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Abstract

The ability to tailor compound semiconductors and to integrate them onto

foreign substrates can lead to superior or novel functionalities with a potential

impact on various areas in electronics, optoelectronics, spintronics, biosens-

ing, and photovoltaics. This review provides a brief description of different

approaches to achieve this heterogeneous integration, with an emphasis on

the ion-cut process, also known commercially as the Smart-CutTM process.

This process combines semiconductor wafer bonding and undercutting using

defect engineering by light ion implantation. Bulk-quality heterostructures

frequently unattainable by direct epitaxial growth can be produced, provided

that a list of technical criteria is fulfilled, thus offering an additional degree of

freedom in the design and fabrication of heterogeneous and flexible devices.

Ion cutting is a generic process that can be employed to split and transfer

fine monocrystalline layers from various crystals. Materials and engineering

issues as well as our current understanding of the underlying physics involved

in its application to cleaving thin layers from freestanding GaN, InP, and

GaAs wafers are presented.
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CS: compound
semiconductor

MOSFET: metal-
oxide-semiconductor
field effect transistor

ITRS: International
Technology Roadmap
for Semiconductors

INTRODUCTION

In his recent analysis of the nature of technology, Arthur (1) proposed that all technologies descend

from preexisting ones, so the essence of technological progress is based on assembling new com-

binations of earlier and refined technologies. This concept of combinatorial evolution, as coined

by Arthur, is pertinent to the subject of this review, the heterogeneous integration of compound

semiconductors (CSs) by wafer bonding and thin-layer transfer. The possibility of incorporating

CS-based devices into the traditional Si technologies has sparked a surge of interest motivated

by the novel and improved functionalities potentially achievable by this heterointegration (2–35).

In this landscape, the much higher charge carrier mobility (as compared with that of Si) and the

efficient emission of light by some CSs due to their direct bandgap (as compared with the indi-

rect bandgap of Si) have been the two major driving forces in the development of heterogeneous

devices.

Technological Background

For approximately a half-century, device downscaling was the most important strategy for perfor-

mance enhancement in Si metal-oxide-semiconductor field effect transistors (MOSFETs). How-

ever, keeping with this relentless course of miniaturization turns out to be very challenging for

the future technology nodes. This is clearly evidenced in the 2007 edition of the International

Technology Roadmap for Semiconductors (ITRS), which establishes the technological challenges

in the semiconductor industry. For instance, to meet the performance and power requirements for

highly scaled MOSFETs at and below the 10-nm gate length, quasi-ballistic operation with en-

hanced thermal carrier velocity and injection at the source end appears to be necessary. Ultimately,

the introduction of new device structures such as high-transport Ge or CS channels on Si may be

needed. As shown in Table 1 (36–41), several CSs have a substantially higher electron mobility

compared with Si. This has inspired the development of several non-Si transistors. Starting from

the mid-1960s, GaAs was the first CS to be used in the fabrication of MOSFETs (42–45). Several

Table 1 Basic properties at 300 K of some important undoped compound semiconductorsa: bandgap (Eg), hole mobility

(µh), electron mobility (µe), Young’s modulus (E), and Poisson ratio (σ )

Eg (eV) µh (cm2 Vs−1) µe (cm2 Vs−1) E (GPa) σ

C 5.46–5.6 ≤1800 ≤2200 1050 0.1

Si 1.107 ≤450 ≤1400 130 0.28

Ge 0.661 ≤1900 ≤3900 103 0.26

Si1-xGex 1.12–0.41x + 0.008x2 for x <

0.85; 1.86–1.2x for x > 0.85

450–865x (0 ≤ x < 0.3) 1450–4325x (0 ≤ x < 0.3) 130.2–28.1x 0.28–0.02x

GaP 2.261 120 200 103 1.1

GaAs 1.428 420 8500 85.9 0.455

GaSb 0.70 1400 7700 63.1 0.33

InP 1.35 150 4500 61.1 0.7

InAs 0.356 460 33000 51.4 0.26

InSb 0.18 850 78000 40.9 0.18

GaN 3.42 ≤200 ∼1400 150 0.23

AlN 6.2 14 300 ∼340 ∼0.2

aData compiled from References 36–41. For GaN only, values corresponding to wurtzite structure are shown. For comparison, properties of diamond, Si,

and Ge are also shown.
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HEMT: high-
electron-mobility
transistor

CMOS:
complementary metal-
oxide-semiconductor

CSs such as InP, GaAs, GaN, and their ternary and quaternary alloys (InGaAs, InAlAs, AlGaN,

InGaP, InGaAsN, AlGaAs, and GaAsSb) as well as SiGe alloys have been used in the fabrication of

heterojunction bipolar transistors (46–51). Besides GaAs, GaN (52) and InAs (53) have attracted

a great deal of attention in the fabrication of high-electron-mobility transistors (HEMTs). In a

more recent development, Intel researchers revealed a novel ultrahigh-speed transistor based on

InSb quantum wells on GaAs (54, 55). In spite of the fact that the advantages of CS devices over

their Si counterparts were recognized several decades ago, CSs combined with Si were included

only in the 2003 and later editions of the ITRS. This is due to the increasing necessity of incorpo-

rating non-Si materials into complementary metal-oxide-semiconductor (CMOS) transistors to

boost their performance and to enhance their energy efficiency.

Because of its indirect bandgap, crystalline Si is a poor light emitter. To enhance the emission of

light from Si, investigators have made several efforts to manipulate Si on the nano- and quantum

scales (56–58) and to exploit its nonlinear optical properties (59–61). However, it is unlikely

that these devices will outperform their CS counterparts, which currently provide state-of-the-art

optoelectronic devices for the telecommunication market. Therefore, the marriage of CS photonic

devices and Si integrated circuit technology to achieve an efficient on-chip light emitter remains

a serious alternative to supplying the light from a light source outside the actual chip (analogous

to the supply of electrical energy from a battery). Successful fabrication of lasers, photodetectors,

amplifiers, and modulators on Si was recently demonstrated by integrating CS (mainly InP, GaAs,

GaN, and SiGe) thin films, quantum wells, and dots on Si substrates (7–9, 15–23, 31, 32, 62–64).

In addition to photonic, electronic, and optoelectronic applications, CSs are important for

other application areas such as high-efficiency photovoltaic cells (65–70), biosensing (35, 71–73),

and spintronics (74, 75). Well-controlled integration processes of CS-based structures and devices

may impact these areas as well by providing an additional degree of freedom in the fabrication

and design, enhancing the performance and reducing the fabrication cost.

Challenges

The integration of CSs with logic-chip technology presents several serious challenges. At the

device level, for instance, the realization of reliable CS-based transistors is still facing major

difficulties such as finding a high-quality gate insulator (unlike Si, oxides of CSs are of poor quality,

contain defects, and trap charges), forming low-resistivity contacts, and fabricating transistors that

efficiently conduct holes (p-type transistors). The state-of-the-art developments on these issues

were recently compiled in a complete issue of the MRS Bulletin (11). Obviously, the optimal

integration process must be economically viable for CMOS applications. This can happen only

if CS-based devices are integrated onto large Si wafers, given the fact that it is currently not

possible to produce CS wafers with diameters close to what is possible for Si (i.e., a diameter of

300 mm/12 inches or more in the near future). Over the years, there have been major efforts in

the development of reliable and cost-effective processes for CS/Si integration. In general, one can

distinguish between three different approaches: (a) epitaxy-based, (b) wafer bonding–based, and

(c) hybrid (i.e., involving the use of both epitaxy and wafer bonding) heterointegration processes.

