
Scientific Programming 17 (2009) 325–335 325

DOI 10.3233/SPR-2009-0292

IOS Press

Heterogeneous multicore parallel

programming for graphics processing units

Francois Bodin and Stephane Bihan ∗

CAPS entreprise, 4 allée Marie Berhaut, 35000 Rennes, France

Abstract. Hybrid parallel multicore architectures based on graphics processing units (GPUs) can provide tremendous computing

power. Current NVIDIA and AMD Graphics Product Group hardware display a peak performance of hundreds of gigaflops.

However, exploiting GPUs from existing applications is a difficult task that requires non-portable rewriting of the code. In this

paper, we present HMPP, a Heterogeneous Multicore Parallel Programming workbench with compilers, developed by CAPS

entreprise, that allows the integration of heterogeneous hardware accelerators in a unintrusive manner while preserving the legacy

code.

Keywords: Heterogeneous programming, GPUs, compiler, runtime

1. Introduction

Using graphics processing units (GPUs) for scien-

tific computing is a recent and fast evolving trend [4].

The evolution has been so fast that the usual general-

purpose computing on graphics processing units

(GPGPU) that usually refers to programming vertex

and fragment shaders, is now obsolete.

Many phenomena have been at the origin of the

use of GPUs in scientific computing. The first one is

the evolution toward multicore architecture that dou-

bles the number of cores instead of doubling clock fre-

quency every 18 months. As a consequence, this has

driven a programming effort toward parallel program-

ming and has offered opportunities to hardware ac-

celerator based approaches. Performance of GPUs are

about 750 times higher than a decade ago.

The second one has been the introduction of pro-

grammable vertex and fragment shaders [12] that have

exposed a very high potential computing power to pro-

grammers outside the graphics area.

The third phenomenon is new programming lan-

guages like NVIDIA CUDA, Brook+ or soon OpenCL

that are based on a stream model more suited to sci-

entific programming than the obscure OpenGL or Di-

rectX standards used by GPGPU pioneers.

However, the main objective of these languages is

to expose some of the specifics of the stream architec-

*Corresponding author. Tel.: +33 222 511 600; E-mail: Stephane.

Bihan@caps-entreprise.com.

ture in order to better exploit their performance. While
CUDA and Brook+ are vendor-specific programming
languages, the new OpenCL initiative aims at becom-
ing a programming standard for a large range of avail-
able accelerators.

Based on compiler directives, HMPP (heteroge-
neous multicore parallel programming) offers a higher
level of abstraction but still allows developers to fine
tune the programming of accelerators. HMPP provides
developers with a heterogeneous C and Fortran com-
piler with CUDA and SSE code generators. Hardware-
specific codings are dissociated from the legacy code
as additional software plugins. Contrary to applica-
tions that have been specifically written for a target
architecture, HMPP produces applications that run on
various hardware platforms whether an accelerator is
present or not.

1.1. GPUs as hardware accelerators

GPUs1 can achieve very high performance and
growth is promised to be more than Moore’s law [14].
Many applications achieve [16] a large fraction of peak
performance.

In that case, the advantage of GPUs over general
purpose cores is undoubtedly interesting. To provide
performance benefit an application must have the fol-
lowing properties:

1NVIDIAs GeForce 8800 GTX GPU produces a theoretical max-

imum of 346 GFLOPS single precision. Current generation already

reaches 1 Teraflops.

1058-9244/09/$17.00 2009 – IOS Press and the authors. All rights reserved

326 F. Bodin and S. Bihan / Heterogeneous multicore parallel programming

1. Massive data parallelism.

2. Compute intensive kernels that represent a very

large fraction of execution time (cf. Amdahl’s

law [9]).

3. Arithmetic intensity/density that favors the use of

the many computing units.

4. Simple regular/local memory accesses (i.e. not

pointer tracking code, etc.) that can exploit the

pipeline structure of the GPU board.

