-
cesses is arbitrarily large; i.e., N +m, so that the sum of the individual AR(1) 
spectra in equation (5) converges to the probability weighted integral over the 
distribution for the aj coefficients. Following Granger (1980), the resulting 
spectrum for the v, process may then be evaluated as 

where = limN, 2g1$. Alternatively, the spectrum for the v, process may 
mbe written as f,(w) = 8 - (2.rr)-' .Zj,_, p(v,, j) - exp(-i . w .j),where 8and 

p(v,,j)denote the variance and thejth order autocorrelation for v,, respectively. 
Thus, by equating terms in the identical powers of j ,  it follows that the 
autocorrelations for vt must be proportional to T(p + Y2 1jJ)- r ( p  + q - 1+ Y2 

lj()-l. This implies that for large lj(, the autocorrelations for the aggregate 
latent logarithmic volatility process behaves like12,13 

l2By Stirling's Formula T(a  + j )  . T(b  + j ) - I  .- c .j"-b for large j ,  where c is a factor of 
proportionality. 

l3 This same idea has recently been employed by Ding and Granger (1996) in imposing a slowly 
hyperbolically decaying structure on the parameters in a GARCH type model for daily stock 
returns. 
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The dependence in vt will therefore dissipate at  the slow hyperbolic rate of 
decay associated with the covariance stationary fractionally integrated, or I(d), 
class of models, with d = 1- ?h.q.14 

Of course, the mixture-of-distributions hypothesis in equation (2)is phrased 
in terms of the latent volatility process, V,, and not vt. However, it is readily 
demonstrated that the long-run dependence induced in the autocorrelations 
for v,, for 0 <d = 1- Y2 .q < Y2, carries over to any positive power transforms 
of the fundamental Vt process; say e = expe(vt+ F ~ ) ,where 6 > 0. First, note 
that E ( q  ePj)= [ ~ ( e ) ] ~- exp[02. p(vt, j) - 81;  see Granger and Newbold 
(1976) for a general discussion regarding the autocorrelation functions of 
power transforms of normals, and Andersen (1994)for a more detailed analysis 
of the particular case analyzed here. Consequently, thej th  order autocorrela-
tion for emay be written as 

p(V,",j )  = [exp(02 at) - 11-I - [exp{02- a:. p(vt,j ) }  - 11. (9) 

However, p(vt,j) -j2d-1-+0 for j -+m, so that by a first order Taylor series 
expansion exp[d2 8.p(v,, j)] = 1 + d2 - 4 .p(v,, j). From this it follows 
immediately that, for large j ,  

Thus, the e and the v, processes share the same long-run decay in their 
autocorrelation functions. More importantly, this long-run dependence in the e process is propagated to the process for the absolute returns raised to an 
arbitrary power, 2 . 6. To see this, note that from equation (2) any power 
transform of the absolute returns is directly related to the latent volatility 
process by lRtI2' = e Izt12' O. Thus, because 2%is an i.i.d. process, it follows 
that p ( l ~ , / ~ .O,j) is proportional to p ( e ,j). The return volatility will therefore 
exhibit the identical slow hyperbolic rate of decay whether measured in terms 
of the absolute returns, IR,I, the squared returns, R:, or any other power 
transform, lRtI2.O; i.e., for large j ,  

This result is important because it demonstrates how the long-memory fea-
tures of volatility may arise naturally through the interaction of a large 
number of diverse information processes. From a conceptual perspective, it 
implies that the long-memory characteristics reflect inherent properties of the 
return-generating process, rather than external shocks that induce a struc-
tural shift in the volatility process, as, e.g., suggested by Lamoureux and 

l4 The process y, is integrated of order d ,  or Z(d),if (1 - LIdy, is stationary and ergodic with a 
positive and bounded spectrum across all frequencies, where the fractional differencing operator 
(1-LId is defined by the binomial expansion, (1- L)d = Cj=O,.. .,= r(j- d)  . r(j+ I)-' . r(-d) .LJ. 
If 0 < d < Yz the autocorrelations for y, are all eventually positive, and decay a t  a hyperbolic rate. 
For recent surveys of the relevant literature see, e.g., Baillie (19961, Beran (19941, and Robinson 
(1994b). 
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Lastrapes (1990). In other words, the mechanism responsible for the fractional 
integration in volatility is generic to the returns process, and thus ever 
present, so that with high frequency data it may be feasible to identify the 
manifestation of the phenomenon even over relatively short spans of calendar 
time. We pursue this possibility in Section 111. 

