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Abstract
Die-stacked DRAM is a technology that will soon be inte-

grated in high-performance systems. Recent studies have

focused on hardware caching techniques to make use of

the stacked memory, but these approaches require complex

changes to the processor and also cannot leverage the stacked

memory to increase the system’s overall memory capacity. In

this work, we explore the challenges of exposing the stacked

DRAM as part of the system’s physical address space. This

non-uniform access memory (NUMA) styled approach greatly

simplifies the hardware and increases the physical memory

capacity of the system, but pushes the burden of managing the

heterogeneous memory architecture (HMA) to the software

layers. We first explore simple (and somewhat impractical)

schemes to manage the HMA, and then refine the mechanisms

to address a variety of hardware and software implementation

challenges. In the end, we present an HMA approach with low

hardware and software impact that can dynamically tune it-

self to different application scenarios, achieving performance

even better than the (impractical-to-implement) baseline ap-

proaches.
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1. Introduction

Die-stacked memory is an emerging technology that has the

potential to significantly attack the memory wall problem [34].

In particular, placing one or more 3D stacks of memory inside

the same package as the processing units can provide orders

of magnitude more bandwidth at significantly lower power

costs [2]. In recent years, there has been significant advance-

ment in the industry including the development of die-stacked

memory standards and consortia [13, 16, 24], and various

announcements from several processor companies [12, 23, 2].

One key challenge of using in-package memory is that the

current integration levels are still insufficient to satisfy a high-

end system’s memory capacity requirements. For example,

current stacking technology may provide on the order of eight

3D DRAM stacks, each with 2GB capacity, for a total of 16GB

of fast DRAM [12]. However, many server systems already

support hundreds of GB of memory and so a few tens will

not suffice for the problem sizes and workloads of interest.

The resulting system will therefore consist of two types of

memory: a first class of fast, in-package, die-stacked memory,

and a second class of off-package commodity memory (e.g.,

double data rate type 3 (DDR3)).

A large body of recent research has focused on utiliz-

ing the stacked DRAM as a large, high-bandwidth last-

level cache (e.g., an “L4” cache), coping with the chal-

lenges of managing the large tag storage required and the

relatively slower latencies of DRAM (compared to on-chip

SRAM) [18, 25, 14, 15, 36, 28, 20, 8, 10]. Such a hardware

caching approach has some immediate advantages, especially

that of software-transparency and backwards compatibility. As

the stacked DRAM is simply another cache that is transparent

to the software layers, any existing applications can be run

on a system with such a DRAM cache and potentially obtain

performance and/or energy benefits [19].

Hardware caches, however, are not without their challenges.

In particular, the implementation complexity is quite signifi-

cant for several reasons:

• The most effective DRAM cache proposals involve tag or-

ganizations quite different from conventional SRAM-based

on-chip caches. Some place tags directly in the DRAM for

scalability [18, 25], while others use page-sized cachelines

with sectoring and prefetching [15, 36, 14], all of which

require from-scratch engineering efforts to implement the

new cache control logic.

• The cache controller must also perform traditional memory

controller tasks such as issuing row activation and precharge

commands, respecting DRAM device timing constraints,

scheduling command and address buses, and managing

DRAM refresh. Designing a single unit that simultaneously

handles the cache controller functionality while juggling

the low-level 3D DRAM controller issues is likely much

more difficult than designing either one in isolation.

• A hardware cache implementation is also “baked in” to a

particular processor design, making the cache organization,

policies, etc., inflexible once built.

• Last, and possibly the most costly obstacle, is that the ver-

ification effort required to ensure the correct implemen-

tation of hardware-based DRAM caches is daunting and

has largely not been discussed in the DRAM cache liter-

ature. There are so many combinations of functional op-

erations (e.g., cache hit, cache insertion, writebacks) with

DRAM timing scenarios (e.g., row buffer hit, row conflict

but tRAS not elapsed, bus write-to-read turnaround not sat-
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isfied) at different operating points (e.g., temperature de-

pendent refresh rates, entering/exiting DRAM low-power

modes) where the DRAM cache controller must be verified

to operate correctly.

Furthermore, the capacities of die-stacked DRAMs, while in-

sufficient to serve as the entirety of a system’s main memory,

still provides a non-trivial amount of capacity. Ideally, the

stacked DRAM would be available to augment or increase the

size of the system’s total physical memory, whereas caching

does not provide this benefit. The addition of even modest

amount of capacity was shown to substantially improve per-

formance of capacity-limited workloads [6].

In this work, we explore a different direction for die-stacked

DRAM, which is to keep the hardware simple, but to push the

management of the memory system up into the software lay-

ers. We consider a heterogeneous memory architecture (HMA)

where both the fast, stacked DRAM and the conventional, off-

package DRAM are all mapped to the same physical address

space, somewhat similar to a non-uniform memory architec-

ture (NUMA) approach [4]. We consider minimal hardware

support to aid the software layers in managing the HMA, but

the physical interface to the stacked DRAM remains simple.

At the same time, we maintain application-level transparency

in that all of the necessary software changes to use the HMA

are constrained to the operating system (or runtime system)

so that existing applications can run unmodified. In this man-

ner, we retain the programmer productivity advantages of

conventional hardware caching techniques, while keeping the

hardware implementation cost down.

2. Heterogeneous Memory Architecture (HMA)

In this section, we first go through the hardware implications

of a non-cache die-stacked memory organization, and then

we discuss the software challenges that arise when hardware

management has been removed from the picture.