As a consequence of these requirements, in most

cases, some efforts at the algorithm level are needed

to reorganize the computations in order to adapt them

to GPU computing. For linear algebra (Cholesky, LU,

QR), efficiency of 80–90% of the peak speed has been

reported [10,18] for large matrices which corresponds

to a 3–5 speedup compared to a 2.4 GHz Core2 Quad

Q6600.

Communication between CPUs and GPUs is one of

the main bottleneck when using a GPU. Current PCI

Express ×162 is able to deliver up to 4 GB/s of peak

bandwidth per direction (in practice 3.0–3.3 GB/s is

observed). This is to compare to the 76 GB/s peak

memory bandwidth per GPU Tesla C870 (an Intel Core

2 Duo has a 8.5 GB/s peak memory bandwidth). Trans-

ferring data over PCI Express has also a fairly high la-

tency of about 15 microseconds [18] that makes it inef-

ficient to use GPUs for small problems. Usually using

“pinned CPU memory” achieves better performance

for data transfers.

Overlapping communication and computation can

hide all or part of latency of the data transfers leading

to extra speedup but this is in some cases insufficient

to solve the communication issue. A successful use of

GPUs assumes that a large part of the data will remain

on the GPU during the execution of an application.

1.2. Low level GPU programming

GPU programming relies on a data parallel para-

digm, frequently denoted stream computing. Stream

computing is mostly based on a map operation that

consists in applying the same computation to all ele-

ments of a stream (e.g. an array). This programming

model is a consequence of the internal GPU architec-

ture that relies on SIMD instructions and a memory

hierarchy that does not perform scatter operation effi-

ciently (operation involving multiple indirection, e.g.

A[B[i]] = ...). Stream computing can be effi-

2See http://www.pcisig.com/specifications/pciexpress/ or http://

en.wikipedia.org/wiki/PCI_Express.

ciently implemented in a massively parallel fashion.

However, stream parallelism does not apply to many

application algorithms.

A stream is an array, with one or more dimen-

sions, of homogeneous elements. Stream programming

is based on the following operations:

Map: The map operation consists in applying a kernel

function to all elements of a stream. The kernel

function can use elements from multiple input

streams.

Reduce: A reduction operation uses stream elements

to compute a single value (e.g. dot product).

Two types of memory access operations can be per-

formed:

Gather: A gather is usually of the form x =

S1[S2[i]]. It assumes that a kernel can read

any elements of a stream.

Scatter: A scatter memory operation looks like

S1[S2[i]] = This assumes that a ker-

nel can write any elements of a stream. Former

hardware architecture of GPUs did not allow

an efficient implementation of this operation.

Recent architectures alleviate this limitation. It

should however be noted that if S2[i] is not

a permutation of S1 indices then the result of

the operation is nondeterministic: if S2[i] =

S2[j] = x, say, when i != j then S1[x]

will be assigned more than once, in an undefined

order.

1.3. Overview of the paper

This paper is organized as follows: Section 2 de-

scribes the HMPP programming directives, Section 3

covers the compilation of hybrid applications using

HMPP, Section 4 argues over the need for a runtime

while Section 5 presents performance results for some

application kernels and Section 6 gives an overview of

current related works.

2. HMPP programming

HMPP proposes a solution to not only simplify the

use of hardware accelerators (HWA) in conventional

general purpose applications, but also to keep the ap-

plication code portable.

The goal is to integrate the use of HWAs rather than

porting the application to make use of them. The cho-

sen programming approach is similar to the widely

F. Bodin and S. Bihan / Heterogeneous multicore parallel programming 327

available OpenMP standard but designed to handle

HWAs. The hardware-specific versions of the compu-

tations to be offloaded to a HWA are dissociated from

the native application source code. As such, HMPP

makes a programming glue between hardware-specific

codings and standard programming languages.

Based on a set of directives, the HMPP Workbench

provides developers with C and Fortran compilers, and

a runtime library. It gives programmers a simple, flex-

ible and portable interface for developing parallel ap-

plications whose critical computations are distributed,

at runtime, over the available heterogeneous cores.

