

Heterogeneous multiprocessor for the management of real-
time video and graphics streams
Citation for published version (APA):
Strik, M. T. J., Timmer, A. H., Meerbergen, van, J., & Roostelaar, van, G. J. (2000). Heterogeneous
multiprocessor for the management of real-time video and graphics streams. IEEE Journal of Solid-State
Circuits, 35(11), 1722-1731. https://doi.org/10.1109/4.881220

DOI:
10.1109/4.881220

Document status and date:
Published: 01/01/2000

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://doi.org/10.1109/4.881220
https://doi.org/10.1109/4.881220
https://research.tue.nl/en/publications/ecefa8e9-4131-400f-bfd1-480cc86815be

1722 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 35, NO. 11, NOVEMBER 2000

Heterogeneous Multiprocessor for the Management
of Real-Time Video and Graphics Streams

Marino T. J. Strik, Member, IEEE, Adwin H. Timmer, Jef L. van Meerbergen, Senior Member, IEEE, and
Gert-Jan van Rootselaar

Abstract—This paper presents an application domain driven
approach to the design of embedded systems on silicon, and it
shows how this approach is used to design a chip for a multi-
window TV application. We discuss all major design steps in a
logical order starting with an application domain analysis. This
lead to the choice of Kahn data flow graphs as the programming
paradigm for high-throughput signal applications. Based on this
analysis we designed a multiprocessor architecture which uses
run-time reconfiguration. Finally, attention is spent toward the
physical implementation and the deep-submicron problems we
had to solve. The result is a chip that can manage up to 25 internal
real-time video streams. The chip combines the flexibility of a
programmable solution with the cost effectiveness of a consumer
product.

I. INTRODUCTION

T HE DESIGN of embedded VLSI systems poses many
challenges in areas such as design complexity, low power

versus high speed, and hardware/software codesign. Given the
advances in process technology, it will be increasingly difficult
to utilize the intrinsic compute power of silicon by means of
a monolithic single processor architecture. The reason is that
the number and speed of functional units in a VLSI system are
not dominant for the performance anymore. The main issue is
to keep as many functional units busy as possible, which can
only be achieved whentrue task level parallelismis exploited
in a multiprocessor architecture, next to the instruction level
parallelism inside one processor. Such a multiprocessor will
also help to overcome one of the major future bottlenecks
with respect to the performance of ICs, that is, the power
consumption. By processing as much as possible in parallel,
the clock frequencies and the , and therefore the power
consumption, can be kept at acceptable levels. All this leads
to a focus shift from computational aspects of an architecture
(e.g., the pipelining of functional units) to the communication
aspects of an architecture (e.g., the interconnection network
and synchronization between processors).

Next to the on-chip communication issues, the bandwidth
to off-chip memory is more and more a limiting factor for the
performance of embedded systems as well. New memory types,
like DDR SDRAM or Rambus memories, are not sufficient
to handle the pace in which the bandwidth needs increase.
It becomes especially critical when CPUs, peripherals, and

Manuscript received April 3, 2000; revised June 20, 2000.
The authors are with Philips Research Laboratories, Eindhoven 5656 AA,

The Netherlands (e-mail: marino.strik@philips.com).
Publisher Item Identifier S 0018-9200(00)09425-7.

other (co-)processors must use the same background memory
in a unified memory architecture (UMA). In media systems
for instance, signal processing applications, like MPEG video
decoding, display processing, etc., must obtain a—more or
less—guaranteed bandwidth, while the CPU and possibly some
peripherals require low latency for the best performance. The
interface and arbitration to background memory is therefore of
growing importance.

Despite the popularity of state-of-the-art general-purpose
CPUs, low cost and low power remain the dominant issues for
the architectural trade-offs of embedded systems. For media
applications, classical programmable solutions fail because of
performance and a too low intrinsic computational efficiency
(ICE) [1]. If we take a video stream with a 16-MHz pixel rate
and a minimum of 50 operations per pixel, then we need at
least 800 MOPS/stream. This would require about one CPU to
perform just one function on one stream. This is not a cost-ef-
fective solution for consumer equipment for two reasons. First,
the ICE can be improved by two orders of magnitude by more
application specific implementations for the majority of the
functions, and especially for the ‘number crunching’ parts of
video applications. Those parts often do not require that much
programmability and can therefore be implemented in a more
dedicated fashion, in contrast to the higher control layers of
video applications. Second, normal software stacks use coarse
grain synchronization, in the video domain typically fields or
frames, which leads to an explosion of the off-chip memory
bandwidth costs.

Nevertheless, the software contents and flexibility of em-
bedded systems are increasing, but the area costs and power
consumption must be kept limited. This calls for a platform
approach, in which a multitude of cores (CPUs, DSPs, and
coprocessors) can be easily integrated into one system. With
such aheterogeneousapproach, the cost and power efficiency
of DSPs and coprocessors can be combined with the flexibility
of general-purpose CPUs, in order to obtain the best solution
and trade-offs with respect to software programmability,
flexibility, silicon area, and power consumption.