For now, we simply note that the result in equation (11)is consistent with 
the empirical behavior of the autocorrelograms for the various power trans- 
forms of daily equity returns reported in Ding, Granger, and Engle (1993). 
Although Harvey and Streibel(1996) argue that it is impossible, by theoretical 
means, to ascertain which value of 8 will uniformly maximize the autocorre- 
lations for the simple stochastic volatility model, corresponding to N = 1in the 
current setup, it is noteworthy that the sample autocorrelations for the daily 
returns analyzed in Ding, Granger, and Engle (1993) attain their maxima for 
8 very close to one-half.15 Motivated by this observation, we concentrate on the 
correlation structure for the intradaily absolute returns in the empirical in- 
vestigations below.16 

B. Temporal Aggregation of Volatility 

The long memory characterization obtained in equation (11)may appear 
incomplete, because the mixture-of-distributions hypothesis is silent regarding 
the proper discrete time sampling interval for the intradaily return series. 
While the complex volatility structure entertained renders a full distributional 
characterization infeasible, it is possible to show that the autocorrelations for 
the temporally aggregated squared returns eventually exhibit the identical 
long-run hyperbolic rate of decay irrespective of the sampling frequency.17 In 

+ RT.k-l + . . . + Rr.k-k+l- v1/2particular, let R:" = RT . k  - T . k . Z T . k+ V:/.%-l. 
ZT.k-l + . . . + v:'.<-~+~.Zr.k-k+l, where 7 = 1, 2 , .  . . , and k = 1,2 , .  . . , 
denote the temporally aggregated returns.18 Since the 2,s are i.i.d., it  follows 
that the j th  order autocorrelation for (~' ,h ') '  is proportional to the correlation 
between V,.,.Z?., + V T k 1 Z k l  + . . . + V T . k - k + l . Z ? . k - k + l  and 
V(T-J). k  ' ZtT-j). k  + V(T-j).k-l ' ZtT-j). k - 1  + . . . + V(T-~) '. k - k + l  Z&j) . k - k + l .  

Thus, by collecting terms corresponding to the same lag length, the latter 
correlation is, in turn, proportional to the sum of the autocorrelations between 

l5 This phenomenon is referred to as the Taylor effect by Granger and Ding (1997). 
l6 Varying the power of the absolute returns effectively amounts to varying the importance of 

extreme events. For the five-minute DM-$ returns analyzed here, the first order sample autocor- 
relations for lRtl and Rz equal 0.309 and 0.201, respectively, consistent with the findings for other 
rates and time periods reported in Miiller, Dacorogna, and Pictet (1996). 

l7 In a related context, assuming a Wold type representation, Chambers (1995) has recently 
shown that the degree of fractional integration in the levels is preserved under temporal aggre- 
gation of both stock and flow variables. 

l8For the 74,880 five-minute returns analyzed here, an aggregation factor of k = 2 would 
correspond to the time series of 37,440 ten-minute returns, whereas k = 3 refers to the time series 
of 24,960 fifteen-minute returns, etc. 
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q and q p j .  k p h ,  where the weights corresponding to h = -k + 1, -k + 2, . . . , 
k - 1equal (k - Ihl), and zero otherwise. Consequently, for long lags, j ,  

k - 1  

- k-2. 2 (k - Ihl). (j.k + h)2d-1, (j.k)2d-1, j2d-1 ,  

h = - k + l  

(12) 

That is, the long-memory features of the squared returns are consistent with 
the characteristics of a self-similar process in the sense of Mandelbrot and van 
Ness (1968) and Mandelbrot and Wallis (1969). Moreover, by analogy to the 
k = 1case detailed above, if the temporally aggregated latent volatility process 
is log-normally distributed, then the long-run autocorrelation structure for 
I R L ~ ' ~ ~will be identical for all 8. Thus, in this case the autocorrelations for any ' 

power transform of the temporally aggregated absolute returns should again 
eventually decay at the identical hyperbolic rate of j2d-1irrespective of the 
sampling frequency, k.19 

C. Extensions 

Before we describe the empirical findings pertaining to the propositions 
developed so far, we should emphasize that the theoretical model readily 
accommodates extensions in a number of directions that allow for added 
flexibility and realism in the portrayal of the volatility dynamics without 
affecting the salient long-run dependencies. First, the mixture-of-distributions 
hypothesis in equations (2), (3), and (4) obviously neglects the repetitive 
intradaily pattern in the volatility that is evident in the spectrum and the 
autocorrelogram for the 5-minute absolute DM-$ returns in Figures 1and 2. 
To incorporate this periodicity, let s(t) denote the stage of the periodic cycle at  
time t. A slight modification of the model in equation (2), that explicitly allows 
for the pronounced intradaily pattern, takes the form, 

where the spectrum for the independent seasonal component has no mass aat frequencies lower than one day.20 Since ln(R?) = p, + vt + ln(St,s(t,)+ l n ( ~ ? ) ,  

l9 Previous empirical work with much simpler dependency structures have found the log- 
normal distribution to work remarkably well a t  various return frequencies; see, e.g., Andersen 
(19961, Shephard (19961, and Taylor (1994). 

20 A particularly simple representation that restricts St,,,,, to depend only on the stage of the 
periodic cycle, s(t) ,has been successfully employed by Andersen and Bollerslev (1997a) in modeling 
the periodicity in the DM-$ return series analyzed here. Note also that periodicities at, say, the 
weekly frequency may be accommodated analogously. 
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it follows that the long-run behavior, as dictated by the spectrum for v, near 
frequency zero, is unaffected by this additional periodic component. Of course, 
the autocorrelation structure in the absolute returns may be severely influ- 
enced by the presence of the repetitive intradaily pattern. However, as dem- 
onstrated below, by explicitly filtering out the daily and higher frequency 
dynamics in the absolute returns process, it is possible to uncover the long-run 
hyperbolic rate of decay implied by the aggregation of the component pro- 
cesses. 