2.1. Codelet concept

HMPP is based on the concept of codelets, functions

that can be remotely executed on a HWA.

A codelet has the following properties:

1. It is a pure function.

2. Its return value is void.

3. It does not contain static or volatile vari-

able declaration.

4. The parameters are not vararg.

5. It is not recursive.

6. Its parameters are not aliased and can be copy-in

or copy-out.

7. It does not contain callsite directives (i.e. re-

mote procedure call to another codelet).

8. It does not contain any function calls such as li-

brary functions like malloc, printf,

Except for the aliasing property, all of these restric-

tions are checked by the HMPP compiler.

An example of a correct codelet candidate is shown

in Listing 1, we assume here the parameters do not

alias.

2.2. Directives for declaring and executing a codelet

The HMPP directives address the remote execution

(RPC) of a codelet as well as the data transfers to and

void codeletOk(int n,

float v1[n],

float v2[n],

float v3[n]) {

int i;

for (i = 0 ; i < n ; i++) {

v1[i] = v2[i] + v3[i];

}

}

Listing 1. Correct codelet example.

from the HWA memory if different from the host CPU

memory.

By default, all the parameters are loaded in the HWA

just before the RPC, and the main memory is updated

when the RPC has completed. More directives are pro-

vided to upload and download data to and from HWAs

before the remote execution of a codelet.

All the directives belonging to the declaration, ex-

ecution, data transfers, etc., of a codelet are identified

by a unique label. Below is the most trivial way of

accelerating an application using only two directives:

a codelet directive to declare a function as a codelet,

and a callsite directive inserted before the function

call to specify the potential use of the codelet.

In the following example (Listing 2), the matvec

function is declared as a candidate for CUDA hard-

ware acceleration. HMPP should produce the CUDA

version of the function. The args parameter of the di-

rective indicates that the outv parameter is used as

input and output. By default, all parameters are input.

In this example, the device allocation, data upload,

codelet execution and result download are performed

at the call site. If the codelet is called in a loop, this

leads to overhead that might inhibit the performance

offered by HWAs.

2.3. Data transfers directives to optimize

communication overhead

When using a HWA, the main bottleneck is often the

data transfers between the HWA and the main proces-

sor. To limit the communication overhead, data trans-

fers can be overlapped with successive executions of

the same codelet by using the asynchronous property

of the HWA. For this, two directives can be used:

1. The allocate directive locks the HWA and al-

locates the needed amount of memory.

2. The advancedload directive prefetches data

before the remote execution of the codelet. More-

over, if the data variable is declared constant

(const qualifier in the directive parameter) then it

is loaded only once for all codelet executions and

reused as long as the HWA is not released.

3. The delegatedstore directive is a synchro-

nization barrier to wait for an asynchronous

codelet execution to complete and to then down-

load the results.

In the following example (Listing 3), the device ini-

tialization, memory allocation and upload of the input

328 F. Bodin and S. Bihan / Heterogeneous multicore parallel programming

#pragma hmpp simple codelet, args[outv].io=inout, target=CUDA

static void matvec(int sn, int sm,

float inv[sm], float inm[sn][sm], float *outv){

int i, j;

for (i = 0 ; i < sm ; i++) {

float temp = outv[i];

for (j = 0 ; j < sn ; j++) {

temp += inv[j] * inm[i][j];

}

outv[i] = temp;

}

int main(int argc, char **argv) {

int n;

........

#pragma hmpp simple callsite, args[outv].size={n}

matvec(n, m, myinc, inm, myoutv);

........

}

Listing 2. Codelet and call site HMPP directive use example.

data are done only once outside the loop and not in

each iteration of the loop.

The synchronize directive allows to wait for the

asynchronous execution of the codelet to complete be-

fore launching another iteration. Finally the dele-

gatedstore directive outside the loop uploads the

sgemm result.