In this paper, we introduce a new solution for theconcurrent
processing of manyreal-timemultimedia (video) streams, that
addresses the most important issues of future embedded media
systems. The presented heterogeneous multiprocessor architec-
ture is built around new on-chip communication and synchro-
nization concepts that enable:

1) true task level parallelism;
2) optimal use of the bandwidth to background memory;
3) sufficient programmability at lowest costs.

0018–9200/00$10.00 © 2000 IEEE

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 22, 2009 at 04:34 from IEEE Xplore. Restrictions apply.

STRIK et al.: HETEROGENEOUS MULTIPROCESSOR FOR MANAGEMENT OF REAL-TIME VIDEO AND GRAPHICS STREAMS 1723

Fig. 1. Overall system partitioning.

Our solution can be seen as a subsystem within an overall ar-
chitecture (see Fig. 1). In this overall architecture, a distinc-
tion is made between a typical control processing subsystem
(CPS) (e.g., host processor applications and event-driven func-
tionality), a signal processing subsystem (SPS), and a memory
subsystem (MS). In this paper, we concentrate on the SPS sub-
system.

In our first VLSI implementation, the IC has three indepen-
dent and uncorrelated video input channels and two indepen-
dent and uncorrelated video output channels. They are stored
in and retrieved from an external SDRAM to be displayed on a
TV set using PC-like multiple windows. Graphics data gener-
ated by an external CPU are read from SDRAM to be blended
with the composition of the video. This way new functions such
as internet access, electronic program guides, and e-commerce
are added to the classical TV functions, while maintaining a
high-end display quality and a simple user interface. Internally,
the chip can exchange up to 25 video streams of 16-MHz pixel
rate or more between the different processors in parallel. A ded-
icated streambased direct memory access (DMA) unit supports
20 streams going from and to an external SDRAM.

The main challenges for this design can be summarized as
follows:

1) The chip supports multiple video windows with variable
sizes. Sizing can easily be done incrementally at run-time
without visual artifacts. Common TV architectures are
not flexible enough to handle such functionality, while in
common PC architectures there is no way that the absence
of visual artifacts can be enforced in a setting with live
video in multiple dynamically changing windows.

2) The chip delivers unprecedented video enhancement
quality with functions such as high-quality scaling,
dynamic noise reduction, peaking, CTI, and so on.

3) It allows for on-chip communication between multiple
processors, alleviating from the bandwidth bottleneck to
background memory.

4) Management of up to 25 internal video streams with hard
real-time constraints.

5) Optimal utilization of the bandwidth to background
memory by means of special DMA and arbitration
schemes.

6) Unique combination of flexibility and efficiency of the
implementation. Basic video processing kernels are iden-
tified and implemented in an efficient way. These ker-
nels can subsequently be combined at the top (applica-
tion) level in many different ways to implement different
applications.

Because of the separation in the overall architecture between
control and signal processing, we can use a tailored program-
ming paradigm for the signal processing subsystem (see Sec-
tion II). The new system concepts explained in Section III ex-
ploit the characteristics of that programming paradigm exten-
sively. Of course, the design of the processor cores and the com-
plete IC must fit the system concepts, which is the topic of Sec-
tion IV. In Section V, we describe the chip metrics of a first IC
realization.

II. PROGRAMMING PARADIGM

The classical (embedded) software paradigm is based on a se-
quential description of one or more tasks (threads). Those tasks
synchronize for instance by means of interrupts or semaphores.
The different tasks can be scheduled at run time by an oper-
ating system or real-time kernel. In most cases, that scheduling
is based on fixed priority scheduling, where the priorities are
determined by a rate monotonic analysis [3].

For a number of reasons, the classical software paradigm de-
picted above is not valid for high-throughput high-performance
signal processing applications that have to be mapped onto a
multiprocessor architecture with on-chip data communication
between processors.

1) Signal processing applications are characterized by more
or less periodic input and output streams of samples. Host
applications and control-dominated applications on the
other hand are characterized by their control constructs
and possible event driven nature. For instance, branch pre-
diction is an issue in such applications, while it is not
much of an issue in signal processing applications.

2) Because signal processing applications work on large sets
of samples, the notion of reconfigurable computing is ap-
parent. For instance, if video samples are communicated
between two tasks, such a ‘channel’ will exist for at least
one field period, and in practice much longer. Such char-
acteristics of the application domain can be used, for in-
stance in the bus arbitration.

3) Fixed priority scheduling used in normal real-time ker-
nels assume that the tasks to be scheduled are indepen-
dent, meaning that the schedule and completion time of
one task does not depend on the schedule and completion
time of another task. However, if video tasks have to com-
municate large amounts of data on-chip to alleviate the
bandwidth bottleneck to off-chip memory, then the tasks
can not be treated as being independent anymore. There-
fore, other scheduling methods have to be used, and we
will show that aself-scheduling approachcan be applied
for such signal processing tasks.