2.1. HMA Hardware

2.1.1. Package-Level Organization In our baseline hardware

organization, we assume a high-performance accelerated pro-

cessing unit (APU) consisting of multiple CPU cores and a

GPU. The APU is 2.5D-integrated on a silicon interposer [7],

along with multiple 3D stacks of DRAM. Figure 1 shows the

packaging of these components. As discussed earlier, the 3D

DRAM does not provide sufficient capacity for a server-class

system, and so conventional off-package memory (e.g., DDR)

is also provided, as shown in the figure.

Recently announced systems integrate 16GB of in-package

3D DRAM; over the next few years with continued DRAM

density scaling and increases in 3D DRAM stack heights,

achieving 32-64GB of in-package memory is not unreasonable.

With main memory capacities in the range of 256GB-1TB

(or more), the size of the stacked DRAM would be in the

approximate range of 1/16 (64GB vs. 1TB) to 1/8 (32GB

vs. 256GB) of the off-package memory capacity. For the

Off-package Memory (DDRx) 

Package Interposer 

APU 

Die-stacked DRAM 

Figure 1: Package-level organization of the target system consisting of a high-

performance APU 2.5D-integrated with multiple DRAM stacks, along

with conventional off-package DDR memory.

majority of the studies in this paper, we assume a 1:8 ratio of

stacked vs. off-package memory.

Typical bandwidths for off-package DDR memory is in the

tens of GB/s. For example, a single DDR3 channel clocked

at 1600 MHz can provide a peak bandwidth of 12.8GB/s.

Most systems are equipped with only a few channels (e.g.,

2-4). With die-stacked DRAM, the bandwidths are signifi-

cantly higher. As an example, a single stack of JEDEC “high-

bandwidth memory” (HBM) provides eight channels of 128

bits each, with a data transfer speed of 1Gbps [16], for a total

of 128GB/s. When considering that a system could include

eight stacks of 3D DRAM, that would push the aggregate peak

bandwidth to 1TB/s.

The result is a heterogeneous memory architecture (HMA)

consisting of a small portion of very high bandwidth in-

package memory, with a much larger amount of lower-

bandwidth commodity off-package memory.

2.1.2. Address Mapping Without loss of generality, we as-

sume that the stacked DRAM is mapped into a first contiguous

range of the physical address space, and that the off-package

DRAM is mapped to a second contiguous range in the same

address space. An example physical address mapping is shown

in Figure 2(a). During the system boot process, the standard

memory discovery and mapping mechanisms are used to de-

tect the stacked DRAM (as well as how much there is) and

assigns it to a particular region of the physical address space.

This is effectively no different than what is already done today

when the system boots up and must take inventory of how

much memory has been populated in each of the memory slots

for each channel on the system motherboard, but with the

process extended to also consider the die-stacked DRAM.

2.1.3. Memory Controllers Modern processors already con-

tain multiple memory controllers (MC). The addition of die-

stacked DRAM would require additional memory controllers

that were properly designed to handle the timing parameters

specific to the stacked memory. In the best case, this could

simply be an existing memory controller reconfigured with

new timing parameters. Figure 2(b) shows a portion of the

processor with the additional die-stacked DRAM controllers

(shaded) along with their physical-level interfaces (PHYs).1

The processor also already contains logic to route memory

1The stacked DRAM PHYs are shown smaller (but not to scale), as they only need

to drive a point-to-point link across the interposer, as contrasted to a conventional DDR

PHY that must drive a higher impedance load through the C4 bumps, the package sub-

strate, out the package pins, across the motherboard, and to the memory DIMMs.

2127



0x0000000000 

0x8000000000 

256GB 

DDR 

(off-package) 

0x4000000000 

32GB Stacked DRAM 
0x1000000000 

0x1800000000 

P
h

ys
ic

a
l A

d
d

re
ss

 S
p

a
ce

 (
4

0
 b

it
s 

sh
o

w
n

) 

(a) 

L3 Cache 

Complex 

Address 
Mapping 
Table 

MC MC 

PHY PHY 

MC MC MC … 

PHY PHY PHY 

To package pins 
To in-package DRAM stacks 

Lookup 

Device for 

Requested 

Address 

NoC/Interconnect 

(b) 

Figure 2: (a) Example mapping from a physical address space to the con-

ventional off-package and die-stacked memories, drawn approxi-

mately to scale. (b) Hardware modifications (shaded) to support

an HMA organization, including additional memory controllers and

memory physical-level interfaces (PHYs) and additional entries in

the address-to-device mapping table.

requests to the correct memory controllers. In a conventional

processor without die-stacked memory, the processor uses

the mapping that was set up during the boot process (Sec-

tion 2.1.2) to perform an address range check that determines

which memory controller “owns” the address, and then the

processor forwards the request to the respective memory con-

troller. In a system supporting an HMA, the mapping table

simply contains a few additional entries corresponding to the

memory ranges that map to the die-stacked DRAM. When a

request targets one of these ranges, the processor uses the same

mapping table to then forward the memory request to the corre-

sponding die-stacked DRAM memory controller. Overall, the

hardware changes necessary to support an HMA organization

are relatively minor and heavily leverage existing mechanisms.

2.2. HMA Software

2.2.1. Roles and Responsibilities A hardware cache con-

troller can store copies of individual cache lines, whether

small (64B) [18] or large (2KB) [14], but at the operating

system (OS) level all memory is managed at page granularity

(typically 4KB for x86 architectures). The operating system

(or other runtime software) must somehow decide which pages

should be placed in the fast die-stacked memory, and which

ones should be kept off-package.