3. Compiling hybrid applications

In terms of use, the HMPP compiler workflow is

really close to traditional compilers with two main

passes as illustrated in Fig. 4: one that builds a

standalone application running on the host proces-

sor and a second pass for producing the acceler-

ated versions of the codelets as dynamic shared li-

braries.

3.1. Host application compilation

As shown in the left part of Fig. 4, the HMPP

preprocessor translates the directives into calls to the

HMPP runtime in charge of managing the execution

of the codelets. The preprocessed application is then

compiled using the generic host compiler. Note that the

host application can run standalone without hardware

accelerators.

3.2. Codelet generation

The right part in Fig. 4 illustrates the production of

the codelets as shared libraries in order to be loaded

by the HMPP runtime. The template generator pro-

duces the codelet skeleton that contains all the runtime

callback functions such as HWA allocation, data trans-

fers, etc.

The developer can either write the codelet kernel in

the hardware programming language or let the target

generator produce it automatically. The codelet binary

is finally produced using the hardware-vendor com-

piler.

3.3. Codelet generation directives

The HMPP codelet generators take Fortran and a

subset of C99 as input code. This restriction aims at

ensuring a large portability of the code on most HWAs.

For instance, allowing pointer arithmetic would forbid

the generation of code for many hardware platforms.

Codelet generation can be further improved with the

use of codelet generation directives which help the

generator optimize the produced target code for spe-

cific platforms, such as CUDA.

For instance, the loop unroll and jam transforma-

tion is intended to increase register exploitation and de-

crease memory loads and stores per operation within

an iteration of a nested loop. Improved register us-

age decreases the need for main memory accesses and

allows better exploitation of some machine instruc-

tions.

F. Bodin and S. Bihan / Heterogeneous multicore parallel programming 329

int main(int argc, char **argv) {

#pragma hmpp sgemm allocate, args[vin1;vin2;vout].size={size,size}

#pragma hmpp sgemm advancedload, args[vin1;vin2;vout] &

#pragma hmpp sgemm advancedload, args[m;n;k;alpha;beta]

for(j = 0 ; j < 2 ; j++) {

#pragma hmpp sgemm callsite, asynchronous, &

#pragma hmpp sgemm args[vin1;vin2;vout].advancedload=true &

#pragma hmpp sgemm args[m;n;k;alpha;beta].advancedload=true

sgemm(size, size, size, alpha, vin1, vin2, beta, vout);

#pragma hmpp sgemm synchronize

}

#pragma hmpp sgemm delegatedstore, args[vout]

#pragma hmpp sgemm release

Listing 3. Advanced asynchronous HMPP programming.

Listing 4. HMPP compilation flow.

4. Runtime library

Hardware resources management is a critical issue

that is not tackled by current exploitation systems. Su-

percomputers have been avoiding this problem by run-

ning only one application at a time or by partitioning

the machine nodes. Unfortunately, programming and

resource allocation cannot be considered separately.

Sharing a GPU between applications, when it does

work, usually results in very poor performance due to

context switching on the device.

Current available GPUs leave to the user the shar-

ing of a given device. This is fine when the nodes of

an HPC machine are partitioned among users running

a single application. However, in less controlled envi-

ronments (HPC workstations, laptops) this is an issue

330 F. Bodin and S. Bihan / Heterogeneous multicore parallel programming

!$HMPP sgemm3 codelet, target=CUDA, args[vout].io=inout

SUBROUTINE sgemm(m,n,k2,alpha,vin1,vin2,beta,vout)

INTEGER, INTENT(IN) :: m,n,k2

REAL, INTENT(IN) :: alpha,beta

REAL, INTENT(IN) :: vin1(n,n), vin2(n,n)

REAL, INTENT(INOUT) :: vout(n,n)

REAL :: prod

INTEGER :: i,j,k

!$HMPPCG unroll(8), jam(2), noremainder

!$HMPPCG parallel

DO j=1,n

!$HMPPCG unroll(8), splitted, noremainder

!$HMPPCG parallel

DO i=1,n

prod = 0.0

DO k=1,n

prod = prod + vin1(i,k) * vin2(k,j)

ENDDO

vout(i,j) = alpha * prod + beta * vout(i,j) ;

END DO

END DO

END SUBROUTINE sgemm

Listing 4. Use example of the unroll and jam directive.

that has to be addressed at run-time level.