Lattice parameter, thermal expansion coefficient, and crystal structure mismatches remain the most

influential parameters in these processes. The stability of the resulting heterostructure against

high-temperature treatments is also a very critical parameter that should be considered when

subsequent processing steps involve high-temperature treatment. The limitations imposed by

these parameters and their influence on various heterointegration processes are discussed below.

In the next section, we briefly describe the progress in heterogeneous integration by direct epitaxy.

The remaining sections focus on wafer bonding and thin-layer transfer, with an emphasis on the
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fs-GaN: freestanding
GaN

application of the ion-cut process to cleave freestanding GaN (fs-GaN), InP, and GaAs wafers.

We address materials and engineering issues as well as our current understanding of the basic

mechanisms involved in this heterointegration process.

REMARKS ON HETEROINTEGRATION BY EPITAXY

Figure 1 displays the variations, relative to Si(001), of the lattice parameter (a) versus thermal

expansion coefficient (α) of several CSs. We note that most CSs exhibit a strong lattice and thermal

mismatch with Si. For instance, the lattice (thermal) mismatch of GaAs, InP, InSb, and GaN

(wurtzite) with Si is in the order of 3.9% (128.1%), 8.0% (73.1%), 19.5% (106.5%), and 41.3%

(115.0%), respectively. These incompatibilities strongly limit the quality of CS epitaxial layers

grown on Si substrates. Heteroepitaxial layers of these materials on Si suffer from a large density

of dislocations, many antiphase domains, and autodoping effects (76). These defects can affect

both the carrier mobility and the leakage current in the devices. To circumvent these difficulties,

several strategies have been pursued. A two-step growth process using a buffer layer deposited at

a relatively low temperature (≤300◦C) was proven to be efficient in reducing dislocation density

and eliminating antiphase domains in the GaAs/Si system (77, 78). However, this approach is not

as effective for larger mismatch systems such as InSb/Si (79).

Alternatively, growth on a metamorphic composite buffer leads to relatively higher quality CS

layers. The role of this buffer layer is to reduce antiphase domains, to bridge lattice constants, and to

relax strain energy and gliding dislocations. For example, the recent demonstration of In0.7Ga0.3As
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Figure 1

The variations relative to Si(001) of the lattice parameter (a) versus the thermal expansion coefficient (α) of
several compound semiconductors (CSs). w, wurtzite; zb, zinc blend; h, hexagonal. The values are compiled
from References 36–41.
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VLS:
vapor-liquid-solid

quantum well transistors on Si was achieved using an InxAl1−xAs graded buffer deposited on a GaAs

buffer layer with a total thickness of ∼1.3 µm (12). Similarly, InSb quantum well–based high-speed

transistors were fabricated using a 3-µm-thick AlxIn1−xSb layer grown on a 200-nm AlyIn1−ySb

layer deposited on a GaAs substrate (54, 55). However, despite this progress in improving the

quality of CS-on-Si films, the obtained heterostructures following the aforementioned processes

still contain a relatively high density of defects at the interface with the Si substrate. The use

of microchannel lateral epitaxy (80, 81) can produce higher-quality layers (82) but requires an

additional well-controlled patterning of the substrate. Another promising approach is the use of

a Ge layer on Si as a template for the growth of a GaAs buffer and device layers (83, 84). The

lattice mismatch between Ge and GaAs is only ∼0.28%, which warrants high-quality crystalline

GaAs layers. Nevertheless, the obtained heterostructure contains a defective interface generated to

relieve the misfit strain due to the ∼4% mismatch between the Si and Ge lattices, unless bonding-

based approaches are employed to fabricate the Ge/Si template wafers (13, 14). The formation

of a thin Ge layer on Si by Ge condensation is also a possible option (85). Obviously, the use of

high-quality Ge/Si templates can allow for the growth of high-quality GaAs layers but is not a

solution for most other CSs because of their lattice mismatch with Ge.

Another epitaxial variety for the heterogeneous integration is the growth of self-assembled

CS nanowires on Si. Among all synthesis methods, the vapor-liquid-solid (VLS) process is the

most successful in generating high densities of monocrystalline nanowires (86). In this process,

the growth of nanowires is accomplished via a liquid-metal cluster that acts catalytically as the en-

ergetically favored site for vapor-phase reactant absorption and, when saturated, as the nucleation

site for crystallization and one-dimensional growth. In the early 1990s, Hiruma and coworkers

(87, 88) were the first to demonstrate the growth of GaAs and InAs nanowires via the VLS process,

using Au as a catalyst. Recently, several groups reported the growth of defect-free monocrystalline

CS nanowires on Si (33, 88–91). Although self-assembled nanowires permit the circumvention

of lattice and thermal mismatch issues faced in engineered heteroepitaxial layers, it is still pre-

mature to predict whether their integration can be successfully achieved at the device level due

to numerous difficulties involving control over the size, position, distribution, and orientation of

the growing nanowires in addition to the same aforementioned problems faced in CS thin-film

device–related processing.

INTEGRATION BY WAFER BONDING

General Remarks

The combination of dissimilar semiconductor materials within the same platform without the need

for direct epitaxy can be realized by using wafer bonding and layer transfer technologies. In a first

step, the donor and host wafers are tightly joined to form a single entity (92–94). In general, this

can be accomplished by following one of the different bonding processes indicated in Figure 2.

The bonding process is usually chosen depending on the nature of the initial substrates and their

tolerance to temperature as well as on the final application. In principle, a variety of materials can

be bonded independently of their structure (monocrystalline, polycrystalline, amorphous), their

crystallographic orientation, and their lattice parameter. Due to limited space, we do not address

the history and fundamental issues of bonding processes but direct the reader to relevant books

and review articles (92–99).

In general, the bonding of CSs can be accomplished through one of two generic bonding

processes. The first one is to directly bond the wafers without using an intermediate layer. Using

a microcleanroom setup, Lehmann et al. (100) obtained bubble-free and highly stable direct
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Bonding with an
intermediate layer

Bonding without an
intermediate layer

Wafer bonding
processes

Metal
bonding

Adhesive
bonding

Molecular
bonding

Glass frit
bonding

Solder
bonding

Eutectic
bonding

Anodic
bonding

Direct
bonding

Figure 2

Wafer bonding processes currently used in semiconductor technology. The dashed line denotes that anodic
bonding can also be achieved using an intermediate layer.

bonding of InP and GaAs wafers to bare Si. Due to direct thermal contact between the wafers,

this direct bonding provides good thermal conductivities. However, the formation of interface

states can be harmful and may significantly influence the bending of the energy bands (101).