The hardware cache controller has full visibility into each

and every memory request, whereas the OS has only a few bits

of coarse-grained information through its page table entries

(PTEs). A typical PTE includes a “referenced” bit and a

“dirty” bit. The OS can clear a PTE’s referenced bit, and later

when the processor accesses the page, the hardware page-table

walker will set the referenced bit. By observing this bit, the

OS can determine that the page was used. However, the OS

cannot determine how recently the page was accessed beyond

the broad interval of “sometime since the referenced bit was

last reset”, which could be an instant ago or much further

in the past. Similarly, the single bit does not provide any

differentiation between a page that was merely accessed a

single time versus one that was repeatedly reused over and

over again. Both the recency and frequency of page usage

would likely be critical inputs for the OS to use in deciding

which pages should be placed in the fast memory, but neither

are readily available. Additionally, the referenced bit is set for

any access to this page, but not all accesses result in traffic to

main memory (for example, a page that is frequently accessed

but that also almost always hits in the on-chip caches would

not benefit much from being migrated to fast memory).

Apart from deciding what pages should go where, the OS

must then also actually move the pages between fast and slow

memories, which introduces a host of performance challenges

discussed below.

2.2.2. Overheads and Performance Challenges Even as-

suming that the OS could make a good selection of pages

to place in the fast memory, the OS is still at a significant

disadvantage compared to a hardware cache. The DRAM

cache controller simply inserts a copy of the cacheline into

the cache after the requested data have been retrieved from

the off-package main memory. The OS must first take a pro-

cessor interrupt to do anything. Pages must be copied/moved

between the fast and slow memories, the corresponding PTEs

must be updated (even a single physical page could have mul-

tiple virtual addresses pointing to it), and then a translation

lookaside buffer (TLB) shootdown must be issued to each

core that may have cached copies of stale PTEs. The interrupt

latency alone can take several microseconds (e.g., average of

∼2µs on Real-Time Linux [29]), and the TLB shootdown can

take many microseconds as well.2

At least without some significantly more complicated mech-

anisms [3], this entire migration and remapping process must

occur while all of the target application threads are suspended.

Correctness issues may arise if an application is allowed to

continue running while its pages are being moved around. For

example, a write operation could be lost if a thread writes

to a page that was already migrated but whose PTE had not

yet been updated (or if the processor held a stale PTE). This

means that every microsecond of OS overhead related to HMA

page migration directly adds to the application’s execution

time. This overhead can potentially be offset by perform-

ing migrations infrequently, but then this runs the risk of a

migration/page-selection policy that is so slow that by the time

a page is migrated into fast memory, it may no longer be hot.

The migration frequency must be carefully balanced to en-

sure a sufficiently reactive page selection policy while keeping

interrupt and TLB shootdown overheads under control. We

discuss specific policy implementation in Section 3.

A pure OS-driven page caching approach is likely difficult

to implement for similar performance reasons. The idea would

2We measured the TLB shootdown latency on an AMD 32-core platform running

the Linux OS, and found that the latency grows with the number of cores involved in

the shootdown. For 4, 8, 16, and 32 cores, the shootdown latency takes approximately

4, 5, 8, and 13µs, respectively.
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be to dynamically swap pages between the stacked DRAM

(which acts like a conventional “main memory”) and the off-

package memory (which acts more like conventional storage

or swap). Only pages currently in the stacked DRAM have

valid PTEs, and so any miss would result in a page fault; the

OS would then step in, swap the requested page in, update the

page table, and perform a TLB shootdown if necessary (i.e., if

a victim page was removed from the fast memory, thereby ren-

dering its PTE invalid). This amounts to taking a page fault on

every single stacked DRAM miss, likely crippling performance.

This type of approach has been attempted [9], but in the con-

text of paging between DRAM and a fast memory-mapped

solid-state drive (SSD) device (where the alternative would be

the even slower path of going through the file system).

2.3. Isn’t This Just NUMA?

The described HMA has many similarities to a NUMA mem-

ory organization, in that different regions of the physical ad-

dress space have different performance characteristics. How-

ever, the nature of the non-uniform performance due to a

hybrid of memory technologies is different from a traditional

NUMA scenario. In a multi-socket NUMA system, it is de-

sirable to allocate memory on the same sockets as the threads

that will be accessing that memory the most. This can be chal-

lenging when threads from multiple sockets access a particular

object with similar levels of intensity. Placement of the object

at one sockets helps some threads and hurts the other, and

placement at the other socket hurts the former and helps the

latter. The HMA problem differs in that all threads run “close”

to the fast-DRAM, and so the desire is to allocate all memory

in the die-stacked DRAM. The problem is not about localizing

data near its compute, but rather that there is more data than

will fit in the local “NUMA domain”.

3. Managing the HMA

The operating system or runtime must somehow detect the

pages that will be used most often, where “used” is with

respect to the memory traffic, not in terms of memory instruc-

tions that could hit in the on-chip caches. We now detail some

possible HMA management policies.

3.1. Baseline Algorithms

3.1.1. Oracular Page Selection The first policy that we de-

scribe attempts to fill up pages in stacked memory based on

perfect future knowledge. It provides an upper bound for the

best possible performance of an HMA management policy

for a unified address space. We divide a program’s execution

into epochs, where each epoch is a fixed-length interval (e.g.,

0.1 seconds). During the course of each epoch, the hardware

tracks the memory traffic (i.e., from last-level cache misses)

associated with each page.