Rather than being independent, the "news" arrivals might more realistically 
share a number of common factors related to the state of the overall economy, 
while still exhibiting their own separate influence on the valuation of the asset. 
To allow for such common effects, consider the following generalization of the 
simple logarithmic AR(1) processes in equation (31, 

where K ~ , ,represents the de-meaned kth common factor, and the factor loading 
for the j th arrival process associated with common factor k is denoted by $,k.21 

Provided that each of the common factors is covariance stationary, so that their 
spectra are bounded across all frequencies, and that the heterogeneity in the 
individual persistence parameters, oj, is determined by the beta distribution in 
equation (6) , it follows immediately by analogy to the results in Granger 
(1980), that the hyperbolic decay in the autocorrelation function for v, is 
preserved under this more general specification. The independence assump- 
tion in equation (3) merely serves to simplify the exposition. The implied 
degree of long-run dependence in the absolute returns remains intact under 
the more realistic assumptions in equation (14). 

Finally, while the derivation above explicitly relies on the beta distribution 
in equation (6) for characterizing the heterogeneity in the individual compo- 
nent processes, it is obvious that the degree of fractional integration, d = 1-
Yz . q,  is independent of the p parameter in the beta distribution. Only the 
shape of the distribution for a close to unity, as dictated by q, is important. 
Intuitively, if a sufficient number of the individual information arrival pro- 
cesses have high persistence, albeit oj < 1, the aggregate information arrival 
process will display long-memory characteristics. This suggests that the ag- 
gregation argument behind the long-run dependence in vt is somewhat more 
general than portrayed above. Indeed, Lin (1991) and Granger and Ding (1996) 
show that the so-called Generalized Integrated class of models, discussed by 
Granger (1987, 1988), may arise through the aggregation of a closely related 
component type structure.22 

This construction closely mirrors the spirit, if not the structure, of the arbitrage pricing 
theory of Ross (1976). 
''A closely related method for simulating fractional Gaussian noise has been proposed by 

Mandelbrot and Wallis (1969) and Mandelbrot (1971). 
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111. Estimating Long-Memory in Volatility 

The theoretical framework developed in the previous section builds on the 
idea that the aggregate market volatility represents the manifestation of 
numerous heterogeneous information arrival processes; some with short-run 
volatility dependencies, others possessing more highly persistent volatility 
patterns. As time passes the short-run processes decay significantly, while the 
more highly persistent processes remain influential. Hence, while sudden 
bursts of volatility typically will possess both short-run and long-run compo- 
nents, the short-run decay stands out most clearly over the intradaily frequen- 
cies, whereas the highly persistent processes only will be noticeable over 
longer horizons. However, traditional correlation based measures for the de- 
gree of volatility persistence, obtained from high frequency intradaily data, 
will tend to pick up only the effects of the complex interaction between the 
short-run decay associated with the less persistent processes and the strong 
intradaily periodicity, thus missing the importance of the long-run volatility 
components. 

To illustrate, consider the third row in Table I, which reports the first order 
sample autocorrelation, $'I, for the temporally aggregated absolute five- 
minute returns; i.e., \R;''I for T = 1,2, . . . , 74,8801k. The first order sample 
autocorrelations for the highest intradaily frequencies all indicate very signif- 
icant positive serial correlation in the absolute returns. However, there is a 
sharp dropoff in the value of the sample autocorrelations at  the three-hour 
sampling frequency, i.e., k = 36. In fact, the first order autocorrelations for the 
eight and twelve hours absolute returns, i.e., k = 96 and 144, are both 
negative, suggestive of an anti-persistent volatility process.23 

The latter conclusion is, of course, grossly misleading, being driven by the 
combined effects of the intradaily periodic pattern and the complex multiple 
volatility component structure, thus creating an overall system that conforms 
to the law of motion outlined in equation (13). In order to justify this inter- 
pretation, however, we must develop an alternative estimation approach. In 
particular, while strong intraday periodicity and pronounced volatility clus- 
tering have been extensively documented at the high frequency level, there is 
little direct evidence for the existence of longer-run volatility components that 
induce the type of long-memory behavior in the high frequency volatility 
process implied by our information aggregation rendition of the mixture-of- 
distributions hypothesis. 