The HMPP runtime handles the execution of code-

lets for different and various hardware (GPUs, SIMD

units, FPGAs) but also for specific execution contexts.

The appropriate execution hardware is selected at run-

time depending on the system configuration, the re-

source availability and data dependent conditions. If

a hardware accelerator is not present or not available,

HMPP runs the native codelet function on the host sys-

tem instead. If a codelet is attempting to run on a hard-

ware, let say GPU, that is locked by another codelet,

HMPP will execute it in the second GPU if there is one,

then in the second target the codelet has been declared

for, if any, or lastly in the host system otherwise.

5. Experimental results

In this section we give the performance of a few C

and Fortran kernel examples accelerated and compiled

with HMPP. The used target platform is an Intel Core 2

Duo CPU@2,66GHz and an NVIDIA Tesla C1060.

The kernels running on the host system have been com-

piled using the latest Intel icc and ifortran compilers

with -O3 compiler flags.

The four codelets are given:

SGEMM: The performance of the matrix multiplica-

tion generated with HMPP is given in Fig. 2. It

compares to the performance of the Intel MKL

library implementation running on four cores.

Fig. 2. Performance results for a MxM codelet.

As we want to show the raw performance of
the HMPP generated code, these figures do not
include the communication time. However, for
large matrices, the data transfers overhead is
marginal. The code is given in Listing 5.

Convolution: This linear algebra operation is widely
used in signal processing. The performance of
the generated code is given in Fig. 3.

Black–Scholes: Black–Scholes is a partial difference
equation which model is used in finance. The
performance of the generated code is given in
Fig. 4.

Sobel: Sobel [11] filter is an image processing algo-
rithm. The performance of the generated code is
given in Fig. 5.

The sizes of the input data are given in each figure.

F. Bodin and S. Bihan / Heterogeneous multicore parallel programming 331

typedef struct{ float r, i;} Complex;

#pragma hmpp convolution2d codelet, args[data; opx].io=in, args[convr].io=out, target=CUDA

void convolution2d(Complex *data, int nx, int ny, Complex *opx,

int oplx, int oply, Complex *convr) {

int hoplx = (oplx+1)/2; int hoply = (oply+1)/2;

int iy, ix;

#pragma hmppcg parallel

for (iy = 0; iy < ny; iy++) {

#pragma hmppcg parallel

for (ix = 0; ix < nx; ix++) {

float dumr =0.0, dumi = 0.0; int ky;

for(ky = -(oply - hoply - 1); ky <= hoply; ky++) {

int kx;

for(kx = -(oplx - hoplx - 1); kx <= hoplx; kx++){

int dx = min(max(ix+kx, 0), (nx - 1));

int dy = min(max(iy+ky, 0), (ny - 1));

dumr += data[dy * nx + dx].r * opx[(hoply - ky) * oplx + (hoplx - kx)].r;

dumr -= data[dy * nx + dx].i * opx[(hoply - ky) * oplx + (hoplx - kx)].i;

dumi += data[dy * nx + dx].r * opx[(hoply - ky) * oplx + (hoplx - kx)].i;

dumi += data[dy * nx + dx].i * opx[(hoply - ky) * oplx + (hoplx - kx)].r;

}

}

convr[iy*nx+ix].r = dumr; convr[iy*nx+ix].i = dumi;

}

}

}

Listing 5. Convolution codelet.

Fig. 3. Performance results for a convolution codelet.

6. Related works

Many stream programming languages have been

proposed to program GPUs [7,8,13,15,17]. There is

also quite a number of software solutions. In this sec-

tion, we briefly expose these solutions and compare

them to HMPP.

6.1. PGI code generation

PGI has been developing x86 compilers for years.