Oracle is an idealistic reference policy, at the start of each

epoch it selects the N pages of memory that will serve the most

traffic (reads or writes) during the upcoming epoch (assuming

a first-level memory capacity of N total pages). These N pages

are then loaded into the first-level memory, and all remaining

pages are placed in the second-level memory. The page tables

are updated to reflect the new virtual-to-physical memory

assignments (and all translations set to be valid), and so no

further page faults are required. The only overhead is a single

OS intervention (equivalent to a migratory fault) to update the

mappings once per epoch.

3.1.2. History-based Page Selection Rather than relying on

unavailable information about the future (as in the case of the

Oracle policy), the history policy that we describe next selects

pages based on past traffic patterns. At the end of an epoch, the

OS sorts all pages, and for a stacked DRAM with a capacity

of N pages, the OS selects the top-N pages responsible for

the greatest amount of main memory traffic to be placed into

the stacked DRAM. Any pages that were in the fast memory

but did not make the top-N cut for the next epoch must be

migrated back out to off-package memory, and the page table

must be updated to reflect all new page placements. A similar

history-based approach was previously explored [19]. The key

implementation challenge is in devising a scalable mechanism

that allows the hardware to maintain per-page traffic counts;

this will be revisited below in Section 3.2.

This history-based page selection relies on the assumption

that a page that was heavily used in the recent past will con-

tinue to be heavily used (and similarly, cold pages remain

cold). The selection of a shorter epoch length allows the his-

tory policy to adapt more quickly to changes in a program’s

working set, but then it also increases the inter-epoch OS

overhead.

3.1.3. First-touch Page Selection The second baseline policy

is derived from a common NUMA memory allocation strategy.

The “first touch” NUMA allocation policy places a page of

memory on one of the memory channels belonging to the same

socket of the thread that first requested the page (if there is

room). For private, per-thread data, this ensures that such

pages are co-located with the only thread that will ever use

them. For shared pages, the heuristic also works well in many

scenarios.

For an HMA system, at the start of each epoch, all pages

are initially marked invalid in the page tables (and all TLBs

must be shot down). Then, as pages are accessed, there are

two scenarios. In the first case, the page is currently in the

off-package memory, and so the page is migrated to the fast

memory, the page table is updated to reflect the new mapping,

and the PTE valid bit is set. In the second case, the page is

already in the fast memory (i.e., it was mapped there during

the previous epoch), and so only the PTE’s valid bit needs

to be set. Any subsequent accesses to this page will proceed

normally (i.e., without a page fault) as the corresponding PTE

is now valid. As new pages are accessed for the first time

during the epoch, more pages are migrated into (or re-enabled)

in the fast memory until the stacked DRAM is completely

filled up. Note that as pages are migrated in, pages from

the fast memory may also need to be migrated out. Note
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that any such pages still have invalid PTEs, and so the OS is

free to change their mappings without worrying about TLB

consistency issues (i.e., no need for shootdowns). Eventually

after the stacked DRAM has been filled, the OS re-enables the

valid bits on all remaining pages that will now be stuck in the

slower off-package memory for the rest of the epoch.

This first-touch HMA policy does not require any additional

hardware support to track page access counts, but it may select

a sub-optimal set of pages to place in the fast memory as the

first pages touched in an epoch are not necessarily the ones

that are responsible for the most memory traffic. Another

challenge for first-touch is that each “first touch” event during

an epoch incurs a page fault that includes an OS interrupt.

Contrast this to the history-based approach that takes a long

time to sort and migrate a large number of pages at the start of

an epoch, but then does not interfere until the next epoch.

3.2. Hot Page Policy

The history-based policy described above is not immediately

practical because it requires sorting every page in memory

based on access counts and then selecting the top N pages

(where N is the size of the fast, die-stacked DRAM).3 Our

next policy simplifies the problem by simply dividing pages

into “hot” versus “cold” pages using a simple threshold. Any

page that has an access count that exceeds a fixed threshold

θ is classified as hot (for the current epoch). By choosing θ

correctly, the number of pages classified as hot will hopefully

be close to N.

In the ideal case, if the hot-page count is exactly N, the sort-

ing operation can be completely skipped because the choosing

of the top-N out of a set of N simply amounts to choosing the

entire set. Sorting is also unnecessary when the size of the hot

set is less than N. Under normal operation, the hot set will

usually be different than N. In the case where there are more

hot pages than fit in the fast memory, the OS can choose the

top-N out of this smaller set (i.e., not all of memory). In the

case where the set of hot pages fails to use up all of the fast

memory, the remaining capacity is filled using a first-touch

approach.

A key advantage to this approach is that, similar to the

history-based policy, pre-loading pages and making the cor-

responding PTEs valid at the start of the epoch cuts down on

faults related to migrating pages via the first-touch mechanism.

This first-touch hot-page (FTHP) policy is effectively a gen-

eralization of both the history-based and first-touch algorithms.

When θ is set to zero, then all pages are considered hot, and

so sorting the hot pages is the same as sorting all of memory,

which then is equivalent to the history-based policy. When θ

is set to ∞, then no pages are ever in the hot set, so the entirety

of the fast memory is populated via the first-touch mechanism.

Setting θ to finite, non-zero values strikes a balance between

the two approaches: some number of hot pages are pre-loaded

3A full sort is not strictly necessary, as the problem is actually to choose the top-N,

which is algorithmically faster than sorting all objects in a set.

into the first-level memory to reduce faults, and the remaining

capacity can be populated dynamically based on whichever

pages the program accesses.

Tracking Page Access Counts The FTHP policy still requires

tracking the per-page memory traffic. To support this, we

propose an extension to the existing TLBs and hardware page-

table walker (PTW) logic, along with some potential changes

at the software level. We logically extend each PTE with a

count field that records the number of memory accesses for

that page. We likewise extend each TLB entry with a field

to track the number of accesses to the page corresponding

to the cached PTE. On each last level cache (LLC) miss, the

counter is incremented. On a TLB eviction, the counter value

is written back and added to in-memory count. The OS can

then use these access count values in choosing its hot pages.