Surface conditioning and wafer bonding in ultrahigh vacuum (UHV) environment can alleviate

this problem and produce nearly structurally and chemically abrupt interfaces, as demonstrated

for GaAs/Si (see Figure 3a and Reference 102), SiC/Si (103), and GaN/Si (104). An additional

and serious complication in the direct bonding of dissimilar materials results from the significant

difference in the thermal expansion coefficients (Figure 1). Such thermal mismatch generates

stress during annealing at temperatures usually higher than 600◦C, which is required to strengthen

the bonded interface. Pasquariello et al. (104) presented a detailed study of the evolution of the

structural properties of InP directly bonded to Si as a function of increasing temperatures. They

found that annealing below 300◦C does not affect the bonded pair, whereas annealing above this

temperature generates volume dislocations in InP. However, the density of dislocations in this

case remains much lower than in direct heteroepitaxy. The increase in temperature (>400◦C)

produces voids at the interface, which are attributed to the nucleation of In droplets. In general,

the interfacial voids, due to the material decomposition and/or to the generated gas by-product,

can be eliminated by patterning in-plane channels at the interface (104) or vertical channels in

the host substrate (105). The evident remedy to this thermally induced CS degradation would be

to restrict the direct bonding and the interface strengthening to low temperatures. In this regard,

Tong et al. (106) presented a promising method by which strong InP/Si direct and stable bonding

is obtained at relatively low temperature. Their method is based on the use of B2H6 plasma to

condition the surfaces, followed by an HF dip prior to contacting and bonding the wafers at room

temperature. The interface energy reached the InP fracture surface energy of 630 mJ m−2 after
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200 nm

100 nm

InP

GaAs

GaAs

Si

SiO2

Si

Si

c

b

a

5 nm

SOG

Figure 3

(a) High-resolution cross-sectional transmission electron microscopy (TEM) image of a Si/GaAs interface
directly bonded in ultrahigh vacuum and annealed at 850◦C for 30 min. Adapted from Reference 102.
(b) Cross-sectional TEM image of GaAs bonded to Si by use of a spin-on-glass (SOG) layer at 160◦C. Image
courtesy of M. Alexe. (c) Cross-sectional TEM image of a high-temperature-compatible InP layer
transferred onto Si by use of a plasma-enhanced chemical vapor deposition (PECVD) SiO2 interlayer.

SOG: spin-on-glass

PECVD:
plasma-enhanced
chemical vapor
deposition

annealing at 200◦C. However, the formation of an amorphous B-rich interfacial layer may be

problematic for specific applications of this process.

The second generic process is bonding via an intermediate layer, which can be dielectric [e.g.,

native oxide, SiO2, spin-on-glass (SOG), or Si3N4], metal, or polymer. This type of bonding

significantly reduces the thermal budget as well as the interfacial irregularities (e.g., roughness

or waviness) (107–110). For instance, the use of SOG as the bonding layer leads to good-quality

bonding of GaAs wafers to Si wafers upon annealing at a temperature as low as 200◦C (Figure 3b).

However, in some cases (e.g., those involving SOG or polymers), the use of an intermediate elec-

trically insulating layer comes with a restriction in the postbonding thermal processing and in the

power-handling capabilities of the bonded pair because of the typically low thermal conductivity

of such intermediate layers. A high-temperature-compatible heterostructure can be fabricated by

the use of a SiO2 layer deposited on the CS wafer by, e.g., plasma-enhanced chemical vapor depo-

sition (PECVD) (Figure 3c). Here bonding to a Si wafer becomes similar to the well-controlled
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Host substrate Heterostructure

Transferred layer 

Host substrate

Etch-stop
layer

Epilayer

a  Wafer bonding b  Etching c  Layer transfer

Figure 4

Schematic illustration of thin-layer transfer by combining epitaxy, wafer bonding, and mechanical thinning. For better control of the
thin-layer thickness, a lattice-matched etch-stop layer is deposited onto the seed substrate. The transferable layer is then grown
epitaxially on this etch-stop layer.

hydrophilic bonding of Si (93, 110). Bonding of dissimilar wafers can also be performed via a

metal as the interfacial layer (111). Bonding in this case is based on the isothermal solidification

process, in which the surfaces to be bonded are capped with high- and low-melting-point metals.

Bonding takes place by annealing at a temperature between the two melting points, which leads to

the formation of an intermetallic alloy. Recently, Bickford et al. (112) demonstrated the bonding

of GaAs to Si by using In as the low-melting-point metal and Pd as the high-melting-point metal.

Layer Transfer by Mechanical or Chemomechanical Thinning

The second step in wafer bonding–based heterointegration consists of releasing a thin layer from

the donor wafer after the bonding process. A direct approach is to mechanically grind, lap, and

polish one of the wafers until only a desired film thickness remains. Using this approach, Huang

et al. (113) fabricated GaAs-on-insulator substrates. One of the limitations of this process is the

deterioration of the layer uniformity for a thickness below 10 µm. This can possibly be dealt

with by an additional thinning step using a plasma-based procedure, which produces a thickness

uniformity of approximately 10 nm in the case of Si-on-insulator (SOI) wafers (93). A more

reliable alternative is the introduction of an etch-stop layer before bonding (Figure 4). Using

this procedure, Bowers and coworkers (23, 114) successfully demonstrated the transfer of a thin

layer of InP (up to 150 mm in diameter) onto a Si wafer. In this process, a p-doped In0.53Ga0.47As

lattice-matched layer grown on InP is introduced as the etch-stop layer. After the epitaxial growth

of a thin layer of InP and bonding to the Si host substrate, the handle InP wafer is selectively etched

in a HCl:H2O (3:1) mixture. Similarly, GaAs and GaSb epitaxial thin layers are transferred onto

a different host substrate by using AlAs (or AlGaAs) (34, 35) and InAsSb (115) as etch-stop layers,

respectively. The obvious drawback in this process is the cost involved in losing the complete

starting CS wafer, which is not affordable for very expensive materials, such as fs-GaN.

Layer Transfer by Mechanical Lateral Cleaving

To save in material costs, preservation of the device wafer or seed substrate to reuse it for the

transfer of several thin layers has been driving the development of various alternative processes.

Figure 5 displays a schematic illustration of a thin-layer-transfer process in which an epitaxial layer
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Host substrate Host substrate Heterostructure

Transferred layer

a  Wafer bonding b  Mechanical cleavage c  Layer transfer

Epilayer

Force
Mechanically

fragile layer

Figure 5

Schematic illustration of thin-layer transfer by mechanical splitting. The process consists of the introduction of a mechanically fragile
layer, on top of which the layer to be transferred is grown epitaxially. After bonding, layer transfer is achieved by crack propagation
through the mechanically fragile layer following the application of a mechanical force at the edges of the bonded wafers.

is mechanically cleaved from the donor wafer after bonding to the host wafer. McClelland et al.

(81) pioneered CS layer transfer using this mechanical splitting. In their process, named CLEFT

(cleavage of lateral epitaxial films for transfer), a few-micrometer-thick GaAs layer grown by

lateral epitaxy on a GaAs substrate partly covered with a SiO2 layer is bonded with epoxy to a

250-µm-thick glass substrate. The back side of the GaAs substrate is in turn bonded with wax

to a 5-mm-thick glass substrate, which acts as cleaving support. The epitaxial GaAs thin film is

cleaved by exerting a mechanical force via use of a metal wedge inserted between the two glass

substrates. The seed GaAs substrate can be reused after removing it from the glass substrate. The

transfer of GaAs films with areas of several square centimeters was demonstrated through use

of this approach. Better control of the cleavage and transfer of larger areas can be obtained by

introducing, prior to bonding, a mechanically fragile layer between the handle wafer and the layer

to be transferred (Figure 5). The established process developed by researchers at Canon (116)

in the mid-1990s for the transfer of a thin, single-crystalline Si layer is the use of an embedded

porous Si layer as the mechanically weak splitting region. In this process, commercially known as

ELTRAN (epitaxial layer transfer), two porous layers with different pore diameters are formed by

anodization of the seed wafer followed by the growth of a thin epitaxial Si layer. After dry oxidation

and bonding, the application of a mechanical force (e.g., a water jet) at the edge of the bonded

pair leads to splitting parallel to the surface close to the interface between the two porous layers.