For the reasons mentioned above, we choose to use a different
programming paradigm for the signal processing part of an em-

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 22, 2009 at 04:34 from IEEE Xplore. Restrictions apply.

1724 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 35, NO. 11, NOVEMBER 2000

Fig. 2. Kahn process network.

Fig. 3. Connections to background memory.

bedded system, in contrast to the normal approaches for gen-
eral-purpose architectures. In our case, we model signal pro-
cessing applications as Kahn dynamic data flow graphs [2],
consisting of tasks interconnected by logical first-in-first-out
(FIFO) channels (see Fig. 2). For the control processing part of
the system we use standard approaches.

Fig. 2 shows an example of an application that is modeled
using Kahn data flow graphs. The nodes in the graph represent
basic video functions. The set of functions is limited and charac-
teristic for the application domain. It includes noise reduction,
vertical and horizontal sampling rate conversion, sharpness en-
hancement, video juggling, graphics blending, and so on. Dif-
ferent applications are represented by different graphs. The fact
that we are dealing with well-defined kernels, which have to be
connected in a flexible way, calls for reconfigurable computing.
The switching between applications must be done on a field by

field basis without artifacts visible on a TV set. Therefore, the
reconfiguration must be done dynamically at run time.

Since the bandwidth to external memory is the major design
constraint, it makes sense to distinguish two different situations
when implementing FIFO channels of the Kahn graph. Some
channels can be implemented using on-chip communication
while in other situations the involvement of external memory
can not be avoided. This is, for example, the case when two
video streams, which are not synchronized, are mixed. The
places where we have to ‘cut’ the graph and make connections
to external memory are indicated in Fig. 3 for the example that
we are using.

Summarizing, we make a distinction between the following
levels of hierarchy:

1) an application graph: a Kahn graph that represents a com-
plete mode setting, for example for a TV;

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 22, 2009 at 04:34 from IEEE Xplore. Restrictions apply.

STRIK et al.: HETEROGENEOUS MULTIPROCESSOR FOR MANAGEMENT OF REAL-TIME VIDEO AND GRAPHICS STREAMS 1725

Fig. 4. Communication infrastructure.

2) a subgraph: a set of closely coupled tasks, which inter-
nally can communicate via on-chip means. Communica-
tion between two different subgraphs takes place via ex-
ternal memory;

3) a task represented by one node in the Kahn graph.

In what follows, we will develop the architecture step-by-step.
We start by discussing the on-chip communication.

III. SYSTEM CONCEPTS ANDARCHITECTURE

A. Component and Communication-Based Design

Since the set of video processing functions is limited and
known in advance we decided to develop for each function
a separate processor which is optimized for the particular
task. To allow the mapping of different application graphs, a
reconfigurable network [9], [10] is added to the architecture
(see Fig. 4). The network is programmable so that different
application graphs can be executed.

An important architecting principle we applied is thesepara-
tion of concerns, in our case, the separation between computa-
tion and communication. By inserting local buffers at each input
and output of the processor, it is possible to decouple the calcu-
lation of new data from the transport of it. Second, the choice for
FIFO buffers is motivated. They have been adopted because the
edges in the Kahn graph represent (video)signals, i.e., measur-
able physical quantities sampled at discrete points in time and
binary encoded. The only identification of the different sam-
ples in the stream is given by the order of the samples. Samples
are produced only once and can not be lost on the communi-
cation channels. For streams with the aforementioned features,
separation of communication and processing can be done with
FIFOs. Third, the architecture is based on ablockingprotocol,
i.e., processors are stopped when at least one of the input FIFOs
is empty or at least one of the output FIFOs is full. The reasons
are as follows:

1) It allows for an efficient implementation since the buffer
sizes can be kept small. In the current design, the size is
equal to 32 pixels.

2) The field blanking, that is, the nonactive part of a video
signal, can be used for soft real-time tasks. The detection
whether a stream is in the blanking or not is a run-time
decision, since input streams are not synchronous with
respect to each other. This reuse for soft real-time tasks is
easily implemented with a dynamic stream based model.

3) A stream-based computing model is often simpler to im-
plement in comparison with a static synchronous system,
because it can perform runtime (self-) scheduling based
on local availability of data.

4) The concept is better scalable with respect to the addition
or removal of processors. It is expected that processors
will become increasingly dynamic. A good example is a
variable-length decoder (VLD), which produces and con-
sumes a data-dependent number of tokens.