For some architectures, the PTEs do not have enough free

bits to store an access count. In these cases, the counts may

need to be placed in an auxiliary data structure that parallels

the page table [17]. In other architectures with enough free bits

in the PTEs (or in a system where large pages are used, which

frees up several PTE bits), the counters may be directly placed

in the PTEs. In any case, the hardware PTW must be modified

to perform this read-modify-write on the counters, which is

not currently supported. However, the changes are minimal

as the PTW already has all of the logic it needs to read and

write PTEs, and so the primary additional hardware is simply a

single adder and the relevant control logic/finite-state-machine

updates. Overall, the PTW changes are relatively minor, but

the software changes could be much more challenging in prac-

tice (especially when the hardware companies are not the ones

writing the OS software!). We revisit this later in this section.

3.3. Setting the Hotness Threshold

The FTHP policy relies on setting the hotness threshold θ .

Setting the value too low can cause the HMA to have too

large of a hot set, thereby increasing the overhead of choosing

the top-N; setting the value too low results in a small hot

set, which in turn increases the faulting overhead due to the

first-touch mechanism. The best threshold can vary from

application to application, within phases of an application, and

also depending on the actual size of the die-stacked DRAM in

a given system. It is undesirable to have the OS vendor hand

tune this parameter to support a wide range of applications

and platforms.

We propose a dynamic feedback-directed HMA policy that

can dynamically adjust the hotness threshold θ to achieve a

best-of-both-worlds approach between history-based and first-

touch policies. At the start of each epoch, the size of the hot set

is compared to the size of the die-stacked DRAM (N). If the

hot set is too small to fill the fast memory, then θ is lowered

which causes more pages to be classified as hot. Likewise,

if the hot set is too large, θ is increased which causes fewer

pages to be put in the hot set. If the feedback mechanism

works well, then the size of the hot set should converge to N.
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Having the hot set size equal (or come very close to) N is

very desirable. In the case that both are exactly equal, then

the number of first-touch faults is reduced to zero (because

the entire fast memory has been populated and so there is no

room to bring in any more pages via first-touch), and there is

no need to sort the pages to find the top-N as discussed earlier.

There are a variety of ways to update θ each epoch. We

simply use a proportional linear feedback control system. This

is but one possible algorithm for dynamically adjusting θ ; we

do not claim it is optimal, but it provides an effective proof of

concept of the approach. The key result is that the parameter

θ need not be hand-tuned, and this allows the mechanism to

be more easily applied to a broader set of applications and

platforms.

3.4. Low-cost Hot Page Detection

The hardware and software support required to track the hottest

pages may be too invasive for main-stream systems (e.g., those

based on the x86 ISA). Here, we propose an approximation

that greatly simplifies the hardware support. We also explain

how to adjust the FTHP algorithm to work with the simplified

hot-page tracking.

The first part is on the OS side. Instead of using the PTE’s

accessed bit to mean that a page has been referenced by the

processor, we instead re-interpret it to mean that the page

has been classified as “hot”, where hot is the same as before,

meaning that the page has generated more than θ memory

requests to it. This new-interpretation provides backwards

compatibility; if the OS sets θ to zero, the hardware PTW will

update the accessed bit on the first reference to the page.

We maintain per-TLB-entry access counts to track the mem-

ory traffic associated with each page. However, rather than

accumulate the total traffic in an in-memory counter (which

requires new OS data structures or many unused PTE bits),

the processor monitors the count in the TLB entries. When

the TLB’s access count for a page exceeds the threshold θ , it

invokes the hardware PTW and sets the accessed/hot bit in the

PTE.

At the end of the epoch, all pages that had more than θ

memory accesses will have their respective accessed/hot bits

set in the PTE. These now form our hot set of pages. Similar to

FTHP, if the hot set is smaller than N, then we use first-touch

to populate the remainder of the die-stacked memory. If the

hot set is larger, then we simply take the first N pages (as we

have no other way to differentiate them as they all only have a

single hot bit that is set). The dynamic-feedback approach can

be applied here as well to adjust the value of θ to try to make

the size of the hot set match N as closely as possible.

This “hot bit” HMA policy requires minimal hardware

changes. Setting the hot bit in the in-memory PTE uses the

exact same mechanism that is used today to set a PTE’s ac-

cessed bit. A new model-specific register (MSR) is needed for

the OS to specify the current threshold θ . This is necessary,

because when the processor increments the in-TLB access

counts, it must compare the count against θ to know if the

page has crossed over the hotness threshold and therefore have

its accessed/hot bit set.

This hot-bit policy is also just an approximation of the

FTHP policy. It could happen that a TLB entry’s access count

reaches θ -1, and then the TLB entry gets evicted. When the

page is re-accessed, there is no saved history for previous

access activity, and so the count starts again at zero. In a

pathological scenario, the page is accessed frequently enough

that it should be classified as hot, but its hot bit never gets set.

As mentioned earlier, having only a single bit of discrimination

leaves the policy unable to “sort” the hot pages when the hot

set is greater than N, which is another possible source of

behavioral deviations from FTHP.