SOI substrates with diameters up to 300 mm were fabricated using this process (117). However,

in spite of the demonstration of anodization-induced pore formation in many CS materials (118)

and the growth of good-quality epitaxial layers on porous CSs (119), studies of the feasibility of

this process of thin-layer transfer for CSs are absent in the literature.

Layer Transfer by Selective Chemical Undercutting

In addition to mechanical splitting, thin-layer transfer can also be achieved by selective lateral

chemical etching of a sacrificial layer introduced between the handle substrate and the layer to be

transferred, as illustrated in Figure 6. Konagai et al. (120) first demonstrated this chemical un-

dercutting, termed peeled film technology. On the basis of the excellent selectivity of AlxGa1−xAs

alloys in hydrofluoric acid (with respect to GaAs), these investigators succeeded in splitting
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Handle substrate Handle substrate Handle substrate

a  Wafer bonding b  Selective chemical etching c  Layer lifto�

Epilayer

Sacri�cial
layer

Adhesive
EtchingEtching

Figure 6

Schematic illustration of thin-layer transfer by undercutting using selective chemical etching. The process consists of the introduction
of a lattice-matched sacrificial layer, on the top of which the layer to be transferred is grown epitaxially. After direct bonding (or gluing
by using an adhesive), the obtained heterostructure is immersed in a chemical solution that selectively etches the sacrificial layer.
Acceleration of the etching process as well as an increase in the area of the transferred layer can be achieved by drilling microscopic
holes in the handle substrate.

30-µm-thick GaAs solar cells. Yablonovitch et al. (121) later optimized and improved this pro-

cedure. In their process (121), the GaAs-based layer to be transferred, which may also contain

processed devices, was epitaxially grown on a thin AlAs etch-stop layer, which in turn was epitax-

ially grown on the GaAs handle wafer. The whole structure was attached to a wax-type transfer

substrate, and then the AlAs layer was etched away laterally in hydrofluoric acid. The released

thin layer could be attached to a handle wafer (e.g., Si) by bonding and removal of the transfer

substrate. This epitaxial liftoff (ELO), however, is limited to the transfer of layers with a lateral

dimension of a few centimeters due to the relatively slow lateral etch rate (∼100 µm h−1).

THE ION-CUT PROCESS

Basic Aspects

An elegant way to cleave a semiconductor thin layer is to implant, under well-controlled conditions,

H and/or He energetic ions to create a mechanically weak zone a few hundred nanometers below

the surface of the donor wafer, as illustrated in Figure 7. The implanted wafer is then bonded to

a handle wafer, and the obtained pair is subjected to thermal annealing at a temperature in the

200–500◦C range. During annealing, the interaction of the implanted species with the radiation

damage acts as an atomic scalpel, producing extended internal surfaces in terms of pressurized

microcracks parallel to the bonding interface. This leads to the splitting and transfer of a thin layer

with a thickness roughly equivalent to the implantation depth. However, the layer transfer takes

place successfully only if the donor/handle wafer bonding interface remains stable during thermal

annealing. In contrast to the processes described in the previous sections, layer transfer can be

achieved by directly splitting the donor wafer without the need of an additional epitaxy step. This

ion-cut process-–commercially known as Smart-CutTM—was developed in the mid-1990s (122)

and is currently used for the industrial production of SOI and Ge-on-insulator (GOI) wafers with

diameters up to 300 mm (122–124). Thin layers from inorganic crystals other than semiconductors

can also be cleaved using this process (125–127). Another variety of the ion-cut process—known

as ion slicing—exploits the implantation-induced change in the chemical properties to achieve
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Host substrate

Donor wafer

Recyclable wafer

SplittingSplittingSplitting

Host substrate Heterostructure

a  Wafer bonding b  Annealing c  Ion-cut

Implanted
zone

Figure 7

Schematic illustration of thin-layer transfer by the ion-cut process. A mechanically weak zone is produced below the surface of the
donor wafer by using H and/or He ion implantation. After bonding and annealing, subsurface microcracking takes place, leading to the
lateral cleavage of the whole substrate around the implantation depth parallel to the surface.

thin-layer release through the selective chemical etching of the damage zone, usually without the

need for high-temperature annealing (128–131). Besides the implantation of monoenergetic ion

beams, plasma immersion ion implantation can also be used in the ion-cut process (132). These

successful applications have led to a sharp increase in the experimental and theoretical studies of

H (and He) interactions with implantation-induced defects and their thermal behavior in order

to understand in detail the fundamental mechanisms responsible for layer splitting (133–135). A

few works have also been devoted to the investigation of the basic mechanisms underlying layer

splitting in some CSs (136–142). For typical implantation energies of up to approximately 200 keV,

annealing of the implanted wafers without the presence of a bonded second wafer usually leads

to blistering. However, if the implantation depth is large enough (e.g., for an ion energy of ∼1–4

MeV or higher), the upper layer acts as a stiffener, which leads to splitting without the need for a

handle wafer. This technology is based on a process developed by Reutov & Ibragimov (143) in

1983 in Russia. Silicon Genesis Corporation improved this technology and has been exploiting it

in the fabrication of 17-µm-and-thicker Si foils for solar energy applications (144). It would be

fundamentally and technologically interesting to explore the feasibility of this process for CSs as

well. Here one of the fundamental questions is to establish the critical thickness at which liftoff can

occur for a given material. However, the obvious technological challenge remains the development

of cost-effective high-energy implanters for large substrates.

As mentioned above, for an ion energy of ≤200 keV and in the absence of the handle wafer,

the surface of the implanted donor wafer after an appropriate thermal annealing procedure be-

comes bookmarked with dome-shaped blisters as well as craters left by the exfoliation of some

of these blisters. Panels a–c of Figure 8 show typical blisters and craters observed under ion-cut

conditions. This phenomenon is observable in all crystalline materials containing several atomic

percent H and/or He. Whereas this blistering is detrimental for materials used in nuclear fission

and fusion reactors, the control and the exploitation of this phenomenon are highly desirable in

semiconductor technology. From a thermodynamics viewpoint, the limited solubility of the im-

planted species in most materials provokes their segregation into cavities that grow and coalesce at

high temperatures (145, 146). Thus, the blisters appear due to surface deformation caused by the

gas pressure in the cavities and coalescence of many microscopic cavities. The interesting physics

question is by which atomic processes ion cutting takes place. Yet there is no universal answer that

is valid for all materials of technological interest.
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Figure 8

(a) A 5 µm × 5 µm atomic force microscopy (AFM) image of a He-implanted Si(001) substrate at 8 keV
with a fluence of 1.2 × 1017 cm−2 and annealed at 550◦C. (b) AFM image of a H-implanted GaN substrate
at 50 keV with a fluence of 2.6 × 1017 cm−2 and annealed at 600◦C. The blue line denotes the region from
which the linear scan in panel c is taken. (c) Profile of a crater shown in panel b. Rp denotes the projected
range of the implanted H ions. (d) Cross-sectional TEM image of the sample shown in panel b. The depth
profiles of H and N vacancy (VN) and Ga vacancy (VGa), calculated using the SRIM 2006 program, are
superposed onto the image. In this case, the splitting takes place around the H concentration peak.