Specifically, from the model detailed in the previous section, the absolute 
returns should exhibit the identical long-run dependence for all sampling 
frequencies, say I(d), where 0 < d < Y2. Representing the process for the 
absolute returns as (1- L ) ~ I R ~ ~ ' ~ = rltk', where is a stationary and ergodic 

23 Miiller et al. (1997)attribute this negative correlation for the half-day lag to a heterogeneous 
market with different groups of traders participating during their regular business hours. 
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Table I 


Persistence Measures for Temporally Aggregated Absolute Intraday 

Returns 


The percentage returns are based on interpolated five-minute logarithmic average bid-ask quotes 
for the Deutschemark-U.S. Dollar spot exchange rate from October 1,1992 through September 29, 
1993. Quotes from Friday 21:00 Greenwich Mean Time (GMT) through Sunday 21:OO GMT have 
been excluded, resulting in a total of 74,880 five-minute return observations. The length of the 
different intraday sampling intervals equal 5-k minutes. Each absolute return series consists of a 
total of 74,88O/k nonoverlapping observations; i.e., lR:k'l - IR,., + R,.,_, + . . . R,.,_, where+ , I  
r = 1, 2, . . . ,T l k  and T = 74,880. The b'" column gives the first order autocorrelations for Rik'I. 
The Log-Periodogram estimates ford from equation (18) are denoted by $gA.The truncation and 
trimming parameters for k = 2, 3, . . . , 144 are determined by m = [(T/k)liZ1 and t = [mli41, 
respectively, where [ . I denotes the integer value. In order to avoid any confounding effects from 
frequencies corresponding to less than 1day, the estimate for d g ,  is based on m = 255 and e = 

3. The dg; column Bves the average periodogram estimates for d defined in equation (21). The 
truncation parameters are determined by m = [(Tlk)'i21 fork = 2,3, . . . , 144, while is based 
on m = 255. The scalar q is fixed at  Y4 across all sampling frequencies. 

process with a bounded spectrum, f+(o), for all frequencies, w, the spectrum 
for I R ; ~ ) ~ may therefore be written as24 

Since lim,,,wpl . sin(Y2 . w) = Y2, it follows that for the frequencies close to 
zero, i.e., o - 0, 

24 Formal conditions for the equivalence between this spectral definition of long-memory and 
the hyperbolic decay rate in the autocorrelation function are discussed in Beran (1994) and 
Robinson (1994b); see also Granger and Ding (1996). 
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Hence, the spectrum should be approximately log-linear for the long-run 
frequencies. Indeed, when viewed on the double logarithmic scale in Figure 1, 
the spectrum for the five-minute absolute returns, i.e., k = 1, is very close to a 
straight line over the interdaily frequencies, 0 < w < 2 . ~1288- 0.0218. 

The Geweke and Porter-Hudak (1983) log-periodogram estimate for the 
fractional order of integration is based directly on this relationship. These 
estimates for the dependence in IRtk)I, obtained across all of the intradaily 
frequencies, are reported in the column labeled dgA in Table I. Formally, 

where O,,,,, = (m - 0 - I  . Cjm,p+lojSk,and IIRI,k(~j,k)denotes the sample 
periodogram for I R ~ ' a t  the j th Fourier frequency, i.e., wj,+ = 2 . a.j . klT. 
Although this estimator for d has been fairly widely used in the literature, 
consistency for 0 < d < Yz has only recently been established by Robinson 
(1995) under regularity conditions that include the truncation and trimming 
parameters both tending to infinity, albeit at  a slower rate than the sample 
size; i.e., m +m, 4+a,elm +0, and m .klT +0. However, the regularity 
conditions also require that lRLk'I be normally distributed, which in turn im- 
plies that the estimator itself, dgA, is asymptotically normal with a variance of 
mpl . (21241, independent of the sample size, Tlk. 

For the results reported in Table I, we took m = and t [m1'*1,[ ( ~ l k ) ~ ' ~ ]  = 

respectively, where [ . I denotes the integer value. However, in order to avoid 
any confounding effects from frequencies corresponding to less than one day, 
the estimate for d& is based on m = 255 and e = 3. Note that, in contrast to 
the sample autocorrelations reported in the 6"' column, the $$A estimates for 
the degree of long-run volatility dependence are remarkably stable across the 
different intradaily return intervals. In fact, when judged by the asymptotic 
normal distributions, all of the estimates are within less than one asymptotic 

--standard error of d = 0 . 3 5 9 . ~ ~  GHTo illustrate, consider the estimate for d (1) 

0.321, corresponding to the average slope of the spectrum for the five-minute 
absolute returns in Figure 1over the frequencies 0 < o 5 255 . 2 . ~174,888= 

25 This value of d corresponds to the estimated hyperbolic decay rate in the low-pass filtered 
five-minute absolute returns described further in Section IV below. 
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0 .0214 .~~The theoretical standard error for this estimate equals 
.rr. (24 .255)-'12 - 0.040. As such, the estimates for k = 1,2, . . . , 144 confirm 
the proposition that the degree of fractional integration in the absolute returns 
is invariant with respect to the sampling frequency.27 

Unfortunately, the assumption of normality underlying the formal statisti- 
cal justification for the dgk estimates is clearly violated in the present context. 
For instance, the sample skewness and kurtosis for the absolute five-minute 
returns equal 0.367 and 21.5, respectively. The last column in Table I therefore 
reports the results from a less restrictive semiparametric estimation procedure 
for determining d ,  based on the ratio of the periodogram for two frequencies 
close to zero.28 To motivate this estimator, let 

denote the average periodogram for the frequencies j = 1, 2, . . . , m. Then, 
following Robinson (1994a), for 0 < d < Yz and m +m, but m .klT +0, 

where 0 < q < 1. Thus, upon rearranging the terms in equation (20), the 
following estimator for d becomes apparent, 