Detecting hot pages is an area of ongoing research, for

example the IBM POWER8 architecture [11] stores memory

reference counts and reference history for a page in the page

table. An OS-level page manager was proposed in [35] to

manage a DRAM+PRAM architecture. The OS page manager

uses multiple least recently used (LRU) queues [37] to find

the set of pages that are most frequently written and migrates

them to the DRAM. We note that the differences and the goal

of our hot-page detection was to take advantage of the existing

page table walk hardware as much as possible, and to explore

approximate solutions for a practical implementation. Overall

our research focus is on various methods to manage HMA

(hardware cache, page cache, and unified address space) for a

multi-tiered memory hierarchy in which stacked memory is

only a portion of the total memory footprint of the system.

3.5. Other policies

We have also evaluated a number of hardware cache and OS

page cache policies. We model a hardware managed DRAM

cache based on the Alloy Cache model [25], with a direct-

mapped organization with tags and data (64-byte cachelines)

read out together to minimize latency. By caching only blocks

that are missed on by the higher-level caches, a hardware cache

by itself would not be able to exploit the spatial locality in

the access streams. To address this, our cache implementation

employs a prefetcher that pulls 1 kilobyte worth of data along

with the missed bock.

For the OS page cache policy, the crucial aspect is deciding

when a page needs to be evicted. We implement a multiple first

in first out (Multi-FIFO) page replacement algorithm borrowed

from PerMA and DI-MMAP projects [32] and [31]. In this

replacement policy the evicted page is first put on one of two

queues (hot-page or eviction) and pages are evicted to make

space only if the level 1 memory is full. Evictions only occur

from the eviction list.

4. Experimental Methodology

4.1. HMA simulation

We implemented a memory trace-driven HMA simulator that

models the two different types of memory, along with the
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different management policies. To drive the simulations we

collected traces for memory accesses that miss the last level

cache for workloads executing on a system with an AMD

A10-5800K APU clocked at 3.8GHz and 16GB memory. The

traces have information about reads/writes, timestamps and

physical address being accessed. The timestamps were used

to generate interrupts for our epoch driven policies.

From the memory traces along with additional information

gathered from hardware performance counters, we develop

simulator that functionally models the behavior of the individ-

ual HMA policies that can determine whether the individual

requests hit or miss in the fast memory, migration activity,

whether interrupts or TLB shootdowns are needed, etc., and

these events are coupled with an analytical model to project

performance and energy. The model uses the Leading Loads

method [26, 30] to split an application’s execution time into

CPU time and memory time using performance counters. The

leading load model calculates the memory time as the time

spent servicing the leading (first in case of many outstanding

loads) non-speculative load that misses the last level cache.

This model has shown to be fairly accurate for predicting ex-

ecution time for dynamic voltage frequency scaling (DVFS)

scaling on AMD processors [30]. For each load instruc-

tion, the appropriate latency is added to the total execution

time based which memory the load went to. This estimate

represents a worst-case execution time assuming that the addi-

tional latency cannot be hidden by concurrent computation or

pre-fetching. The DRAM page hit ratio4 (from performance

counters) is taken into account during this calculation, as page

hits typically have a lower latency than page misses. We as-

sume the same row buffer hit ratio for both types of memories,

although differences in channel counts and other memory pa-

rameters could cause this to vary in practice. Writes are not

considered to impact execution time, assuming that there is

sufficient write-buffering in the processor chip, writes can be

drained to memory during periods where the memory bus is

idle. A fixed 5µs time penalty is charged for each page fault

[27] to cover the basic interrupt costs, and then another 3µs

penalty is applied whenever a TLB shootdown [33] is required.

Page migration time is also added to the execution time, as

the migrations do not overlap with computation because this

is performed by the OS page fault handler. The time for mi-

gration is assumed to be bounded by the off-package memory

bandwidth.

Once total (worst-case) execution time is derived, we esti-

mate active and background power consumption for the mem-

ory system (not the APU compute units). The current and

voltage parameters for 3D-stacked DRAM are based on mea-

surements from a high-bandwidth memory (HBM) device.

DDR4 power is estimated based on the Micron DDR3 DRAM

power calculator [21], using DDR4 parameters from [22].

4Except for Windows applications, the data were not available and we used a hit

ratio of 30%, which was the average for Rodinia and PARSEC.
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Figure 4: Total traffic at the die-stacked, level-one memory.

4.2. Benchmarks

We evaluated a total of 23 different workloads from PAR-

SEC [1], Rodinia [5] and some Windows desktop applica-

tions. We only focused on the applications that exhibited high

levels of memory traffic. PARSEC is a suite of multi-threaded

CPU workloads composed of diverse applications from emerg-

ing areas ranging from computer vision to financial analytics.

We ran the simlarge input dataset for PARSEC. Rodinia is

a suite of benchmarks that are designed to test accelerators

such as GPUs. We evaluated a subset of six Rodinia bench-

marks that represented areas such as data mining, machine

learning, to graph traversal. Rodinia was run with its standard

default input dataset. In addition to benchmarks we also eval-

uated real-world Windows applications for video transcode

and Windows SDK. Together these workloads provide a mix

of operating systems, devices (CPU, GPU), and a wide array

of application domains that provide a rich suite to test our

management policies.

5. Experimental Results

We plot and discuss results of the top 10 of a total of 25 appli-

cations that generated the most traffic. Most of the remaining

applications generate significantly lower memory traffic and

as such the memory policy does not have a significant impact

on speedup. The results in this section are presented for a

baseline L1M:L2M ratio of 1:8. Additionally, for the FTHP

policy we show results for epoch of 0.1s and threshold of 32,

which were the best static value on average for performance.