H-V: hydrogen
vacancy

Understanding the basic mechanisms of H/He diffusion and aggregation up to the formation

of microcracks and finally layer splitting is vital for better control of the ion-cut technology.

Techniques such as vibrational spectroscopies (147–152), transmission electron microscopy (135,

153), Rutherford backscattering spectrometry in the channeling mode (154–156), X-ray diffraction

(157–159), and positron annihilation spectroscopy (155, 160) greatly improved our understand-

ing of the microscopic mechanisms of the ion-cut process, although mainly for Si. These studies

have demonstrated the critical role of H vacancy (H-V) complexes and damage-generated stress

in the formation of nanoscopic platelets and voids in Si immediately after implantation. Ther-

mal annealing induces an increase in open-volume defects parallel to a rearrangement in H-V

complexes characterized by a collapse of multivacancy complexes and the persistence of (or even

an increase in) highly passivated monovacancies. Despite the absence of conclusive evidence, it

is generally assumed that the formation and trapping of H2 molecules trigger the observed mi-

crostructural transformations. Annealing above a critical temperature leads to a relaxation of the

internal strain by subsurface microcracking, as shown in Figure 8d. These extended internal sur-

faces form roughly around the projected range, but their exact depth varies slightly, depending on

the implanted fluence due to change in the fracture mechanics (154, 161). Chabal and coworkers

(136) presented a detailed study of the thermal evolution of H-defect vibrational modes leading

to splitting and the transfer of thin InP layers. Their measurements were carried out on 80-keV

H+-implanted InP substrates (fluence = 1 × 1017 H+ cm−2) (102) that were annealed at various

temperatures between ∼100 and 400◦C. The authors found that in the as-implanted state, H is

distributed predominantly in isolated point-like configurations, with a smaller concentration of
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CMP:
chemomechanical
polishing

extended defects with uncompensated dangling bonds. During thermal activation, H is detrapped

from point defects and is recaptured at the peak of the distribution by free internal surfaces in

dihydride configurations. The authors speculate that, at higher temperatures and immediately

preceding exfoliation, rearrangement processes lead to the formation of H clusters and molecules

(136). The identification of the thermoevolution of H-defect complexes involved in the ion cutting

of other CSs remains an open challenge.

Ion Cutting of InP and GaAs

The major challenge in the application of the ion-cut process to transfer CS thin layers onto a

foreign substrate remains the elimination of the thermally induced interfacial stress caused by the

difference in the thermal expansion coefficients (Figure 1). Therefore, achieving a mechanically

strong bonding interface at relatively low temperatures is a prerequisite not only to circumvent

thermal stress issues but also to avoid surface blistering at the bonding interface that takes place at

temperatures as low as 250◦C. Additionally, the implantation temperature is particularly critical

in the ion cutting of InP and GaAs. For efficient splitting, some reports have suggested that

implantation should be performed at temperature windows of 160–250◦C for GaAs and 150–

250◦C for InP (162). In contrast, other researchers have demonstrated that implantation in the

−20–20◦C range leads to successful InP cleaving (163). These contradictory reports on the optimal

implantation temperature may be due to differences in other implantation parameters and process

conditions used by the various groups. Comprehensive and systematic studies on the influence of

the implantation conditions on ion-induced CS splitting are still missing.

By using H implantation, Jalaguier et al. (164) and Tong et al. (165) were the first to demonstrate

the transfer of three-inch GaAs and InP thin layers onto oxidized Si substrates. Following these

pioneering works, research groups at SOITEC/LETI, UCLA, UCSD, Caltech, and MPI-Halle

have reported the splitting of InP and GaAs thin layers with a diameter up to four inches by using

H and/or He implantation (68, 164–171). The typical optimal implantation fluences range from

5 × 1016 to 1 × 1017 atom cm−2 for ion energies in the 50–150-keV range. Figures 9 and 10

display electron microscopy images of InP and GaAs thin layers transferred from four-inch wafers

onto Si(001) substrates. As mentioned above, the stress generated by thermal mismatch remains a

serious obstacle to achieving high-quality bonding and splitting of large-diameter wafers. Coating

CS substrates with a thin SOG layer before bonding to thermally oxidized Si(001) handle wafers

leads to a very high surface energy, which helps to alleviate thermal stress–induced debonding (167,

171). However, the advantage of SOG is diminished (if not canceled) by the fact that the fabricated

heterostructures cannot sustain high temperature in subsequent epitaxy and device fabrication

because of outgassing issues associated with the SOG material. Appropriately annealed SiO2

grown by PECVD would be the suitable interlayer for high-temperature processing of InP-on-Si

and GaAs-on-Si substrates. However, due to the relatively lower surface energy in the case of SiO2-

to-Si hydrophilic bonding, thermal stress problems will have greater impact. Here the bonded

wafers can debond and even break upon the thermal annealing necessary to activate splitting. In

some cases, bonding and annealing under a compressive force are efficient in compensating for

interfacial stress (168). In general, the surface of the transferred layers is usually rough (see, e.g.,

Figure 9c). Obviously, any growth on such substrates will lead to poor-quality device structures.

Therefore, it is necessary to remove the residual defective layer. For this reason, the as-split layers

should be subject to a chemomechanical polishing (CMP) process to obtain an epi-ready surface

(Figure 9d).

The fabrication of large-diameter InP-on-Si and GaAs-on-Si heterostructures offers addi-

tional flexibility in the design and realization of bulk-quality heterogeneous devices. HEMTs
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Figure 9

(a) Cross-sectional TEM image of a InP thin layer transferred from a four-inch wafer onto a Si(001)
substrate using a SOG interlayer. Panel a adapted from Reference 168. (b) Cross-sectional TEM image of a
InP thin layer transferred from a four-inch wafer onto a Si(001) substrate using a SiO2 interlayer deposited
by PECVD. (c) AFM image of the surface of the transferred layer. (d) AFM image of the surface of the
transferred layer after a chemomechanical polishing (CMP) process. The corresponding root mean square
(RMS) roughness is indicated on each AFM image.

were recently demonstrated on InP-on-Si and GaAs-on-Si heterostructures obtained by the ion-

cut approach (166). Similarly, Atwater and coworkers (70) demonstrated high-efficiency InGaAs

solar cells on Si realized by InP layer transfer. Another example is the successful integration of

InP/InGaAs/InP p-i-n photodiodes on Si (32). In addition to InP and GaAs, layer transfer of SiGe

alloys onto Si wafers was also demonstrated and exploited in the fabrication of strained SOI wafers

with diameters of up to 300 mm (172).