Consistency of this frequency-domain estimator for d has been established by 
Robinson (1994a) under much weaker regularity conditions than those avail- 
able for $$A. Furthermore, given the assumption of normality underlying the 
existing consistency proof for the log-periodogram estimator, d") , Lobato and 
Robinson (1996) have recently shown that the alternative G q h )d,, estimator 
is asymptotically normal for 0 < d < Y4, but nonnormally distributed for Y4 5 

d < 9'2. 
The estimates reported in the last column of Table I are based on a trunca- 

tion parameter of m = [ ( ~ l k ) " ~ ]  = 2, 3, . . . ,144, whereas m = 255 fork =fork 
1in order to avoid any confounding effects from the intradaily dependencies in 
the estimation of $2;. The value for the scalar q was fixed at  0.25 across all the 

26 Including all of the frequencies up to j = [74,8801/21= 273, the estimate for dgA drops to a 
value of only 0.242, highlighting the importance of explicitly excluding the intradaily effects in the 
estimation. 

27 Similar estimates ford based on 10-minute absolute exchange rate returns, corresponding to 
k = 2, have been reported independently by Henry and Payne (1996). These results are also 
consistent with the notion of an intrinsic time scale in the foreign exchange market as discussed 
by Miiller et al. (1993). 

The same log-periodogram and average periodogram estimators ford implemented here have 
previously been employed by Chambers (1995) and Delgado and Robinson (1994) in the analysis 
of various U.K. macroeconomic time series and monthly Spanish inflation rates, respectively. 



994 The Journal o f  Finance 

sampling frequencies. In line with the simulation evidence reported in Lobato 
and Robinson (1996), some informal sensitivity analysis revealed the results to 
be fairly robust with respect to this choice. Turning to the actual estimates, the 
similarities across the different values of k are even more striking than for the 
log-periodogram estimates. The average value of dg equals 0.321, while 
ranging from a low of 0.270 for k = 72 to a high of only 0.385 for k = 1.29 

Consistent with the notion of a heterogeneous component structure and the 
invariance under temporal aggregation, these estimates for d,  based on a 
single year of intradaily returns, correspond very closely to the estimates 
reported in the extant literature with longer time-spans of daily data. For 
instance, the same log-periodogram regression and average periodogram esti- 
mates for d based on the 3,649 daily DM-$ absolute returns from March 14, 
1979 through September 29,1993, equal 0.344 and 0.301, respectively.30 Thus, 
the relatively simple semiparametric frequency-domain estimators in equa- 
tions (18) and (21) are both capable of uncovering the inherent long-run 
volatility dependencies in the time series of high-frequency intradaily returns, 
without having to impose any specific structure on the short-run behavior of 
the system in order to accommodate the complex intradaily dynamics and 
repetitive periodic patterns that corrupt conventional correlation based mea- 
sures. 

To further appreciate the notion of long-memory volatility dynamics, con- 
sider the properties of the (1- L ) ~filter designed to annihilate the long-run 
dependence in the absolute returns. Expressing the fractional differencing 
operator in terms of its binomial expansion, the gain of the filter may be 
written as 

where 0 5 o 5 T, and aj = rCj - d ) . rCj + I)-'. T(-d) for j = 0, 1,.. . 
Intuitively, the gain at  frequency o represents the magnitude by which the 
filter multiplies the component of the time series with a repetitive cycle of 
2 . ~ / operiods. The enhanced flexibility provided by allowing for fractional 
orders of integration is evident from Figure 3, which plots the gains of (1- L ) ~  
for d = 0,0.25,0.359,0.5, and 1.Although the fractional differencing operators 
with d > 0 completely eliminate the zero frequency component, the filters 

29 The estimate for 22; corrupted by the intradaily frequencies, j = 256, 257, . . . , 273, equals 
0.172. 

30 Both estimates are based on m = 168 corresponding to a period of 3,6481168 = 21.7 trading 
days, or approximately one month, along with e = 4 and q = 0.25. 
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F r e q u e n c y  

Figure 3. The figure graphs the filter gains for the fractional differencing operators, 
(1 - Lid, corresponding to d = 0, 0.25, 0.359, 0.5, and 1. 

differ greatly in terms of their gains over the finite frequencies, 0 < o I 
The filter gain of [2 - 2 c~s(o) ] l '~for the first difference operator, (1 - L), 
associated with the Integrated GARCH, or IGARCH, class of models for 4, 
implies a much greater down-weighting of the long-run dependencies than the 
fractional differencing filter with d = 0.359. 