Next to thecommunicationaspects described above, we have
to solve thesynchronizationissues. Again, we had to choose a
solution which is totally different from current systems where
the CPU synchronizes the different processors via an interrupt
mechanism. Because of the high-throughput rates and the small
grain size for on-chip communication, we have to go for a hard-
ware-oriented approach. The problem is that the FIFOs at the
output of the sending processor must be blocked when an input
FIFO of a receiving processor is full. This is done by imple-
menting asynchronization network(see Fig. 4). Inputs to this
network are the full flags of the input FIFOs of the receiving
processors. Outputs of the synchronization network are send to
the output FIFOs of the sending processors. Via the correct pro-
gramming of the network, the correct FIFO status can be passed
on. This connection is always the inverse connection of the com-
munication network: inputs and outputs are interchanged. This
way we can synchronize at a very fine grain size, that is, at the
level of individual pixels.

B. Processor Model

The same function (e.g., horizontal sampling-rate conversion,
HS) can appear more than once in a Kahn graph. For cost rea-
sons, the different instances of the same function will all be exe-
cuted as different tasks on the same processor. This leads to the
processor model [10] shown in Fig. 5. This figure shows an ex-
ample with two input ports and two output ports. This could, for
example, be a temporal noise reduction coprocessor that needs
an input video signal and the filtered result from the temporal
loop as inputs and has a video output and a backward channel
to memory as outputs.

In our first IC realization, a processor can execute maximally
four different task instances. Each input and output port is con-
nected to a maximum of four (logical) FIFOs, labeled 1–4. In
a similar way the state memory is duplicated four times. In
this way we can relate independent FIFOs and state memories
to each task that is executed on the processor. By not sharing
the state memories we can have task switches on a clock cycle
basis. It is thus possible in our approach to perform very fast
task switching without the need for context saves. In the field of
high-throughput signal processing, context saves are very ex-
pensive, as a huge amount of task state can be involved.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 22, 2009 at 04:34 from IEEE Xplore. Restrictions apply.

1726 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 35, NO. 11, NOVEMBER 2000

Fig. 5. Processor model and surrounding shell.

The processor is surrounded by a shell, as shown in Fig. 5.
The shell is a generic interface between the processor and the
communication network. It performs several functions. An im-
portant task is to stop the processor when an input FIFO is empty
or an output FIFO is full. This is implemented by manipulating
the clock in the “local clock generator”. The details of the im-
plementation are discussed later. Another task of the shell is to
provide the interface toward a control bus. Via this interface pa-
rameters or instructions can be loaded which control the mode
settings for the different tasks that are executed on the processor.
The storage of these parameter sets is done by the shell.

C. Communication Network

The task of the communication network is to provide
sufficient bandwidth for the on-chip data streams between
the output and the input FIFOs of the processors. Different
application graphs can be executed because the connections
in the network are programmable. For every connection in the
application graph, a path is created in the connection network
using circuit switching.

The network is a so-called TST network with space and time
switches (see Fig. 6). The reason to build such a network is to
guarantee nonblocking connections between output FIFOs of
processors and input FIFOs of succeeding processors, with a
predetermined amount of bandwidth for each connection. At the
input, a multiplexer is added, and at the output a demultiplexer
is added. Using four time slots, the total bandwidth equals the
sum of bandwidths of the individual channels. In the example
of Fig. 6, two paths through the network are indicated.

Each path is controlled by thecommunication controller,
which is basically the equivalent of a bus control unit (BCU)
in a single bus architecture. This controller is responsible for
the lowest level of control, i.e., the control of the steady-state
situation within one and the same video field. It basically con-
sists of a control memory with four different phases, which are
activated cyclically. The number of four is related to maximal
number of time slots in the communication network. The TST
network is programmed by putting the correct code for the
three different parts of the network in one or more phases, see
Fig. 6. For example, the connection is programmed in phase 1
via the correct code at the positions labeled with an. This

Fig. 6. Communication network.

way, bandwidth is allocated corresponding to one phase. The
connection labeled has twice the bandwidth of one channel,
because it is programmed during two phases.

At the next level of control we have designed theconfigura-
tion controller (see Fig. 6). An essential element of this con-
troller is theconfiguration memory, a memory that contains all
information related to all communication channels of a com-
plete application. This information is needed by the communi-
cation controller to set up a communication channel. This means
that the correct information is written into the phase table of the
communication controller. This can be interpreted asactivating
a communication. The phase table of the communication con-
troller contains all channels that are activated at that moment.
Note that the information in the configuration memory can be
calculated at compile time, as the maximum bandwidth needs
are known for all channels in an application graph [6].

We have included not one but two configuration memories.
The reason is the following. Since we have to process two or
more video streams that are not synchronized, it is impossible to
define some point in time at which we can switch the whole ap-
plication at once, since the field blankings may never coincide.
This means that part of the application is still processing ac-
cording to the previous settings while some other part is already
executing a new application. A gradual and run-time controlled
transition of the activity between the two application graphs is
necessary. This is only possible using two configuration memo-
ries. In this way, we can have dynamically changing applications
without visual artifacts in a display.