We discuss sensitivity sweeps for FTHP policy, for L1M:L2M

ratio, epoch length and threshold in Section 6.
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5.1. Analysis of Hit Rates and traffic

We first analyze the three performance metrics shown in Fig-

ure 3, Figure 4 and Figure 5. Each of these figures plots for

each application on the X-axis the performance metric on the

Y-axis. Also shown in each of these plots is the arithmetic

mean across all applications for a given management policy.

The hit rates in the L1M is the highest for both the caching

policies, with the OS Page Cache being on average the best

performer. Among the HMA policies, oracle policy comes

quite close to the hit rate of the caching policies. The oracle

policy shows that there is some epoch level locality that can be

leveraged, however, oracle is unattainable and as such gives

the upper bound on performance for the HMA policies. The

caching policies do come at the price of page migrations and

in particular the OS page cache policy also incurs page faults

and TLB shootdown overheads. The plots for traffic to each

memory level reflects the sum of all traffic going to a given

memory level. For the hardware cache, traffic is generated for

reads/writes as well to satisfy misses. Similarly page cache

has traffic for reads/writes but also incurs significant traffic

to migrate pages on page faults in L1M. On average, the traf-

fic generated by both the caching policies is between 3x to

5x as compared to the remaining HMA policies. This can

be attributed to the significant migration traffic for misses in

the caching policies. In contrast, the HMA policies gener-

ate migration traffic only at epoch boundaries. From these

three performance metrics it is clear that while the caching

policies have very high hit rates they come at a price of signif-

icant increase in migration traffic. Hence, discussed next in

Section 5.2 is our evaluation using performance and energy

models.

5.2. Performance and Energy results

The performance and energy model, discussed in Section 4.1,

takes the performance metrics from simulation as well as ad-

ditional information from performance counters and estimates

performance and energy. Show in Figure 6 and Figure 7 are

the speedup and energy consumption (memory only) for HMA

architecture with HBM as L1M and DDR4 for L2M memory.

Figure 65 shows for each application on the X-axis the speedup

over a memory composed of only DDR4 memory. Also shown

in this figure is the arithmetic mean speedup across all appli-

cations for a given policy. For comparison, the figure also

includes the speedup of an HBM-only memory over DDR4,

which serves as a ceiling for speedup. For these workloads an

HBM only memory has a speedup of about 20% on average

over all DDR4 memory. The oracle policy is the most effec-

tive with an average speed up of about 15% and comes very

close to the HBM speedup. The hardware cache did not show

any significant improvements and the worst performing is the

OS page cache policy with an average factor of 3x slowdown.

5The Y-axis is truncated at -100 so that trends for other points are visible and we

provide data label for points below -100.

The advantage of high L1M hit rate for this policy is over-

shadowed by the overheads due to page faults and associated

costs. Thus, for an HMA system the OS page cache policy

illustrates that hit rate is not the only optimization target and

other factors such as migrations and faults play a big role as

well. After oracle, the history and FTHP policy perform nearly

the same, with history being marginally better. The history

policy has its own set of challenges associated with devising a

scalable mechanism to track per-page access count and sorting

at epoch boundaries. The FTHP policy reduces some of these

complexities by just tracking pages that have crossed some θ

accesses. Thus, if number of pages that are accessed more than

θ are less than size of L1M then no sorting is required. Hence

by tuning θ we can reign in the cost of sorting and find the

right balance with the desire to pre-load hot pages and reduce

overheads. The simple FT policy shows an average of 18%

slowdown which shows that some sort of hot page selection is

required to take advantage of the faster HBM memory.

Figure 76 shows for each application on the X-axis the

consumed energy for memory. The figure also shows the

arithmetic mean for a given policy across all applications.

In general the trends follow those observed for speedup in

Figure 6. The OS page cache consumes 4x more energy than

the HMA policies. Hardware cache is better than OS page

cache but it has significant energy expenditure and has 2x

more energy burn than HMA policies. All HMA policies have

lower energy usage than page cache and in particular FTHP

has similar usage as oracle and history policies. Hence by

using FTHP policies we can get performance comparable to

history, but with lower complexity. Next, we discuss some

approximations of detecting hot pages which may show the

path for an even more practical solution.

5.3. Discussion

While maintaining a hot page list using our θ threshold reduces

complexity over history policy it still requires some sorting

overhead if we have more hot pages than the size of L1M.

Instead here we discuss a simpler variant of detecting hot

pages by just marking pages as hot if they are accessed more

than θ times. The hot bit splits the pages into hot and cold sets.

If the hot set is larger than the L1M size we choose the hot

pages on a first-come first-serve basis (i.e., the pages that were

marked hot first are preloaded). The main difference between

this hotbit version of FTHP and the one presented in previous

sections is that some pages that are accessed later in the epoch

may get left out even if they have high access counts. The

adjustment to θ can alleviate and balance those issues to some

extent. Choosing a static θ value may not be practical as it

may be sub optimal for some applications and may require

prior profiling. That is why we have also devised a variant that

adjusts θ dynamically.

To that extent, we have deployed a simple proportional

6The Y-axis is truncated at 4.5e09 so that trends for other points are visible and we

provide data label for points above 4.5e09.
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Figure 6: Speedup over DDR4 memory.

linear feedback controller that aims to bring the hot set close

to the size of the first level memory in pages. That way, the

need for sorting is eliminated, and the hotbit approximation

acts as the history policy. At the end of each epoch, the

controller monitors the hot set identified with the presently

chosen threshold θ . The relative difference between this set

and the size of the fast memory region is then calculated.