They have recently announced the programming of

GPUs as part of a pre-release compiler feature [5].

Fig. 4. Performance results for a Black–Scholes codelet.

The developer also uses directives to annotate sec-

tions of the application to offload to a GPU (Listing 6).

All communications rely on the compiler analyses to

determine when to prefetch data and to download the

result back from the GPU. Also all the GPU program-

ming parts should not be open to the developer and

would therefore not be tuneable.

6.2. NVIDIA CUDA

CUDA [3] organizes the computation in a hierarchi-

cal model that can easily be mapped on the NVIDIA

multiprocessor architecture:

332 F. Bodin and S. Bihan / Heterogeneous multicore parallel programming

Fig. 5. Performance results for a Sobel codelet.

module mymm

contains

subroutine mm1(a, b, c, m)

real, dimension(:,:) :: a,b,c

integer i,j,k,m

!$acc region

do j = 1,m

do i = 1,n

a(i,j) = 0.0

enddo

do k = 1,p

do i = 1,n

a(i,j) = a(i,j) + b(i,k) * c(k,j)

enddo

enddo

enddo

!$acc end region

end subroutine

end module

Listing 6. PGI annotation example.

Grid: Organize the computation to be distributed on

the multiprocessors.

Block: A group of threads to be executed on the same

multiprocessors. This group of threads can ac-

cess the same shared memory (see Listing 7).

Thread: A kernel function that is executed on all PE.

A thread has a unique identifier built with the

block identifier in the grid and a thread identifier

in the block.

For instance, the following code shows an example

of CUDA program. Variables v1, v2, v3 are arrays in

the device memory. Line 13 creates the CUDA grid

4 × 1, line 14 creates 100 × 1 threads per grid element,

line 27 shows how memory transfers are programmed.

Function in line 1 is the kernel that will constitute the

threads body.

6.3. AMD Brook+

Brook+ [1] is an implementation by AMD of the

Brook GPU [2] language. It is an extension to the C-

language. Brook+ is a flatter programming model com-

pared to CUDA. It is based on a multidimensional

stream data structure.

A simple Brook+ program is shown in Listing 8.

Streams are declared in line 8, set in line 12 and read

in line 15. Line 14 shows the mapping of the kernel

function over all elements of the streams.

6.4. RapidMind

While RapidMind [6] is a development platform that

comes with an Application Programming Interface and

a runtime, HMPP is a workbench based on a set of di-

rectives that comes with code generation tools and a

runtime.

RapidMind mainly addresses C++ applications with

a set of RapidMind C++ classes. The application

source code is semantically and syntactically modified

to make use of the classes, thus becoming RapidMind

dependent. The application is compiled using general-

purpose compilers and linked with RapidMind run-

time.

6.5. OpenCL initiative

OpenCL3 is an initiative launched by Apple to

ensure application portability across various GPUs.

OpenCL aims at being an open standard (royalty

free and vendor neutral) developed by the Khronos

OpenCL working group.4 OpenCL shares many fea-

tures with CUDA and exposes data and task paral-

lelism. It specifies accuracy of floating-point computa-

tions. The language for writing kernels is derived from

ISO C99 with a few restrictions (recursion, function

pointers, functions in C99 standard headers, . . .). Beta

version of OpenCL implementation from Apple is an-

nounced for Q1 2009.

3A good overview of the language has been provided at Sisgraph

2008 by Aaftab Munshi.
4See http://www.khronos.org.

F. Bodin and S. Bihan / Heterogeneous multicore parallel programming 333

__global__ void simplefunc(float *v1, float *v2, float *v3){

/* compute array index blockIdx.y and threadIdx.y are 0

since the y dimension of the grid and blocks is 1.

