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Abstract

This paper describes the functional specification and
verification portions of El Greco, a system for high-level,
heterogeneous functional specification, efficient compiled
simulation, and software and hardware implementation.
Specifications in the form of dataflow graphs, hierarchical finite
state machines, or a mixture, are supported. These specifications
can be arbitrarily nested, as in Ptolemy [1]. When dataflow graphs
are placed in a control context, the graph execution is fully
controllable; its execution can be restarted or suspended and
parameters can be changed. We describe system modeling an
simulation generation in El Greco and compare to other
approaches.

1. Introduction

Designers of complex embedded systems are under pressure t
deliver more and more functionality in less and less time.
Designing at a higher level of abstraction has long been acceptec
as a means of achieving greater productivity. However, it is
generally accepted that the needed abstractions are domain
specific, and that these abstractions need to be efficiently coupled
inspiring work like that of the Ptolemy project [1]. El Greco’s
focus is on the design of system-level tools for the current
generation of digital communication and multi-media systems,
and we find that control and dataflow operations are commonly
mixed at multiple levels of hierarchy, making it difficult to
decompose systems into control-dominated and dataflow-
dominated components each to be designed by an appropriate too

It is generally accepted that functional verification dominates

the time required to design, implement, and test an embeddedW

system. It is not sufficient to simply be able to model
heterogenously; the functional simulation of such models must be
extremely efficient and implementation from high levels of
abstraction must avoid the synthesis of redundant hardware of
software. We believe the simulation-based approach to
heterogeneity used by Ptolemy will not be sufficient to achieve
this, unless we can optimize across domain boundaries.

El Greco’s core concepts are:
* Provide a range of modeling styles so that the right

abstraction can be used and details added as design
progresses by performing data and control refinement.

* Provide the ability to nest models at will, at any level of
hierarchy (inspired, of course, by Ptolemy).

Base the modeling concepts on principles with rigorous
semantics: dataflow and synchronous-reactive languages
such as Esterel [2].

Specify conditions, actions, and other behavior in a C++
subset, which is parsed and understood by the tool.

Use detailed analysis and compilation to achieve very high
simulation speed. Dead code is removed and transformations
take place across control/dataflow boundaries.
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Use internal representations that are suitable for hardware,
embedded software, or compiled simulation generation from
the same models. In particular, actions that are specified in
C++ can be emitted to back end tools in VHDL or Verilog.

Provide a state-of-the-art user interface that simplifies the
capture of complex heterogeneous systems, either in a top-
down or bottom-up manner (not shown in this paper).

El Greco is designed to provide a path to implementation as
embedded software, synthesizable hardware or both. This paper
describes only modeling and functional simulation, though
implementation issues figure strongly into the design.

2. Relationship to previous work

This work is strongly influenced by a number of systems that
came before it; particularly strong influences include Ptolemy [1]
for heterogeneous design, and Esterel [2] for control semantics.
hile this work was performed independently of Ptolemy’s *-
charts [3], there are many resemblances; we make detailed
comparisons in section 3.1. The semantics of hierarchical state
machines resembles that of Andre’s SyncCharts [4], which is in
turn a variant of Harel's StateCharts [5].

2.1 Combining dataflow and control

There are many hybrid modeling approaches in the literature
that, in some sense, embed FSM-style specification with dataflow-
like data communication. We see two types of approaches: that of
Ptolemy [3], which allows arbitrary nesting, and that of almost all
other tools, which restrict the form of the heterogeneity. We follow
a Ptolemy-like approach in our work; differences will be described
in a subsequent section.

SDL [6] and Polis [7] specify local behavior in the form of
extended finite state machines and then use some form of
asynchronous inter-process communication between these local
behaviors. Alternatively, a supervisory controller controls the
execution states of a connected graph of modules, where these
modules communicate in a dataflow style (e.g. [8]). In [9], a
dataflow system is enhanced by adding event-style communication



between finite state machines and dataflow actors; this introduceagject cases that do not have unique fixpoints at compile time.
nondeterminism which must be controlled by a knowledgeable

i ; . Gated modelsA gated model has one or two children, plus a
user who specifies scheduling constraints.

gating condition, which can depend on ports and parameters of the

These techniques differ in details: the communication channelsnodel. If the gating condition is true, the first child is run and the
might be a one-place buffer or a FIFO queue, for examplesecond (if any) is suspended. If the gating condition is false, the
However, the heterogeneity is constrained; the nesting of models afecond child (if any) is run and the first is suspended.
computation always follows the same form (e.g. primitive FSM-
like blocks at the innermost level, surrounded by inter-
communication between such primitives).