The justification of filtering the five-minute DM-$ absolute returns by (1-
~ 1 0 . 3 5 9is also evident from the plot of the estimated spectrum for (1-L)0.3591~tI 
given in Figure 4.32The flat spectrum for 0 < o < 2 d288 = 0.0218 reveals 
that the fractional differencing operator is, indeed, successful in eliminating 
the longer-run dependencies. At the same time, the pronounced peaks associ-
ated with the daily periodicity remain very similar across Figures 1 and 4. 
These results are further underscored by the time-domain autocorrelogram for 
(1- L)0.3591RtIdepicted in Figure 5. Although more noisy, the autocorrelations 
exhibit the same repetitive daily cycles as the autocorrelations for the raw 
absolute returns in Figure 2.33However, in contrast to the autocorrelogram for 

31 Since the autocorrelations of a long-memory process with d > 0 is not summable, all of the 
( 1  - LId filters necessarily eliminate the zero frequency component in order to achieve a bounded 
spectrum for the fractionally differenced series. 

32 The binomial expansion for ( 1  - L)0.359was truncated a t  a lag length of 1440, corresponding 
to one week. Also, following Baillie, Bollerslev, and Mikkelsen (1996)all of the presample values 
for IR,I were fixed a t  their unconditional sample analogues. 

33 Note that the scales for the autocorrelograms differ across Figures 2 and 5 .  In particular, the 
first order sample autocorrelation of -0.160 for ( 1  - L)0.359lRtl does not fit on the scale in Figure 
5 .  
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Frequency 

Figure 4. The figure graphs the spectrum for the fractionally differenced five-minute 
absolute returns on an open position in the Deutschemark-U.S. Dollar spot exchange 
rate market from October 1,1992through September 29,1993; i.e., (1-L)0.S59lRtl where 
t = 1, 2, . . . ,74,880. The spectrum is estimated as the smoothed sample periodogram using a 
triangular kernel with bandwidth of ten. 

the raw absolute returns, which display an overall slow hyperbolic rate of 
decay, the daily periodic patterns in the autocorrelogram for the fractionally 
differenced five-minute absolute returns are centered on zero. The long-run 
dependence in the series has been eliminated. 

N.Low-Pass Filtering and Long-Run Volatility Dynamics 

The frequency domain based estimators outlined in the previous section 
allow for the determination of the degree of long-run volatility dependence 
across the different sampling frequencies by explicitly focusing on the shape of 
the spectrum around the origin. Alternatively, a nonstructural time-domain 
estimation procedure could be based on the eventual hyperbolic decay of the 
autocorrelation function implied by the presence of long-memory. However, 
the implementation of this idea is obscured by the strong intradaily periodic- 
ity, as exemplified by the sample autocorrelogram for the five-minute absolute 
returns depicted in Figure 2. Various standardization procedures have previ- 
ously been proposed for modeling the intradaily patterns in the volatility of 
high frequency foreign exchange rates, including the time-deformation ap- 
proach advocated by Dacorogna et al. (1993) and Ghysels and Jasiak (19951, 
and the flexible Fourier functional form utilized by Andersen and Bollerslev 
(1997a, 1997b). These procedures are directly applicable in a forecasting con- 
text. In contrast, the low-pass filtering technique developed below is based on 
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Figure 5. The figure graphs the sample autocorrelogramfor the fractionally differenced 
five-minute absolute returns on an open position in the Deutschemark-U.S. Dollar spot 
exchange rate market from October 1,1992through September29,1993; i.e., (1-L)0.369wtl 3 Iln(Pt)- ln(P,-,)I where t = 1, 2, . . . ,74,880. 

a two-sided weighted average of both past and future absolute returns. By 
explicitly annihilating the dependencies with a periodicity of less than one day, 
the in-sample low-pass filtered absolute returns are designed to be void of any 
short-run intradaily dynamics, and as such provide a framework for the 
ex-post analysis of the long-run volatility determinants based on conventional 
time-domain methods. 

Restricting the attention to daily and longer run dynamics, the ideal low-
pass filter would have a gain, or a frequency response function, of zero for all 
of the intradaily frequencies, and a gain of unity for the interdaily frequencies; 
i.e., P(w) = 1for 0 5 o < w, and P(w) = 0 for w~ Iw 5 T, where w, denotes 
the daily frequency. By standard filter theory the weights in the corresponding 
infinite two-sided time-domain filter, b,(L) = ~~",-,b,j ~ j ,is readily found by 
the inverse Fourier transform; i.e., b,$ = S," P(w) . exp(i . w .j)dw = sinu .wD)/ 

..>forj # 0 and b,,, = J,"P(w)dw = w d ~ .Of course, in practice, with a finite 
number of data points, this infinite filter is not applicable. However, the 
weights in the finite dimensional two-sided approximate filter, 

that achieves the minimum squared approximation error, subject to the con-
straint that the filter weights sum to unity, is given by bp,j = b,,j - (b,,, + 
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Figure 6. The figure graphs the filter weights for the approximate two-sided low-pass 
filter;i.e., bpj = bmi - (b,,, + 2 .C$"=,bmi - 1)/(2 . p  + I ) ,  wherep = 1440, w, = 0.021, b,,, = 
wdm, and bmJ= sin(j . w,)/(j . .rr) forj = -1440, . . . , -1,0, 1,2, . . . ,1440. 