D. Background Memory Arbitration and Stream Caching

In the previous sections, we only discussed on-chip commu-
nication and synchronization concepts. Of course, the accesses
to off-chip memory are very important for the overall perfor-
mance of a system. As is shown in Fig. 7, a distinction can
be made between random requests (in bursts) to background
memory from CPUs and peripherals, and more periodic requests
originating from signal processing applications. While a CPU
or peripheral needs low latency for the best performance, signal
processing/media applications need guaranteed bandwidth. The
reason that signal processing applications do not need low la-
tency is that they access background in a very regular predeter-
mined manner, such that prefetching can be done optimally.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 22, 2009 at 04:34 from IEEE Xplore. Restrictions apply.

STRIK et al.: HETEROGENEOUS MULTIPROCESSOR FOR MANAGEMENT OF REAL-TIME VIDEO AND GRAPHICS STREAMS 1727

Fig. 7. Background memory arbitration.

To accommodate both types of requests, we implemented the
arbitration scheme from [7]. In that scheme, a service cycle of
clock cycles is defined, in which clock cycles are reserved
for periodic requests. As long as enough cycles are available
for the periodic requests, the random requests have highest pri-
ority. If there are just sufficient cycles left for the periodic re-
quests, they are granted highest priority, instead of the random
requests. In a well-balanced nonsaturated system, this scheme
will give the highest possible performance, by keeping the av-
erage latency for the random requests as small as possible. In
a saturated system (e.g., in a system in which the CPU is re-
questing too much bandwidth), any arbitration scheme will give
the same average latency. In that case this arbitration scheme is
suboptimal, as the variance of the latency can be quite high.

With the background memory arbitration discussed above,
the amount of on-chip buffering required for each stream from
and to background memory can be quite high. The reason is
that random requests are allowed to monopolize the background
memory for many clock cycles, if the number of clock cycles
in one service cycle is large enough. In [8] it is shown, that from
an area and flexibility point of view, it is far more advantageous
to have one central buffer pool between the processors and back-
ground memory, instead of local buffers at each processor.

In our IC realization, this central buffer pool is implemented
as a kind of stream cache, in which 20 streams from and to
background memory can be accommodated. Because one has
to program the amount of buffering for each stream, and one
can program the prefetching strategy, this stream cache can also
be regarded as a kind of DMA engine.

IV. DESIGN AND PHYSICAL IMPLEMENTATION

A. Local Clock Generator

In Fig. 5, the important role of the local clock generator was
already discussed. In this section we will discuss the details of
the implementation (see Fig. 8). The basic idea is that tasks can
be stopped by gating the clock. A running clock means that the
corresponding tasks is active and that it is not blocked. The
selection of the active task is done by the scheduler and the
blocking information depends on the status of the FIFOs. There-
fore, the scheduler and the FIFO flags are inputs for the local
clock generator. The outputs are the different clocks and the se-
lect signal. The different clocks control the state update of each

Fig. 8. Local clock generation.

tasks separately. The select signal controls the multiplexer at the
input of the logic.

As synchronization with the rest of the system is performed
inside the shell, the processor is a pure stream processing im-
plementation. Therefore, high-level synthesis tools like Phideo
[5] can be used to design the processor. The shell adapts the pe-
riodic model of Phideo to the rest of the system which is much
more dynamic.

The clock gating helps to reduce the power dissipation. Power
dissipation is important for consumer products because heat
sinks or fans must be avoided, and limited power dissipation
allows use of a cheap package. Clock gating is also used to pro-
vide hardware breakpoints and single-step debug capabilities.

B. Clock Distribution

In order to deal with deep-submicron effects and routing de-
lays the chip layout is organized in a hierarchical way using nine
layout blocks and 30 different clock domains. At the top level,
there is a relatively slow clock of 16 MHz which is used for syn-
chronization between the different clock domains. Within each
domain, local clocks of higher frequencies up to 96 MHz are
used.

The clock circuitry in each layout block is built around a
phase-locked loop (PLL) (see Fig. 9). The PLL compensates
for the insertion delay due to the clock trees and the divider
and gating logic. The PLL matches the phase of the output of
the clock tree with the 16-MHz clock reference. The clock tree
output is provided with a continuous running dummy clock tree
also running at 16 MHz, as a PLL requires a closed control loop.
The different clock trees originating from the same PLL must
be matched according to timing constraints of communications
paths between the domains. In our case, we chose to match the
different clock trees in order to avoid additional components at
clock boundaries.

C. Debug

With the increased complexity of systems on silicon debug
becomes more and more important. Today it is key to the success
of the product. The goal of debug is to find out why the chip does
not work in its application environment, in our case a set-top box
or a television set. This analysis must be done as fast as possible,

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 22, 2009 at 04:34 from IEEE Xplore. Restrictions apply.

1728 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 35, NO. 11, NOVEMBER 2000

Fig. 9. Clock distribution per layout block.

so that the system, software, or chip can be redesigned quickly.
This way the time from the manufacturing of the first samples
(‘first silicon’) to a fully functional system incorporating the IC
can be improved.