We use the terntontrol modelto describe the three types of
Proc€S$hierarchical models that are not dataflow models.

The “bottom level” wh h tive behavior i For the most part, the user of a model need not be concerned

;he “bottom Ievel’, Where a Synchronous-réactive DeNavior IS pether that model is implemented as a hierarchical dataflow
typically specified, may itself be specified in a heterogeneoug, onp, “or-model, or primitive dataflow model (for example): the
manner, using a language like Esterel, or regular expressions [1Q,ema) interface looks the same in all three cases. In EI Greco
to structure the contrc_)l and a software Ia_nguagg (e.g: C) or ere is a clear separation of the interface of a model from its
hardware implementation language to specify atomic actions to bg,, je mentation. A graphical symbol for a model is automatically
executed by the controller. ECL [11] permits the use of both type enerated (which then can be customized)
of constructs (reactive and computational) to be specified in on '

|anguage‘ as does Systemc (former|y called Scenic [12]) In tools such as Ptolemy and COSSAP, model eXeCUtiO_n has
. three phases. In the reset phase, parameter values are obtained and
2.2 Control specification

checked and the model is initialized. In the main phase of
Our control modeling techniques have their roots in those ofexecution, the model reads and writes data. In the final phase, a
Harel's Statecharts [5]. There have been problems with thévrap-up occurs, for freeing resources, writing final results, etc.
semantics of Statecharts, resulting in a large number of Statechartéowever, all instances are reset at the beginning of a simulation
variants [13]. Our control models closely resemble those offun, and all are “wrapped up” at the end.
Andre’s SyncCharts [4]. The detailed formal semantics of control - \when hierarchical control is added, it becomes natural to reset
models are defined in terms of a translation to an Esterel equivalengr wrap up instance execution at multiple points (for example,
We have chosen strictly synchronous semantics to enable @here a hierarchical state of an or-model is entered or exited). We

complete analysis at compile time, resulting in more efficientsypport this, and go beyond it in that parameters of instances can
compiled simulation and hardware implementation. be changed at the point of entry.

2.3 Dataflow specification In El Greco, an instance of a model can be terminated by its
as Parent in one of two ways, so called strong termination and weak
ftermination. These concepts are borrowed from Esterel, where the
fterm “abort” is used instead. If an instance is terminated with
strong termination, it does not participate in the execution cycle
where the strong termination event occurs; with weak termination
o it does. Gérard Berry has suggested an analogy to the Unix “kill -9”
3. Modeling in El Greco and “kill” events; for the latter there can be a cleanup handler; for

. L the former no such handler is possible. When an instance is
In El Greco, the user composes designs in either a top-down Qerminated its internal state. if anv. is lost
a bottom-up fashion, by instantiating models. Models can be ' 4 )
primitive or hierarchical. In addition, an instance can “voluntarily” exit. This may in turn
A primitive dataflow model, or prim_model, may read or write cause the parent model to exit, or can be caught, like an exception,

data from or to ports, and can have internal state. Dynamic dataﬂoﬁnd trigger an action in the parent. Again, any internal state s lost.
and static dataflow models are written in exactly the same way; Finally, an instance can be suspended. The effect is much like
analysis determines whether a prim_model is dynamic or not.  gating the clock of a hardware component: state is preserved, but
the instance does not “see” input events until the suspension ends.

El Greco uses cyclo-static dataflow (CSDF), which w.
pioneered by the Grape-Il project at the Catholic University o
Leuven [14]. Dynamic dataflow is also supported. The use o
CSDF permits finer-grain control of multirate dataflow graph
execution than is possible with synchronous dataflow.