2 .  CX,, b,, - 1)/(2- p  + 1)for j  = -p, -p + 1 , .  . . ,p; see, e.g., Baxter and 
King (1995).~,Since the weights are symmetric, the gain of this approximate 
low-pass filter may be conveniently written as,35 

P 

Ib,[exp(i .o)]l = bp,o+ 2 2 bp,j cos(j .o). (24) 
.i=1 

The higher the value ofp, the more accurate this gain approximates the ideal 
gain of P(w). Of course, in practice a tradeoff is necessarily called for in terms 
of the shape of the gain given by equation (24) and the number of observations 
that have to be sacrificed a t  the beginning and end of the sample in the 
implementation of b,(L). 

For the five-minute returns analyzed here, we took o, = 0.021, correspond-
ing to roughly 299 periods or close to 25 hours, along with p = 1440, or one 
week. The corresponding filter weights, p-,,,,, P-1439, . . . , are given in 
Figure 6. The accuracy afforded by this choice ofp is illustrated in Figure 7, 

34 Formally, the weights minimize the squared approximation error, $," [bp(exp(i.o)) -
/3(w)lzdw.The constraint that the weights sum to unity ensures that the long-run zero frequency 
behavior of the series is unaltered by the filtering. 

35 The symmetry of the filter also guarantees that the phase is equal to zero across all 
frequencies; i.e., +(w) = tan-'{Im[b,(exp(i . w))]/Re[b,(exp(i .w))]} = 0. Intuitively, ~$(w)/wrepre-
sents the amount by which the filter shifts the series back in time a t  frequency w. 
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Figure 7. The figure graphs the ideal and the approximate low-pass filter gains for 
w, = 0.021 andp = 1440.The gain for the approximate two-sided filter, b,,,,[exp(i . w ) ] ,  is given 
by equation (24) in the text. 

which graphs the gain of the ideal low-pass filter along with this two-sided 
approximation. The overall coherence between the gain of the two filters is 
generally very good. Only for the frequencies close to w, is there some evidence 
that the frequencies greater than w, do not receive a zero weight and that the 
frequency gains for w < w, are different from unity. Such "leakage" and 
"compression" is inevitable with a finite value of p. 

The effectiveness of this approximate low-pass filter in eliminating the 
short-run intradaily volatility components is clearly seen from Figure 8. The 
estimated spectrum for the filtered five-minute absolute returns, b14,,(L)IR,I, 
where t = 1441, 1442, . . . , 73440, has virtually no-mass at  the frequencies 
higher than u ~ Of course, the log-linear relation for the interdaily frequen- ~. ~ 
cies, implied by the presence of long-memory, remains intact. 

This long-run dependence is also evident in the autocorrelation function for 
the low-pass filtered absolute returns. In contrast to the overall decay of the 
autocorrelogram for the raw absolute returns in Figure 2, which is masked by 
the strong recurring daily pattern, the autocorrelation function for b14,,(L)IR,I, 

36 Due to the loss of one week of observations at  the beginning and the end of the sample, the 
filtered time series consist of "only" 74,880 - 2 .  1,440 = 72,000 observations. Of course, the 
logarithmic scale in Figure 7 may be slightly misleading as the spectrum is not identically equal 
to zero for w > w,. 
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Figure 8. The figure graphs the spectrum for the low-pass filtered five-minute absolute 
returns on an open position in the Deutschemark-U.S. Dollar spot exchange rate mar- 
ket from October l, 1992 through September 29, 1993; i.e., b,,,,(L)(R,I where t = 1441, 
1442,. . . ,73440, and the coefficients in the filter are defined in the text. The spectrum is 
estimated as the smoothed sample periodogram using a triangular kernel with bandwidth of ten. 

depicted in Figure 9, display a distinct hyperbolic rate of decay.37 The actual 
magnitude of the correlations have also increased substantially. Even out to 
lag 2,880, or ten days, the autocorrelations all remain above 0.2. Matching the 
sample autocorrelations for the low-pass filtered absolute returns with the 
hyperbolic decay implied by the presence of long-memory thus provides an 
alternative time-domain procedure for estimating d. 

In general, since the autocorrelations of a long-memory process are eventu- 
ally all positive, it follows that, for large j,  

where pj denotes the j th order autocorrelation, and c is just a factor of propor- 
tionality. Replacing the autocorrelations by their sample analogues, pj, there- 
fore suggests the following least squares estimator, 

37 A similarly shaped autocorrelogram for twenty-minute absolute DM-$ returns standardized 
by a measure of the degree of market activity, or "theta-time," has been reported by Dacorogna et 
al. (1993). 
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Figure 9. The figure graphs the sample autocorrelogram for the low-pass filtered five- 
minute absolute returns on an open position in the Deutschemark-U.S. Dollar spot 
exchange rate market from October 1,1992 through September 29,1993; i.e., b,,,,(L)(R,I 
where t = 1441,1442, . . . ,73440, and the coefficients in the filter are defined in the text. 
The dotted line gives the curve for the estimated hyperbolic decay rate; i.e., j2 '0.359-1 = j-0.282. 

wherej,,,, = n-I . Cj2;+, lnG), and r +m, but rlT +0. This semi-parametric 
time-domain estimator for the fractional degree of integration, proposed by 
Robinson (1994b), is closely related to the minimum distance estimators re- 
cently analyzed by Tieslau, Schmidt, and Baillie (1996). No formal asymptotic 
distribution theory is yet available for the estimator in equation (26), although 
i t  seems likely that  a,, will be consistent under rather weak regularity 
conditions. 