APPLICATION TO BULK GaN

The ability to transfer several layers from a single donor wafer is of interest not only for the

sake of bulk-quality heterostructures, which are frequently unattainable by direct epitaxy, but

also to save and reduce materials cost. This particularly applies to very expensive substrates such

as cadmium zinc telluride (173) and bulk GaN (fs-GaN) (109). Bulk-type GaN wafers of high

crystalline quality are usually obtained by hydride vapor-phase epitaxy growth of thick GaN

layers on sapphire substrates and subsequent separation from these substrates (174). These low-

defect-density bulk GaN wafers are commercially available with a two-inch diameter [progress was

recently achieved in the preparation of three-inch wafers (175)] and are used in the fabrication of
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Figure 10

(a) Scanning electron microscopy and (b) cross-sectional TEM images of a GaAs thin layer transferred onto a
Si substrate using the ion-cut process. Adapted from Reference 171.

blue laser diodes. Beyond these current applications, the availability of these fs-GaN substrates can

potentially impact the fabrication of other devices such as power devices and ultrahigh-brightness

light-emitting diodes. However, the current cost of fs-GaN wafers remains too high to allow for a

large-scale production of these new devices. Therefore, to compete with alternative technologies

(e.g., SiC), a decrease in bulk GaN cost is needed. Aiming at this goal, researchers of Arrowhead

Research Corporation claimed in 2007 to have achieved the splitting of up to 10 layers from

one-inch bulk GaN wafers by using the ion-cut process. Recently, we explored the possibility of

applying this process to transfer thin GaN layers from the more technologically relevant two-inch

bulk GaN donor wafers onto sapphire wafers (109). Here we describe some of the engineering

aspects as well as our current understanding of the underlying physics of H ion cutting of GaN.

Engineering Issues

The major challenge in applying the ion-cut process to cleave bulk GaN has to do with the material

morphology. As shown in Figure 11, commercially available wafers suffer from surface rough-

ness, long-range waviness, and a significant bow. The ensemble of these surface imperfections

and flatness deviations can limit the bonding quality or even prevent spontaneous bonding and,

consequently, the application of the ion-cut process. To circumvent some of these difficulties, a

SiO2 cap layer can be deposited onto the GaN wafers. In addition to the fact that the SiO2 layer

can be easily polished, leading to smooth surfaces, the SiO2/sapphire interface exhibits a fairly

high bonding energy following annealing below 200◦C (176). Moreover, the bonded interface

shows high thermal stability after annealing up to 1050◦C—the temperature used in the growth of

GaN-based devices (Figure 12). To prevent undesired outgassing from the PECVD oxide layer

during subsequent heat treatments of the bonded wafer pairs, it is important that the GaN wafers
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Figure 11

Morphological properties of commercially available two-inch freestanding GaN (fs-GaN). (a) A 20 µm ×

20 µm AFM image of a N-face GaN surface. Typical RMS roughness ranges from 15 to 50 nm per 20 ×

20 µm2. (b) High-lateral-resolution measurement of the short-range surface waviness. (c) Two-dimensional
map of surface profiles of a fs-GaN wafer.

be annealed at high temperature after SiO2 layer deposition (109, 110). Oxide-deposited wafers

are subsequently mirror polished via a CMP process. The CMP-finished surface RMS roughness

is typically in the order of 0.2 nm per 20 × 20 µm2 (Figure 13a), ensuring the short-range flatness

required for wafer bonding.

Oxide deposition and polishing can alleviate roughness as well as long-range waviness but hardly

affect the bow, which increases further after ion implantation with the ion-cut optimal fluence of

2.6 × 1017 H cm−2 at 50 keV, as indicated in Figure 13b. The origin of this postimplantation bow-

ing of bulk GaN wafers is the volume increase and the resulting stress generated by implantation

damage on the implanted side of the wafer. Unfortunately, the observed postimplantation bow

is too high to allow any contacting of the wafers to be bonded. Indeed, the bonding experiments

on as-implanted wafers show that the gap between the two surfaces is too large to permit even

van der Waals forces to come into play to initiate the bonding process (168). Simple examination
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a
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b

d

Figure 12

Infrared images of a bonded SiO2/sapphire interface (a) immediately after room temperature bonding,
(b) after annealing at 200◦C for 24 h, (c) after annealing at 700◦C for 2 h, and (d) after annealing at 1050◦C
for 2 h.

of Stoney’s modified equation suggests that bow enhancement can be limited for thicker wafers

(109). Under typical ion-cut conditions, the bow enhancement reaches ∼40 µm for 300-µm-thick

fs-GaN. The increase in the thickness of a fs-GaN donor wafer by a factor n could reduce the

bow enhancement by a factor n2. However, the use of thick wafers to overcome the bow issue

may lead to other difficulties in achieving good wafer bonding due to the relatively limited elastic

deformation of thick substrates. Nevertheless, this process is worth testing, at least from a funda-

mental standpoint. Recently, double-sided implantation, under the same experimental conditions,

was found to be effective in reducing the final bow (109). Moreover, a slightly deeper implanta-

tion at the back side can bring the bow to below its initial value in the virgin wafer, as shown in

Figure 13b. On the basis of this approach, bonding of two-inch H-implanted bulk GaN wafers

to a sapphire wafer was accomplished (Figure 14).

The above-described method of wafer bow manipulation by stress adjustment at the back side

of the implanted GaN leads to fairly flat H-implanted two-inch GaN wafers, making possible

bonding to handle wafers. In spite of this achievement, complete transfer of two-inch-thin GaN

layers from a fs-GaN wafer has not yet been demonstrated. One of the major problems in this

regard is the partial or total debonding of GaN/sapphire pairs upon annealing at temperatures

above 300◦C. This observation is attributed to thermally induced interfacial stress, which can be

reduced by performing the initial bonding at relatively high temperatures (177).

Because the main motivation behind the use of ion cutting is to reduce the cost of bulk-

quality GaN layers, the second implantation needed to adjust the bow is an additional step that

increases the cost of the ion-cut process. However, the second (back-side) implantation can, at
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Figure 13

(a) A 20 µm × 20 µm AFM image of a N-face GaN surface after SiO2 deposition by PECVD and after
CMP processes. (b) Bow measurements on a two-inch bulk GaN wafer before implantation (virgin), after H
implantation, and after double-sided implantation (DSI). The back-side implantation was performed with
the same fluence but was approximately 50 nm deeper compared with the first implantation.

least in principle, be used not only to avoid excessive implantation-induced bow but also for the

transfer of a second GaN layer. Indeed, the Ga face is also implanted at the optimal fluence, and

therefore the bonding of both sides of fs-GaN wafers to two sapphire handle wafers can lead to

the simultaneous transfer of two thin GaN layers by ion cutting (Figure 15). If required, the

Ga-face heterostructure can be flipped to obtain a N-face layer, needed for epitaxial growth, by

an additional bonding step and the subsequent release from the initial handle wafer.

Current Understanding of Basic Mechanisms

The need for a very high H ion fluence is one of the most striking differences between GaN

and other CSs (and also Si) in which a fluence of a few 1016 H+ cm−2 is sufficient to induce layer

transfer. Supported by studies of damage buildup in GaN implanted with different ions (such as C,

Si, or Au) (178), several authors have postulated that the high critical fluence has to be attributed

a b

Figure 14

(a) Optical and (b) infrared micrographs of H-implanted ∼300-µm-thick fs-GaN bonded to a two-inch
sapphire wafer. Due to radiation damage, fs-GaN wafers can change in appearance from transparent to
golden brown after H implantation (109).
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a b

e f

c

d

Fs-GaN

Gn layer (N face)

Heterostructure A

GaN layer (Ga face)

Heterostructure B

H

Handle A

Handle B

H

SiO
2

SiO
2

Thermal annealingThermal annealingThermal annealing

Figure 15

Schematic illustration of the double-sided bonding and splitting processes. (a) Deposition and polishing of
an oxide on both sides of the wafer. (b) N-face H-implantation. (c) Ga-face H implantation and wafer bow
reduction. (d) Direct bonding to two handle wafers. (e) Thermal annealing and simultaneous transfer of two
thin films from a fs-GaN wafer. Two different handle wafers can be used, leading to different
heterostructures in a one-step process.

to very efficient dynamic annealing of point defects in GaN (179–182). This explanation stands in

sharp contrast to the blistering behavior of GaN implanted with H at low temperatures. Indeed,

no change in the critical fluence is observed when implantation is carried out at liquid-nitrogen

temperature, at which the dynamic annealing of point defects should be significantly reduced (179).