There are four types of hierarchical models:

Dataflow graphsThese are graphs whose nodes are instances of The interface of a EI Greco model has:

other models; the ports of the instances are connected by nets. A net Zero or moreports Ports provide the only data communication
has one driving port and can have any number of destination portgath between models. In a dataflow context, ports are logically
The communication is FIFO data streams; the streams argonnected to FIFO queues (though, where possible, such queues
duplicated if there are multiple outputs on a net. are replaced by buffers of size one in the compiled simulation). In
a control context, ports are bound to signals belonging to the parent

Or—m(_)dels An_ c_)r-model is a collection of mutually excluswe_ model. Ports have a type and a direction (in, out, or inout). Models
states with transitions between states. The states can be atomic or,

can be instances of other models. Atomic states may optionall%\'gg d'?r?l;tgi]rttrsofggggx?e used in a dataflow context, but can be
have an inline action, which is a statement of C++. If the member '
states of an or-model are all atomic, it represents a flat FSM. The Zero or mordype parametersRather than requiring one model

states are connected by transitions, with conditions and action$p add integers and another to add bit vectors, type parameters

written in C++. permit models to be written once for all types.

And-modelsAn and-model represents a group of models that Zero or moreparametersParameters provide read-only data to
execute in parallel lock-step with broadcast synchronous-reactiveé model and are an extension of the parameters seen in tools like
communication between them. We use the constructive semantiddtolemy, or generics in VHDL. However, to make control more
of Esterel to determine fixpoints in the event of cycles [16] andpowerful, we permit parameters to be changed under certain



circumstances by the control environment (which can be a control param read_on_reset unsigned Factor;

model in the simulation, or the top-level supervisor). Parameters main_action {

may have several modes: for (unsigned i = 1; i <= Factor; i++)
read(InData);

OutData = InData;

write(OutData); }}

prim_models whose /O pattern depends on data are not cyclo-
tatic, and usually result in dynamic scheduling.

e structural parametersmust be constant; their values are
compiled into the simulation.

 read-on-reset parameter@e sampled when the model they
belong to is reset; their value can be changed by the control
environment (e.g. by binding a read-on-entry parameter of @
dataflow graph to a local signal in a control model). A typical 5, Dataflow graph scheduling
example of such use is where the result of one dataflow . )
computation (say, a signal detection routine) determines the While there are some exceptions, control models, as arule, look
parameters for a subsequent computation. like unit-rate static primitive dataflow models to the dataflow
] . ) scheduler and are treated as such. If the dataflow graph contains
dynamic parametersan be changed at any time; this feature giher gataflow graphs, we flatten them, to obtain one flat graph
is used to make simulations interactive and has an effectonsisting of primitive models or control models.
similar to thevolatile keyword in C/C++.

. . El Greco's dataflow scheduler performs transformations on
3.1 Comparison to Ptolemy *-charts [3] adjacent instances in the dataflow graph, in an attempt to collapse
This work resembles [3], but there are important differences. P&Irs of instances into clusters, which are then treated as instances
. . . . themselves. There is insufficient space to describe the algorithm in
Ptolemy takes a simulation-oriented approach to heterogeneityjetaj here, but it is closely related to the clustering algorithm

it has strong heterogeneous simulation capabilities but rathegescribed in [15]. A qualitative description will have to suffice, as
limited implementation or compiled simulation capabilities for g | description would require a complete paper.

models other than dataflow. We take a more implementation- i . . )
oriented approach, meaning that models are generally speaking, We alternate between a merge pass, in which adjacent instances

“white-box” and completely analyzed at simulation generation"‘”th matching data rates are merged wherever this will not lead to
time (though we do use a Ptolemy-like approach to interface witrflé@dlock, and a loop pass, where transformations are applied to
hardware description language or instruction set simulators).  Instances to create more opportunities for subsequent merges.
) ) ) ) Possible transformations include “stalling”, where empty phases

_In P_tolemy, models _mtended for interpreted S|mulat|on arethat move no data are added, “sum-up”, where a loop is added to
written in a completely different manner from models intended for .gmpine all the phases of an instance into one phase, and “do-

software code generation (or compiled simulation) or hardwargypile”, where a do-while loop is added that repeatedly executes an
synthesis. In El Greco, allimplementation models are simulatablensiance until a data value emerges or is consumed.