*/

int i = blockIdx.x * 100 + threadIdx.x;

v1[i] = v2[i] * v3[i];

}

int main(int argc, char **argv) {

unsigned int n = 400;

float *t1 = NULL, *t2 = NULL, *t3 = NULL;

unsigned int i, j, k, seed = 2, iter = 3;

dim3 grid(4,1);

dim3 thread(100,1);

t1 = (float *) calloc(n*iter, sizeof(float));

t2 = (float *) calloc(n*iter, sizeof(float));

t3 = (float *) calloc(n*iter, sizeof(float));

CUT_DEVICE_INIT();

...

// allocate gpu_tx buffers for memory transfer

cudaMalloc((void**) &gpu_t1, n*sizeof(float));

cudaMalloc((void**) &gpu_t2, n*sizeof(float));

cudaMalloc((void**) &gpu_t3, n*sizeof(float));

...

for (k = 0 ; k < iter ; k++) {

// copy data from host memory to GPU

cudaMemcpy(gpu_t2,&(t2[k*n]), n*sizeof(float), cudaMemcpyHostToDevice);

cudaMemcpy(gpu_t3,&(t3[k*n]), n*sizeof(float), cudaMemcpyHostToDevice);

simplefunc<<<grid,thread>>>(gpu_t1,gpu_t2,gpu_t3);

// copy data from GPU memory to host memory

cudaMemcpy(&(t1[k*n]),gpu_t1, n*sizeof(float), cudaMemcpyDeviceToHost);

}

...

return 0;

}

Listing 7. CUDA code example.

// kernel to be apply, on the GPU, to all elements of the stream

kernel void multiply(float a<>, float b<>, out float c<>) {

c = a * b;

}

// host program

int main(intargc, char **argv) {

float a<10, 10>, b<10, 10>, c<10, 10>;

float A[10][10], B[10][10], C[10][10];

// Initialize input arrays

streamRead(a, A);

streamRead(b, B);

multiply(a, b, c);

streamWrite(c, C);

}

Listing 8. Brook+ code example.

334 F. Bodin and S. Bihan / Heterogeneous multicore parallel programming

7. Conclusion

GPU computing coupled with Intel or AMD mul-

ticores are very cost-effective and promising high

performance general-purpose heterogeneous hardware

platforms. However, they today represent the perfect

example of the dilemma developers have to face. GPUs

can provide a 10x and more performance improvement

but their programming is still quite challenging.

Parallel programming environments and languages

represent a deep issue at the heart of the barely under-

stood hardware/software interaction. Computer scien-

tists have been tackling this issue, mainly for scientific

computing, for years with mitigated success. For in-

stance, High Performance Fortran that integrates many

features for parallel computers (data distribution, . . .),

results from a large research community effort. This

initiative has pushed forward compilation techniques

but has not reached the market. Industry is also in a

very difficult position. It has to balance the advantages

between bringing an advanced programming technol-

ogy that will target its own hardware approach (such

as NVIDIAs CUDA language, for instance) at the cost

of portability, and contributing to a standard that might

help competition but increases the overall portfolio of

parallel applications.

A consensus is emerging between major hardware

constructors with the arrival of the OpenCL standard

language that opens programming to many accelera-

tors, but contrary to the C and Fortran high level stan-

dard languages, OpenCL will still require the develop-

ers to have a good understanding of the hardware ar-

chitecture details to get performance.

There is also commercial solutions like the Rapid-

Mind platform offering a proprietary APIs that hides

all the details of the GPU architecture. While the

RapidMind platform makes the application portable

accross GPUs from different vendors, it is locked to

a software vendor. Moreover, fine tuning for perfor-

mance the GPU programming is not possible.

Resources management is also an open question and

critical issue that is not tackled by current exploita-

tion systems. Supercomputers have been avoiding this

problem by running only one application at a time or

by partitioning the machine nodes. Unfortunately, pro-

gramming and resource allocation cannot be consid-

ered separately. Virtualizing hardware resources is go-

ing to help but the performance issue remains. How to

make sure that competition for hardware resources be-

tween applications will not degrade performance?