The chip can malfunction in its application for a variety of
reasons: the board may contain errors, or the chip itself may be
buggy. The chip may fail for various reasons related to the soft-
ware as well as to the hardware. The software can contain bugs
or the hardware can have design errors such as logic errors or
timing errors that may have slipped through pre-silicon verifi-
cation. Another possibility is that samples may have manufac-
turing errors that were not found using the stuck-at and IDDQ
tests.

In the debug approach, two components are used: on-chip
design-for-debug hardware (DFD), and debugger tool software
that executes on a workstation. The DFD is added at design time.
The debugger software communicates with the DFD via a serial
interface, as shown in Fig. 10. Simulator-like features are of-
fered with the real silicon;all flip-flops and embedded RAMs
can be accessed as in a Verilog simulation. Wavetraces of in-
ternal signals can be displayed as shown in the figure. Break-
points can be set to stop the chip at appropriate points in time.

The following types of DFD were added to the chip:

1) a serial interface (JTAG/IEEE 1149.1 Test Access Port);
2) multiplexers that connect all scan chains to the serial in-

terface;
3) a clock controller with halt, single step, and ‘enable test

clock’ features;
4) breakpoint controllers that can be programmed to halt the

clock controller upon detecting certain event combina-
tions.

The JTAG port provides a 5-pin serial interface to the chip. All
debug features have been made accessible via the JTAG port.

In order to provide access to all the flip-flops on the chip, the
scan chains are reused. For manufacturing test, the scan chains
are multiplexed over the functional pins to allow parallel access
to multiple scan chains on the chip. For debugging, however, the
ability to access all the flip-flops while the IC operates in the
application outweighs the speed requirement. For this reason,
all the flip-flops of the chip have been made accessible (on a
per-clock domain basis), through the JTAG port.

Scan chain access only works if the functional clock is
halted. For this reason, the local clock generator described in
Section IV-B has halt and enable-test clock pins.

After scanning out the required clock domains, and scanning
in the original state again, functional clock cycles can be issued
using the single-step pin on the clock controller. The single-step
pin is activated using commands that are issued via the JTAG
port. The halt pin is activated by the breakpoint controller.

In order to stop the chip at a reproducible point in time,
on-chip clock cycle counters or breakpoint controllers are
required. For simple applications, stopping the chipcycles
after the reset is sufficient to allow debugging.

For complex applications with data dependent processing
times, it is often impractical or impossible to calculate up
front at what clock cycle a given event will occur. Similarly, it
impossible to predict the behavior of a system if the timing of
its input signals is not deterministic. To facilitate debugging,
breakpoint controllersare added that monitor signals that give
meaningful information about the progress of computations.
Thus, not only clock cycles are counted, but also, e.g., the
occurrence of addresses on the control bus and switch matrix
packet positions can be monitored.

The debug hardware has been successfully used to read in-
ternal RAMs, create bus traces, and monitor flip-flops in pro-
cessing units.

D. Design Flow

A major factor to be able to design a system on a chip with a
limited number of people in a limited time is a working design
flow. Design entry is performed at RTL level and at behavioral
level. An in-house behavioral synthesis tool [5] specialized in
stream processing functions is used for the video scaling and
enhancement functions. The behavioral synthesis tool produces
RTL code, by deriving a data path and schedule. It also performs
memory assignment for intermediate data values. All RTL code
can then be synthesized with logic synthesis tools.

These designs are created starting from the function and can
be considered bottom up. Simultaneously, a top-level floor plan
is created. Interconnectivity and IC infrastructure (clock, power,
reset, production test, and debug) are designed to build a system
from the different independent functions.

Functional verificationis done first at processor level. All
modes are tested with self-checking test benches. Simulations
are bundled in a regression system as soon as they run without
errors. At system level several complete system simulations
must be created. They will test the processor interconnec-
tivity and infrastructure. Most of the problems are related to
incomplete or incorrect specification and to timing which was
not covered at block level using a test bench. A simulation
for production test patterns is set up, to test this part of the
design and to prove that the production test hardware performs
correctly. Finally, the memories are verified either via a built-in
self-test circuit or via scan chain access.

At layout levelthe blocks can be created in parallel. A number
of steps are done based on placement information. These in-
clude, scan chain reordering to reduce the wire length used by
scan chains, in-place optimization to match buffering with ac-
tual wire load, and buffer tree synthesis for nets with a high
fanout. The clock net, which is one of the nets with a high fanout,
also requires matching of the different delay paths from root to

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 22, 2009 at 04:34 from IEEE Xplore. Restrictions apply.