A_sin Esterel, El Greco does fix_point analysis_ at co_mpile tir_ne 0 The merging and looping transformations are applied to the
avoid the need for VHDL-style microsteps at simulation runtime. jnternal syntax trees that represent the actions of each model

El Greco can do static dataflow scheduling even in the presencistance; dead code is eliminated from the merged clusters. In most
of symbolic data rates (within limits); Ptolemy cannot do this.  cases the use of CSDF means that buffers of size one suffice for
o?ommunication, so the generated simulation code typically passes

El Greco is designed to permit changes to parameters Talues between instances in registers.

instances based on control model behavior. }
Like *-charts, we permit the user to choose different models of6' Mapping of Control constructs to Esterel

concurrency (e.g. dataflow vs. synchronous-reactive). However,we The semantics of El Greco control models closely resemble
believe that neither we nor they entirely succeed in makingthose of Esterel modules, although the user is not exposed to
concurrency completely orthogonal to FSM sequencing, since in &sterel. Control models can have variables and signals, which are
hierarchical FSM a child instance is concurrent with its parent. jdentical to those of Esterel, with the following difference: for
4. Cyclostatic analysis of prim_models valued signals, we do not use the presence t_)it, but only the vglue.
- As a result, we have two kinds of boolean signals: non-latching,
Primitive dataflow models are analyzed to determine whethetorresponding to pure signals in Esterel, and latching,
they are statically schedulable. This is accomplished by attemptingorresponding to valued boolean signals. We also permit the use of
to divide the main action into phases and groups of phases. A phaggneral expressions in contexts where Esterel requires Boolean
is a segment of code that reads one value from some set (possibiymbinations of pure signals; we hide the distinction between, for
empty) of input ports, optionally performs a computation, and thenexample, Esterel’presentandif statements with code generation.
writes one value to some set (possibly empty) of output ports. We
ff"’\l/\r;ea(lzzcr)] Zz\éigg?r?:r?l:?nubp:r’ 3’2ﬁi”sytﬁ:ll'g;egd;xys;?ﬁgegfd thi h(_e child models_ execute in pe_lrallel lockstep, and the and-model
' xits when all of its children exit. Gated models correspond to the

number is a constant or depends only on parameters, we havé : . ;
identified a phase group. suspendconstruct of Esterel, combined with parallelism. In

dataflow contexts, in most cases we can transform a gated model
An example of statically schedulable prim_model follows. First inline to anif-then-elseconstruct.
we have a phase group of Factor phases that reads the input; it is Or-models are state transition graphs, resembling those of

followed by a single phase that writes the output. Statecharts, but much closer to those of SyncCharts [9]. They differ

And-models correspond to the || (parallel) statement of Esterel:

prim_model DownSample { from those of SyncCharts chiefly in that dataflow graphs may be
type_param T = float; embedded inside. As in Statecharts, start transitions, possibly with
portin T InData; conditions, select the initial state. Transitions are enabled by a

port out T OutData;
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Figure 1. Model of Cruise Control

condition on the arc. There are three primary types of transitions: anodel, except that structural parameters can only be bound to
strong termination transition, a weak termination transition, and arparameters of the parent. The streams seen by the dataflow model
exit-handling transition. The first two types of transition terminate are produced by sampling the values of the input port bindings to
the execution of the currently active instance. Strong termination iproduce values, and the values produced by the dataflow model are
equivalent to theabort statement of Esterel; weak termination is used to update the corresponding ports or signals of the control
equivalent to thaveak aboristatement of Esterel (or, equivalently, model. Values output by the dataflow model can be used for control
a combination oftrap and exit). Exit-handling transitions are (e.g. in an expression that causes a transition). If the embedded
enabled when the instance they are associated with exits and tliataflow graph has unit rate at the boundary, the rates are by
optional condition on the transition is satisfied. definition compatible with the rates of the parent control model.

If more than one transition can be active at the same point, It is frequently desirable to use a state machine to switch
strong transitions take priority over transitions of other types; userdetween dataflow systems that require multiple data values for each
can also specify priorities. The existence of two equal-priority control step. To achieve this, we must tell the tool how many values
enabled transitions is considered an error. each port of the hierarchical state will consume or produce. This is
done by specifying an optional samples/step expression along with

transition with a source instance but no destination instance. Th ﬂ? port_tblnfllng. If the tehxpre_ssm_? IS omﬁ]ed, onebvalu? IS lmovetd
or-model also exits if the active instance exits, but there is no € unit rate ca_se)_, otherwise 1t gives the number or values 1o
enabled exit-handling transition. move. However, if this feature is used, it imposes some restrictions.