To address code portability as well as performance

on heterogeneous multicore platforms, CAPS (http://

www.caps-entreprise.com) proposes HMPP, a standard

directive-based programming workbench that ensures

code portability, offers a high level of abstraction for

programming the GPUs and is open to fine tuning GPU

programming by either plugin written kernels or li-

brary functions. Besides being a complete software de-

velopment toolchain, HMPP also deals with resource

management at run-time.

Even if the future of GPUs is not clear since graphic

cores could be integrated on the processor die, they

are surely a good example of how thousands of cores

might be running and be used by applications. Differ-

ent approaches are emerging and heterogeneous com-

pilers are ready for takeoff.

References

[1] Brook+ sc07 bof session, amd, http://ati.amd.com/technology/

streamcomputing/amd-brookplus.pdf.

[2] Brookgpu research project at the Stanford university, http://

graphics.stanford.edu/projects/brookgpu/.

[3] Download cuda, http://developer.nvidia.com/object/cuda.htm.

[4] General-purpose computation using graphics hardware, http://

www.gpgpu.org/.

[5] Pgi fortran & c accelerator programming model, http://www.

pgroup.com/lit/pgi_whitepaper_accpre.pdf.

[6] Rapidmind corp. home page, http://www.rapidmind.net/.

[7] Sh: A high-level metaprogramming language for modern gpus,

http://libsh.org/.

[8] A. Ghuloum, T. Smith, G. Wu, X. Zhou, J. Fang, P. Guo, B. So,

M. Rajagopalan, Y. Chen and B. Chen, Future-proof data par-

allel algorithms and software on intelĺ multi-core architecture,

Technical report, Intel Technology Journal.

[9] G.M. Amdahl, Validity of the single processor approach to

achieving large scale computing capabilities, in: Proc. AFIPS,

Vol. 30, AFIPS Press, Reston, VA, 1967, pp. 483–485.

[10] N. Galoppo, N.K. Govindaraju, M. Henson and D. Manocha,

Lu-gpu: Efficient algorithms for solving dense linear systems

on graphics hardware, in: SC’05: Proceedings of the 2005

ACM/IEEE conference on Supercomputing, IEEE Computer

Society, Washington, DC, 2005, p. 3.

[11] A.K. Jain, Fundamentals of Digital Image Processing, Prentice

Hall, Englewood Cliffs, NJ, 1989.

[12] E.S. Larsen and D. McAllister, Fast matrix multiplies using

graphics hardware, in: Supercomputing’01: Proceedings of the

2001 ACM/IEEE conference on Supercomputing (CDROM),

ACM, New York, NY, 2001, p. 55.

[13] W.R. Mark, R.S. Glanville, K. Akeley and M.J. Kilgard, Cg:

A system for programming graphics hardware in a c-like lan-

guage, in: SIGGRAPH’03: ACM SIGGRAPH 2003 Papers,

ACM, New York, NY, 2003, pp. 896–907.

[14] G.E. Moore, Cramming more components onto integrated cir-

cuits, Electronics 38(8) (1965), 114–117.

F. Bodin and S. Bihan / Heterogeneous multicore parallel programming 335

[15] OpenGL, D. Shreiner, M. Woo, J. Neider and T. Davis,

OpenGL(R) Programming Guide: The Official Guide to Learn-

ing OpenGL(R), Version 2 (5th Edition), Addison-Wesley,

Reading, MA, August 2005.

[16] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger,

A.E. Lefohn and T.J. Purcell, A survey of general-purpose

computation on graphics hardware, Computer Graphics Forum

26(1) (2007), 80–113.

[17] M. Strengert, C. Müller, C. Dachsbacher and T. Ertl, CU-

DASA: Compute unified device and systems architecture,

in: Proc. Eurographics Symposium on Parallel Graphics and

Visualization (EGPGV08), Eurographics Association, 2008,

pp. 49–56.

[18] V. Volkov and J. Demmel, Lu, qr and Cholesky factoriza-

tions using vector capabilities of gpus, Technical Report No.

UCB/EECS-2008-49, Electrical Engineering and Computer

Sciences, University of California at Berkeley, 2008.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