STRIK et al.: HETEROGENEOUS MULTIPROCESSOR FOR MANAGEMENT OF REAL-TIME VIDEO AND GRAPHICS STREAMS 1729

Fig. 10. Debug setup.

leaves. As the utilization is usually smaller than 90%, the empty
locations can be filled with decoupling capacitor cells. They will
reduce ground bounce and voltage loss in resistive power supply
lines (IR-drop) in the design. Finally, routing will finish the cre-
ation of a block. A layout versus schematic comparison is ca-
pable of proving that the layout is equivalent with the desired
circuit. Extraction tools are capable of estimating the parasitics
from the design layout. With these, accurate timing analysis can
be done for the extreme process cases. Under best-case condi-
tions all paths are checked for hold times. Under worst-case con-
ditions all path are checked for setup times. The next paragraph
will discuss the very important aspect of timing closure in more
detail.

The top-level assembles and interconnects all layout blocks.
One important aspect to verify is the power distribution. Es-
timated power dissipation information can be used to assign
power consumption to particular parts of the design. An ex-
tracted resistor model of the power grid is used to perform a
static qualitative analysis on the power grid. IR-drop results pro-
duced with this type of verification are shown in Fig. 11.

It can be seen that the spot with the largest voltage drop is not
perfectly in the middle of the chip. With the power routing in
rings around blocks, this would be the ideal situation. Therefore,
the power grid was adjusted such that the absolute value of the
voltage drop was lowered and the largest voltage drop is shifted
to the chip center.

E. Timing Closure

Static timing analysis has an important role in the current syn-
chronous ASIC design flow. There are a number of issues that
have a large impact on the ability to prove that a design will
work at speed. With designs getting bigger, a hierarchical ap-
proach for static timing analysis is required. This means that one

Fig. 11. IR-drop.

can verify the internals of a block prior to having the complete
design information. However, for an accurate result, the envi-
ronment of the block must be accounted for (load of outputs,
slope, and arrival time at the inputs). It must be possible as well
to create a timing model for every block in order to perform a
check at the higher level. This has an impact on hierarchy deci-
sions. One requirement is for example the presence of all clocks

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 22, 2009 at 04:34 from IEEE Xplore. Restrictions apply.

1730 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 35, NO. 11, NOVEMBER 2000

TABLE I
CHIP METRICS

Fig. 12. Photo of the chip.

which relate to I/O as pins on the boundary of a block, in order to
be able to create a timing model. As a result the clock distribu-
tion, gating and division logic should be at the highest hierarchy
level.

V. CHIP METRICS

Table I provides measured metrics of working silicon for the
multisynchronous system on a chip described in this paper. In
total, 15 autonomous dedicated processors work in parallel. The
15 functional entities are regrouped into nine layout entities for
which the backend trajectory is completed and which are com-
bined at the chip top level. The chip is shown in Fig. 12.

VI. CONCLUSION

We have discussed the cost-effective design of silicon for
challenging multiwindow TV applications. In contrast to PC
windows, sizing can be done incrementally at run-time without

artefacts. The chip is capable of managing up to 25 internal
video streams with hard real-time constraints.

We have covered all relevant aspects ranging from the appli-
cation domain analysis, the programming paradigm, the archi-
tecture and the physical implementation.

The application domain analysis resulted in the definition of
a limited set of high-level functions which have to be combined
in different flowgraphs that represent different applications. As
a consequence, we have adopted Kahn data flow graphs as our
programming paradigm.

To design the architecture, we decided to use a plat-
form-based approach in which computation is separated from
communication. The computation takes place in autonomously
operating processors, each optimized for particular types of
functions. The interfaces to the processor are standardised by
defining processor shells.

The communication is implemented as a reconfigurable con-
nection network. Use is made of circuit switching and a TST
approach. Two configurations are stored to allow run-time dy-
namic reconfiguration. Worst-case processing performance is
guaranteed. Self-scheduling data driven processing eliminates
need for a cycle-accurate compile-time schedule. All this is nec-
essary to avoid display artefacts.

Finally, we discussed the physical implementation in silicon.
It was shown that the application-driven design style using high-
level and RT-level synthesis leads to a set of challenges. More
specifically, clock gating, clock distribution, debug, verification,
and timing closure are discussed in detail. The design shows that
different clock domains up to 96 MHz in a 0.35-m process are
possible using synthesis on a chip of 1313 mm .

ACKNOWLEDGMENT

Many colleagues have contributed to the results presented in
this paper, for which the authors are more than grateful. They
would like to especially thank the people who have contributed
to the realization of the silicon: E. Waterlander, F. Harmsze,
A. Vaassen, L. Sevat, M. Oosterhuis, H. van Herten, E. Jaspers,
J. Janssen, G. Essink, J. Leijten, and P. Wielage.

REFERENCES

[1] T. A. C. M. Claasen, “High speed: Not the only way to exploit the in-
trinsic computational power of silicon,” inISSCC Dig. Tech. Papers,
1999, pp. 22–25.

[2] E. A. Lee and T. M. Parks, “Dataflow process networks,”Proc. IEEE,
vol. 83, pp. 773–801, 1995.