In contrast, low-temperature implantation increases the required thermal budget for blistering and

splitting, indicating that a larger accumulation of defects makes blistering even harder to trigger

(179). Therefore, it appears that the high critical fluence can hardly be attributed to pronounced

dynamic annihilation of implantation-induced point defects. The extrapolation of data obtained

with other ions to the H case can be fraught with uncertainty. It is more likely that one has to

consider the chemical reactivity of H and the stabilizing effect of dangling-bond passivation in

addressing defect dynamic annealing and damage buildup in H-implanted semiconductors (183).

Alternatively, the intrinsic mechanical properties as well as the nature of H-induced defects may

be critical in determining the fluence of H ions needed to cleave GaN. Another peculiarity of GaN

is the absence of the otherwise common synergistic effect on successive implantations with He

and H ions in both orders, which is efficient in reducing the critical fluence and thermal budget

in other semiconductors (see, e.g., References 170 and 184 and references therein). Intriguingly,

we observed that the implantation of He alone requires the same critical fluence as H. Also, the

critical fluence does not vary when highly p-doped GaN is used instead of undoped GaN. In
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Figure 16

Cross-sectional TEM images of H-implanted GaN at a fluence of 2.6 × 1017 cm−2 at 50 keV (a) immediately after implantation,
(b) after annealing at 450◦C, (c) at 500◦C (the arrows indicate nanoscopic cracks), and (d) at 600◦C for 5 min. H and displacement profiles
as measured by elastic recoil detection and ion channeling are superposed onto the as-implanted image. Adapted from Reference 139.

contrast, for Si the critical fluence decreases drastically for highly p-doped substrates (161). These

observations suggest that the phenomenon of ion-induced layer transfer may be fundamentally

different in GaN as compared with other well-studied semiconductors.

On the basis of a variety of experimental techniques, Figures 16 and 17 depict the nature of

the microstructure produced after implantation of undoped GaN under ion-cut conditions and

its thermal behavior. During the implantation of energetic H ions into GaN, several physical and

chemical processes take place, leading to a variety of damage-related structures, including point

defects in both sublattices, H-defect complexes, point defect clusters, and free H. H ion implanta-

tion induces a broad damage band extending over a 300-nm-thick layer starting at approximately

200 nm below the surface (Figure 16a). No extended defects are observed at the implanted

fluence. Weinstein et al. (185) published a first attempt to experimentally identify H-defect com-

plexes in H-implanted GaN. They found that the infrared absorption spectrum of as-implanted

GaN displays two main vibrational bands centered at 3139.5 and 3023.1 cm−1 (as measured at

liquid-He temperature). These modes were attributed to H trapped in N dangling-bond defects

near a Ga vacancy (VGa). The band at the highest frequency was attributed to a VGa-H4 mode,

whereas the band at the lowest frequency was associated with VGa-Hn complexes, which contained

fewer H atoms (i.e., n ≤ 3). However, the data obtained by Weinstein et al. cannot be extended

directly to the condition of ion-cut process because the fluence implanted in their case is approx-

imately two orders of magnitude lower than the critical fluence of H exfoliation of GaN. Indeed,

the infrared spectrum of H-implanted GaN (Figure 17a) indicates that a large fraction of H is

trapped in higher-frequency modes k > 3140 cm−1 (beyond the VGa-H4 frequency), which can
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A
n
n
u
. 
R

ev
. 
M

at
er

. 
R

es
. 
2
0
1
0
.4

0
:4

6
9
-5

0
0
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 W

IB
6
4
1
7
 -

 M
ax

-P
la

n
ck

-G
es

el
ls

ch
af

t 
o
n
 0

7
/2

8
/1

0
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



a b

c d

0.000
3000

V
Ga

 – H
n

V
Ga

 – H
4

3100 3200

26 28 246 475 637 1480

H trapped in
internal surfaces

Wave number (cm–1)

Depth (nm)

A
b

so
rb

an
ce

In
te

n
si

ty

3300 3400

0 105 15 20

Positron energy (keV)
25 30 35

–0.35 –0.28 –0.21 –0.14

(0002)

θ o�set relative to substrate

θ o�set

–0.07 0.00

0.001

0.002

0.003

0.004

103

104

105

1060.005

1.00

0.98

S
 p

ar
am

et
er

1.02

1.04

1.06

1.08

1.10

1.12
0 25 100 200 300 400

Depth (nm)

0 642 8 10

Positron energy (keV)
1412 16 18

150

Po
si

tr
o

n
 li

fe
ti

m
e 

(p
s)

200

250

300

350

400

–0.32 –0.24

500°C

400°C

As-implanted

As-implanted

Virgin

–0.16 –0.08

Virgin
As-implanted
300°C
400°C
500°C
600°C

Figure 17

(a) Vibrational spectrum measured at room temperature of H-implanted GaN at a fluence of 2.6 ×

1017 cm−2. (b) High-resolution X-ray diffraction θ/2θ scans of (0002) GaN before and after H implantation.
The inset shows the evolution of damage-induced strain after annealing at 400◦C and at 500◦C (the
intensities are given in linear scale). (c) Thermoevolution of the normalized S parameter of H-implanted
GaN samples as a function of incident positron energy. For comparison, the spectrum recorded from bulk
GaN is also shown. (d) The evolution of the average positron lifetime, measured by pulsed low-energy
positron lifetime spectroscopy, as a function of the positron energy for the virgin, as-implanted, and
annealed GaN samples. The decomposition of lifetime spectra indicates that the observed increase in the
average lifetime above 450◦C is associated with the formation of positronium in subnanoscopic cracks, which
are embryos of extended internal surfaces.

be tentatively attributed to N-H stretch modes at the internal surfaces of implantation-induced

nanobubbles (139). No Ga-H (or VN-H)-related mode was detected. High-resolution X-ray data

(Figure 17b) and positron annihilation data (Figure 17c) demonstrate, immediately after implan-

tation, the generation of a significant out-of-plane tensile strain that is detectable as a broadening

at the left side of the (0002) GaN diffraction peak and the presence of open-volume defects in the

damage band. From lifetime positron annihilation spectroscopy (Figure 17d), these open defects

are likely divacancies and Ga vacancy clusters chemically stabilized by H (186). By following the

thermal evolution of these complexes, one can deduce a mechanistic picture of H ion cutting of

GaN: Annealing up to ∼400–450◦C induces an enhancement in the internal strain (Figure 17b)

without any increase in the density of open-volume defects (Figures 16b and 17c). This implies

that vacancy clusters and voids needed to prepare the ground for the splitting assemble during the
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Figure 18

Schematic illustration of the integration on the wafer scale of a CS layer. (a) Growth of a high-quality CS layer on a metamorphic
composite buffer layer deposited on a Si wafer. (b) Ion implantation. The implantation energy can be chosen such that the splitting zone
takes place in the buffer layer. (c) Wafer bonding to a handle Si wafer. SiO2 can be used as the interfacial layer. (d) Activation of the
splitting process. (e) Elimination of the residual buffer layer by selective etching. This process flow is analogous to the process used in
the fabrication of strained SOI wafers.

implantation process and remain relatively stable upon annealing below the critical temperature.