The resulting number is the rate by which the threshold θ is

adjusted for the next epoch (to the smaller value if the hot set

fits within level one memory with some space left for FT, and

to the bigger value, if the hot set is too big for L1M). Such

reactive proof-of-concept implementation, though useful, can

be replaced with a more sophisticated threshold adjustment

method, e.g. interpolation based on prior θ values.

We compare FTHP, FTHP-hotbit and FTHP with dynamic

θ adjustment in Figure 8. FTHP with hot bit gets within 2/3 of

the speedup of FTHP. The dynamic feedback algorithm allows

to further improve the results and approach FTHP most of the

time. By its nature, the feedback however can be detrimental to

performance at times, in case the application is highly dynamic

(the feedback control is unable to keep up with the hot set) or

if there is a significant hot set overreaction to the parameter

adjustment.

6. Sensitivity Analysis

In Section 5, we had focused mostly on the best static pa-

rameter values for some of the knobs that we have to set for

running FTHP. In this section we analyze the sensitivity of

those knobs for speedup. We present a one-factor analysis by

sweeping one knob at time, and fixing the remaining knobs
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to their best static value. First, presented in Figure 9 is the

sensitivity of performance to the chosen epoch interval. In this

figure for each application shown on the X-Axis we plot the

speedup over DDR4 for four different epochs. The epoch de-

termines the ability to capture application phases. The smaller

the epoch, the more fine grained the phases we can detect, but

this comes at the cost of overhead of handling epoch related

management activity. The lowest epoch of 0.001 seconds is set

based on the value of the Linux scheduling timer. This timer is

used by the operating systems process scheduling algorithms

among other things. Reducing granularity below this value

will cause overheads in the system software which we would

like to avoid. Conversely our largest epoch is topped off at 1

second since some of our applications run only for a second

or so. The epoch sweep shows that very fine granularities

cause more overheads to handle epoch related activities. On

an average the lowest 0.001 epoch results in 5x slowdown,

and going to 0.01 improves it but it still has 100% slowdown.

Epoch lengths of 0.1 and 1 second yield similar speedups, with

0.1 epoch being the best. These results show that epoch is an

important parameter for a system that manages Heterogeneous

Memory Architecture in software. It should not be too fine

grained, as the systems software overhead will outweigh any

potential benefits from a more robust memory scheduling.

Next we sweep different values of FTHP thresholds to study

its effect. Figure 10 shows for each application on the X-axis

its corresponding speedup at three different thresholds, 4, 32,

4096. The threshold θ sets the criteria for classifying a page

as hot. Setting this value too low can result in too many hot
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pages and as a result we may not choose the correct set of

hot pages to preload at epoch boundaries. On the other hand

choosing a threshold too high will preclude a lot of hot pages.

The threshold sweep shows that on average threshold of 4

gives the best performance and threshold of 32 gives nearly

the same performance. When going to a higher threshold we

start observing a slowdown as demonstrated by a threshold of

4096. It is important to note that these results hold for a certain

L1M size and a particular workload, and are provided here

for illustrative purposes only. For a different stacked memory

and different applications, other values for the threshold are

likely more appropriate. This highlights the importance of the

dynamic parameter adjustment for the software-orchestrated

memory management.

Lastly we sweep different values of L1M sizes. We expect

that as L1M size increases we should expect better perfor-

mance. For this sweep we dynamically also adjust the thresh-

old so as to take advantage of larger L1M memory. Figure 11

shows the speedup for each application for 6 different L1M

sizes which are 1/32, 1/16, 1/8, 1/4, 1/2 and all HBM. As

anticipated as we increase the size of the L1 memory we see

improvements in performance. The improvements in perfor-

mance is almost linear on average when going from 1/4 to

all HBM; however for the lower ranges it does not increase

linearly, for example a speedup of 1/4 is 7.5% and 1/8 is 6.3%.

We conjecture that to take advantage of bigger memory we not

only have to set the correct threshold but we may also have to

tweak epoch lengths.

We have presented one-factor sensitivity analysis that shows
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sizes.

that three important parameters for FTHP have impact on

speedup. A larger study, which is out of the scope of this paper,

is to perform a k-factor analysis to find the optimal settings

of these factors and potentially adapt them dynamically per

application. We leave k-factor analysis and sensitivity studies

for energy as part of future explorations.

7. Conclusions and Future work

Due to several pressing constraints, the memory subsystem of

the future will likely contain a heterogeneous mix of memory

technologies, such as emergent die-stacked DRAM alongside

with more conventional DDR4. This heterogeneous mem-

ory architecture prompts the design of management policies

that place workload data across levels of memory judiciously.

Previous solutions have focused on hardware caching tech-

niques to make use of the stacked memory. These approaches,

however, require complex changes to the processor and also

cannot leverage the stacked memory to increase the system’s

overall memory capacity. In this work, we have considered

exposing the stacked DRAM as part of the system’s physical

address space to simplify the hardware implementation and

increase the physical memory capacity of the system. We

have shown that the overhead incurred by the software layers

in this case must be carefully weighed in order to prevent

severe performance degradation due to low die stacking hit

rates, excessive data migration and page fault servicing delay.

Furthermore, we have presented an efficient hybrid memory

management system in software that dynamically adapts itself

to different applications with minimal hardware support. We

also described how such a policy can be shaped by gradually

easing the assumptions of several more informed (and less

practical) methods.

In the future we would like to explore non-volatile random

access memory (NVRAM) as part of main memory and extend

our analysis to more than two memory levels. We would

like to further investigate methods to detect hot pages and

continue our explorations with dynamic switching between

different management policies (subject to active workload

requirements) and API support for preferential binding of the

frequently accessed memory objects to the faster memory

regions in the heterogeneous memory subsystem.
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