Applying this estimator to the sample autocorrelations for the low-pass 
filtered absolute returns, f~(b,,,~(L)jR,l, j) forj = 5, 6, . . . , 2880, yields JAc = 

0.359. This estimate is thus fully consistent with the results from the fre- 
quency based procedures reported in the previous section. I t  is furthermore 
evident from the plot in Figure 9, that the implied hyperbolic rate of decay, 
j2 . 0.359-1 = j-0.282 , is in close accordance with the actual shape of the auto- 
correlogram. It  is worth stressing that, due to the strong intradaily volatility 
patterns and the associated recurring negative sample autocorrelations a t  the 
half-day lags, this estimation procedure for determining the fractional order of 
integration simply is not applicable with the raw absolute returns. Only by 
explicitly eliminating the intradaily dependencies do the sample autocorrela- 
tions all become positive and the hyperbolic decay stand out clearly. 

The low-pass filtered returns also set the stage for a more structural inves- 
tigation of the determinants behind the important volatility components. A 
detailed analysis along these lines is beyond the scope of the present article. To 
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simply illustrate the idea consider the announcement effects associated with 
the Employment report, the Bundesbank biweekly meeting, the Durable 
Goods figures, and the report on Business Inventories discussed in Section I 
above. On calculating the average increase in the absolute five-minute DM-$ 
returns in the two hours immediately following these announcements, the four 
effects, with robust standard errors in parentheses, are 0.0091 (0.0052), 0.0133 
(0.0025), 0.0067 (0.0032), and 0.0143 (0.0023), respectively.38 Thus, the in- 
crease in the volatility associated with the Employment report is apparently 
not significant a t  the usual five percent level, while the Durable Goods report 
is only marginally significant. Also, the figures on Business Inventories appear 
to be the most significant of the four "news" events. These estimates should be 
carefully interpreted, however, as the intradaily pattern is prone to obscure 
the fundamental relationships. In fact, on calculating the average two-hour 
increase in the volatility for the low-pass filtered returns, b,,,,(L)IR,I, the four 
effects are 0.0076 (0.0005), 0.0078 (0.0004), 0.0032 (0.0004), and -0.0005 
(0.0005), respectively. The t-statistics for the three former announcements are 
now all overwhelmingly significant, while the release of the new figures for 
Business Inventories do not result in any increase in the volatility once the 
intradaily pattern in the absolute returns are filtered out.39 As such, these 
results clearly demonstrate how the low-pass filtered absolute returns provide 
a valuable framework for the further study of the structural determinants 
behind financial market volatility clustering. 

V. Conclusion 

The temporal dependence in the volatility of speculative returns is of the 
utmost importance for the pricing and hedging of financial contracts. Yet, the 
empirical analysis of low frequency interdaily and high frequency intradaily 
returns have hitherto given rise to very different conclusions regarding the 
degree of volatility persistence for any particular asset. The mixture-of-distri- 
butions hypothesis developed here provides a justification for these conflicting 
empirical findings by interpreting the volatility as resulting from the aggre- 
gation of numerous constituent component processes; some with very short- 
run decay rates and others possessing much longer-run dependencies. When 
analyzing intradaily returns the short-run components will tend to dominate 
the estimates obtained with traditional time series models, whereas for daily 
or longer-run return intervals the estimates will be driven by the more per- 
sistent components. Nonetheless, under suitable conditions the aggregation of 
these multiple components implies, that  the process for the volatility should 
exhibit the identical form of long-memory dependence irrespective of the 

38 In order to be compatible with the results for the low-pass filtered returns, the estimates are 
based on observations t = 1441, 1442, . . . , 73440, only. 

39 These findings are directly in line with the evidence reported in Andersen and Bollerslev 
(1997b), who rely on a flexible Fourier functional form in explicitly modeling the periodicity in the 
intradaily volatility along with the imposition of a declining weight structure for the announce- 
ment effects. 
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sampling intervals. This proposition is confirmed by our empirical analysis, 
which also demonstrates that, by annihilating the intradaily dependencies in 
time series of intradaily returns, it is possible to uncover this inherent long- 
memory dependence in relatively short calendar time-spans of high frequency 
data using simple correlation based procedures. As such the techniques dis- 
cussed here set the stage for the development of improved long-run interdaily 
volatility forecasts based on the large samples of intradaily prices that have 
recently become available for a wide variety of different instruments. Only 
future research will reveal the extent to which these techniques will support 
the development of new and improved empirical pricing relationships. 
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