This high thermal stability of open-volume defects may be one of the reasons behind the need

for the exceedingly high ion fluence in GaN ion cutting. In contrast, for Si, for which the critical

fluence is much lower, an important growth in void-like defects was reported in the temperature

range preceding the splitting (155). Annealing above the ∼400–450◦C temperature range leads

to the formation of nanoscopic cracks parallel to the surface (Figure 16c), inducing a partial

relaxation of the internal strain (Figure 17b). At higher temperatures, these cracks evolve into ex-

tended internal surfaces, leading to the splitting of the top thin layer (Figure 16d). Therefore, it is
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reasonable to conclude that the ion-cut process originates from the relaxation of the buildup of the

internal strain induced by the evolution of the implantation damage with increasing temperature.

However, the exact nature of the factors responsible for this strain enhancement remains an open

challenge. The formation and trapping of H2 molecules as well as the formation of interstitial

clusters are possible candidates, but their detection in GaN remains elusive.

CONCLUSION

The capacity to tailor CSs and to integrate them onto foreign substrates can lead to superior or

novel functionalities. In this review we provide a brief description of different approaches to realize

these promising heterodevices. We show that the ion-cut process offers additional flexibility in

the design and fabrication of CS-based heterostructures, which can be used in a wide range of

technologies. However, for a heterogeneous integration process to be economically viable and

attractive for CMOS applications, it must offer the possibility of integrating CSs onto large Si

wafers. It is currently not possible to make large-diameter CSs, which can be a serious restriction

in the application of CS ion cutting at the industrial level. It is, however, premature to exclude

ion cutting in the heterointegration of wafers involving large diameters (300 mm and above).

An attractive option, illustrated in Figure 18, may be a hybrid CS heterointegration process

combining the progress in heteroepitaxy on Si and ion cutting in analogy to the process currently

used in the fabrication of large-diameter strained SOI wafers. Here the highly defective interfacial

layer can be eliminated, and only the top layer containing high-crystalline-quality CS film or

quantum well structures is preserved and transferred to a desired host wafer using the appropriate

dielectric interlayer.

SUMMARY POINTS

1. Direct epitaxy, wafer bonding, or both can be used to integrate CSs onto foreign mate-

rials. The physical and structural properties of the CS material and the host substrate as

well as the subsequent treatments of the obtained heterostructures and the targeted appli-

cations are the most influential factors in the choice of the appropriate heterointegration

approach.

2. If bulk quality is needed, thin-layer transfer using the ion-cut process provides an ap-

proach to realizing certain heterodevices and flexible devices frequently unattainable by

direct epitaxy.

3. The ion-cut process consists of wafer bonding and subsurface defect engineering using

light ion implantation. The stability of the bonded interface is very critical to both

the thin-layer transfer process and subsequent processing of the obtained heterodevice.

Therefore, a successful layer transfer and a reliable heterostructure would require a

meticulous conditioning of surfaces to be bonded as well as the use of a compatible

interlayer.

4. In spite of thermal mismatch–related difficulties, InP-on-Si and GaAs-on-Si heterostruc-

tures with a diameter up to four inches were demonstrated by using the ion-cut process.

5. Progress has been made toward the splitting of two-inch bulk GaN by using the ion-cut

process. The major concern of radiation damage–induced bow enhancement is alleviated

by stress engineering at the back side of the donor wafer.
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FUTURE ISSUES

1. It is of interest to explore the application of thin-layer transfer by the ion-cut process in

other CS materials of technological relevance such as InSb and bulk AlN.

2. To develop a quantitative and predictive model of the ion-cut process, theoretical and

experimental investigations of H/He-defect interactions in CSs as well as systematic

studies of the influence of the implantation conditions on the splitting behavior are

needed. These studies are vital for better control of the ion-cut technology.

3. Stress induced by thermal mismatch will remain a serious obstacle for the application

of the ion-cut process to transfer large-diameter CS thin layers. To date, researchers

and engineers have relied on the use of dielectric interlayers (e.g., SiO2) for relatively

low temperature bonding of CS wafers to Si wafers despite the limited bonding energy

achieved via hydrophilic bonding. Alternatively, progress in molecular design and syn-

thesis can provide serious solutions to achieve the high bonding energy, low thermal

budget, and high thermal stability needed for the fabrication and processing of CS-based

heterodevices. For instance, appropriately designed monolayers can be used as interfa-

cial layers to bond CS wafers to different host materials. Such developments can also

impact other areas involving wafer bonding such as three-dimensional integration and

microelectromechanical systems.

4. The advantages of atomic layer deposition (ALD) should be exploited in CS thin-layer

transfer. ALD can be used to grow atomically smooth and highly uniform interfacial

dielectric films on surfaces to be bonded. This way, effort and time needed for CMP can

be saved. Moreover, this technique also permits the deposition of high-quality Al2O3

layers suitable for CS-based electronic heterodevices.

5. A wide variety of freestanding semiconductor nanomembranes can be fabricated using

the ion-cut process. These interesting nanomaterials can be obtained by releasing the

transferred ultrathin layers from their host substrates. This ability to produce nanomem-

branes provides a rich playground for designing flexible devices and for exploring the

fundamental properties of different semiconductors on the nanoscale.
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125. Radu I, Szafraniak I, Scholz R, Alexe M, Gösele U. 2002. Ferroelectric oxide single-crystalline layers by

wafer bonding and hydrogen/helium implantation. Mater. Res. Soc. Symp. Proc. 748:U1181–86

126. Ruglovsky JL, Park YB, Ryan CB, Atwater HA. 2002. Wafer bonding and layer transfer for thin film

ferroelectrics. Mater. Res. Soc. Symp. Proc. 748:U11–16

127. Rabiei P, Gunter P. 2004. Optical and electro-optical properties of submicrometer lithium niobate slab

waveguides prepared by crystal ion slicing and wafer bonding. Appl. Phys. Lett. 85:4603–5

128. Levy M, Osgood RM Jr, Liu R, Cross LE, Cargill GS III, et al. 1998. Fabrication of single-crystal lithium

niobate films by crystal ion slicing. Appl. Phys. Lett. 73:2293–95

129. Levy M, Ghimire S, Bandyopadhyay AK, Hong YK, Moon K, et al. 2002. PZN-PT single-crystal thin

film monomorph actuator. Ferroelectr. Lett. Sect. 29: 29–40

130. Chen F. 2009. Photonic guiding structures in lithium niobate crystals produced by energetic ion beams.

J. Appl. Phys. 106:081101
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154. Höchbauer T, Misra A, Nastasi M, Mayer JW. 2002. Physical mechanisms behind the ion-cut in hydrogen

implanted silicon. J. Appl. Phys. 92:2335–42

155. Moutanabbir O, Terreault B, Chicoine M, Schiettekatte F, Simpson PJ. 2007. Influence of isotopic

substitution and He coimplantation on defect complexes and voids induced by H ions in silicon. Phys.

Rev. B 75:075201

156. Di ZF, Wang YQ, Nastasi M, Shao L, Lee JK, et al. 2008. Evidence for ion irradiation induced dissoci-

ation and reconstruction of Si-H bonds in hydrogen-implanted silicon. Appl. Phys. Lett. 93:104103
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