[3] C. I. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in a hard-real-time environment,”J. Assoc. Comput. Mach., vol.
20, no. 1, pp. 46–61, 1973.

[4] G. J. van Rootselaar and B. Vermeulen, “Silicon debug: Scan chains
alone are not enough,” inProc. IEEE Int. Test Conf., 1999, pp. 892–902.

[5] J. L. van Meerbergen, P. Lippens, W. Verhaegh, and A. van der Werf,
“PHIDEO: High-level synthesis for high-throughput applications,”J.
VLSI Signal Processing, vol. 9, no. 1–2, pp. 89–104, Jan. 1995.

[6] A. H. Timmer, F. J. Harmsze, J. A. J. Leijten, M. T. J. Strik, and J. L.
van Meerbergen, “Guaranteeing on- and off-chip communication in em-
bedded systems,” inProc. IEEE Computer Society Workshop VLSI ’99,
Orlando, FL, pp. 93–98.

[7] S. Hosseini-Khayat and A. Bovopoulos, “A simple and efficient bus
management scheme that supports continuous streams,”ACM Trans.
Computer Systems, vol. 13, no. 2, pp. 112–140, 1995.

[8] F. J. Harmsze, A. H. Timmer, and J. L. van Meerbergen, “Memory arbi-
tration and cache management in stream-based systems,” inProc. DATE
2000, Paris, France, Mar. 2000, pp. 257–262.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 22, 2009 at 04:34 from IEEE Xplore. Restrictions apply.

STRIK et al.: HETEROGENEOUS MULTIPROCESSOR FOR MANAGEMENT OF REAL-TIME VIDEO AND GRAPHICS STREAMS 1731

[9] J. A. J. Leijten, J. L. van Meerbergen, A. H. Timmer, and J. A. G.
Jess, “Stream communication between real-time tasks in a high-perfor-
mance multiprocessor,” inProc. DATE 1998, Paris, France, Mar. 1998,
pp. 125–131.

[10] J. A. J. Leijten. (1998, Nov.) Real-time constrained reconfigurable com-
munication between embedded processors, Ph. D. dissertation. Eind-
hoven Univ. Technol., Eindhoven, The Netherlands. [Online]. Available:
http://www.ics.ele.tue.nl/es/papers/sld.shtml

Marino T. J. Strik (S’93–M’95) received the
degree in electrical engineering from the Eind-
hoven University of Technology, Eindhoven, The
Netherlands, in 1992. In 1994, he completed the
post-graduation designers course of the Eindhoven
University of Technology. These two years he
worked on high-level synthesis and code generation
for application domain specific processors.

He joined Philips Research, Eindhoven, in 1995 in
the digital VLSI group. There he was involved in IC
design methodology with a focus on digital system

on a chip realization. Recently, he joined Philips Semiconductors to support the
development of processor peripherals and interconnectivity IP where the focus
is on design reuse methodology.

Adwin H. Timmer was born in Apeldoorn, The
Netherlands, in 1966. He received the electrical
engineering and the Ph.D. degrees from the Eind-
hoven University of Technology, Eindhoven, The
Netherlands, in 1990 and 1996, respectively.

In 1995, he joined the Philips Research Labo-
ratories, Eindhoven. In 1998, he was a Visiting IC
Architect with the Philips Semiconductors WSG
business line, Mountain View, CA. His current
interests are in IC architectures for high-perfor-
mance signal processing applications, system-level

design methods, hardware/software co-design, and compilation techniques for
embedded DSPs.

Jef L. van Meerbergen (M’87–SM’92) received
the electrical engineering and the Ph.D. degrees
from the Katholieke Universiteit Leuven, Belgium,
in 1975 and 1980, respectively.

In 1979, he joined the Philips Research Laborato-
ries, Eindhoven, The Netherlands. He was engaged
in the design of MOS digital circuits, domain-spe-
cific processors, and general-purpose digital signal
processors. In 1985, he started working on applica-
tion-driven high-level synthesis. Initially, this work
was targeted towards audio and telecom DSP appli-

cations. Later, the application domain shifted towards high-throughput applica-
tions. His current interests are in system-level design methods, heterogeneous
multiprocessor systems, and reconfigurable architectures. He is the Associate
Editor ofDesign Automation for Embedded Systems. He is a part-time Professor
at the Eindhoven University of Technology, Eindhoven.

Dr. van Meerbergen is a Philips Research Fellow. His Phideo paper received
the Best Paper Award at the 1997 ED&TC conference.

Gert-Jan van Rootselaarreceived the M.S. degree
in electrical engineering from the Eindhoven Univer-
sity of Technology, Eindhoven, The Netherlands, in
1995.

Currently he is a Research Scientist at the Depart-
ment of VLSI Design Automation and Test, Philips
Research Laboratories, Eindhoven. He is responsible
for the development of methods and tools for debug-
ging first silicon of system-on-chip ICs.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on January 22, 2009 at 04:34 from IEEE Xplore. Restrictions apply.