An or-model exits if an exit transition is taken. This is a

Because of the correspondence to Esterel it is possible to extengd T We use the movement expression, then the port of the child
fnstance must be bound to a port, not to a signal, in the parent

the tool to be able to incorporate models written in Esterel or al -
Esterel-based language such as ECL [11] as another model typeCONtrol model. Furthermore any port of the control model that is
bound to a non-unit-rate port of some child may not be used in a
We use a control skeleton generator based on work by Edwardgondition or action on a transition, or in the inline action of an
[17] to obtain fast, efficient control code. atomic state. The effect is that we have two kinds of ports: those
7. The control/dataflow interface that are only routed through to the child instances (which may be
multirate), and those that can be used for control (which must be
We now describe the control/dataflow interface, first for the unit rate).

simpler case of unit-rate and then treating the general case. For gated models, the number of values read from and written to

We call a modebnit-rateif it can execute in a dataflow context external ports is the same no matter which “side” of the gated
by first consuming one value from each input port, and thenmodel is executed. It is one (unit-rate) by default; if the user
producing one value on each output port. A dataflow graph can beverrides this, both sides of the gated model must specify the same
unit-rate even if it contains non-unit-rate components, providedexpression.
that a schedule exists that meets this condition at the boundari Modelina E |
(for example, we could have balancing decimation and®™- odeling Example
interpolation blocks). Use of cyclo-static dataflow makes unit-rate |n this section we present a simple exani}pj@ illustrate the
dataflow graphs easier to achieve, even for cases where a modgdrious modeling constructs. The example is a simplified model of
requires many samples to operate. an automotive cruise controller. The top level of the design is

When a control model is embedded in a dataflow graph, itmodeled as a dataflow graph. CC_TOP is the mgin fungtion.ality.
appears as a unit-rate model: one value is consumed by each inplipe rest of models (the environment) that create input stimuli and
and one value is produced on each output. When a dataflow modépther output for visualization have been omitted for simplicity.
(either a prim_model or a dataflow graph) is embedded in a controF C_TOP ha®ool inputs cc_on (cruise control on), cc_off (cruise
model, it may or may not be unit rate. Ports of the dataflow mode!
can be bound either to ports or to signals belonging to the parer
control model. In addition, parameters of the dataflow model can 1. A number of more complex designs in multi-media and com-

be bound to parameters, ports, or signals of the parent control ~ Munication domains have been done. We have picked a tutorial
one for brevity and simplicity.




control off), ig_on (ignition on), ig_off (ignition off), set (set the reference speed. The second curve drawn with ‘+’ is the tvc
cruising speed), resume (resume after pause), bpp (brake petalitput. The curve at the bottom models the environment which for
push) andfloat inputs acc (current acceleration), speed (currentthis time window is almost a constant.

speed) andfloat output tvc (throttle valve control). The — ppig oy example illustrates the power and flexibility provided
implementation of CC_TOP is an or-model denoted by top_or 'nba/ the different modeling styles and the ability to nest models.
the figure. Top_or has an atomic state S1 which is the start state an .

a hierarchical state CC. When ig_on is true the transition to CC i9. Conclusions

enabled and when ig_off is true CC_TOP reverts to the ‘do

nothing’ state S1. El Greco provides a powerful environment for modeling and

validating the functionality of complex heterogeneous systems.
CC is implemented as an and-model with two concurrentlyThe ability to model at different levels of abstraction combined
executingpagesPagel and Page2 (a page is a user interfacevith the ability to transform models from one level of abstraction
concept: a model that is drawn in the context of its parent). Pageio a lower level either by code generation or by manual refinement
contains a gated-model that models the default behavior when then a block by block basis all within the same environment, we
cruise control is turned off. This model is active only when the believe, are key advantages. This combined with fast compiled
condition “cont == false” evaluates to true. When cruise control issimulations wherever possible makes El Greco an unique
on the gating condition evaluates to false and this model freezesnvironment for rapid algorithm exploration.
retaining its internal state (if any). The internals of this model is a
prim_model, normal_mode, which simply copies the acc input tolo' Acknowledgments
the tvc output. Gérard Berry provided assistance with control model semantics.

The model in Page2 that executes in parallel with page1 is agaiffavier Fournari provided the cruise control example.
a hierarchical control model. This is an or-model cntr_fsmwithtwo  Kola Djigande, Thorsten Grétker, Gunther Heinz, Ulrich
states S1 and Main. When cc_on is true the state Main becomasgoltmann, Stefan Klostermann, Songhwai Oh, Joerg Richter, Tim
active. In the real design Main is a dataflow graph. In this examplesampson, Karsten Sievert, Horia Toma, and Markus Wloka made
we have Slmpllfled toittoa Single prim_mode| Contl’0|_BOdy. The Significant technical contributions.
code for Control_Body is
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