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Heterogeneous ozone effects 
on the DnA methylome 
of bronchial cells observed 
in a crossover study
M.‑A. C. Bind 1*, D. B. Rubin2,3, A. Cardenas 4, R. Dhingra 5, C. Ward‑Caviness 6, 

Z. Liu 7, J. Mirowsky8, J. D. Schwartz9, D. Diaz‑Sanchez6 & R. B. Devlin6

We used a randomized crossover experiment to estimate the effects of ozone (vs. clean air) exposure 
on genome‑wide DNA methylation of target bronchial epithelial cells, using 17 volunteers, each 
randomly exposed on two separated occasions to clean air or 0.3‑ppm ozone for two hours. Twenty‑
four hours after exposure, participants underwent bronchoscopy to collect epithelial cells whose 
DNA methylation was measured using the Illumina 450 K platform. We performed global and regional 
tests examining the ozone versus clean air effect on the DNA methylome and calculated Fisher‑exact 
p‑values for a series of univariate tests. We found little evidence of an overall effect of ozone on the 
DNA methylome but some suggestive changes in PLSCR1, HCAR1, and LINC00336 DNA methylation 
after ozone exposure relative to clean air. We observed some participant‑to‑participant heterogeneity 
in ozone responses.

Ozone is a ubiquitous air pollutant that has been studied more extensively than perhaps any other environ-
mental toxicant. Both short-term1,2 and long-term3,4 exposures have been linked with increased mortality and 
 morbidity5,6. Numerous randomized controlled human exposure studies have shown that ozone exposure causes 
decrements in lung function and increased pulmonary in�ammation (reviewed in US EPA air quality criteria for 
ozone and related photochemical oxidants) with considerable heterogeneity across people, and a randomized 
study has described cardiovascular changes in humans exposed to  ozone7. Multiple studies have reported ozone-
induced changes in pro-in�ammatory cytokines in the lung of humans exposed to  ozone7,8, as well as changes in 
cytokine mRNA expression in bronchoalveolar lavage cells obtained following exposure of humans to  ozone9. 
In addition, ozone has been shown to alter upstream mitogen-activated protein (MAP) kinase pathways that 
control cytokine gene  expression10,11.

It has been proposed that adverse health e�ects caused by exposure to air pollutants may be mediated by 
epigenetic  changes12. Exposure to air pollution has been associated in several recent non-randomized studies 
with epigenetic changes, especially DNA methylation. In one  study13, exposure to tra�c-related pollutants was 
associated with reduced lung function in elderly men and epigenetic changes in genes related to in�ammation 
and immunity were proposed to modify the air pollution-lung function association. Increased air pollution 
was signi�cantly associated with changes in DNA methylation of several genes, including those involved in 
 in�ammation14. A relationship between particulate air pollution and hypomethylation of the inducible nitric 
oxide synthesis gene was reported in a cohort of  children15.
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Because all these studies are non-randomized cohort studies in which changes in ambient pollutant levels 
are associated with epigenetic changes, it is di�cult to claim a causal relationship between air pollutant exposure 
and epigenetic changes. Furthermore, these studies measured epigenetic changes in blood cells rather than the 
primary targets of inhaled pollutants (i.e., respiratory tract cells). To show a direct causal link between air pol-
lutant exposure and biologic changes in humans, randomized controlled human exposure studies are considered 
to be the “gold standard”. A recent randomized controlled human exposure study measured DNA methylation 
changes in T helper cells found in blood and reported changes in methylation in genes involved in mitochondrial 
oxidative energy metabolism in subjects exposed to particulate air  pollution16. Here, we report the results of a 
random exposure study in which human volunteers were randomly exposed to either 0.3-ppm ozone or clean air 
on two occasions separated by several weeks. Bronchoscopy was performed 24 h a�er each exposure to remove 
cells directly targeted by ozone; i.e., airway epithelial cells. DNA methylation following each person’s clean air 
exposure was then compared with DNA methylation following that person’s ozone exposure. Because of the small 
sample size of the experiment, we eschew standard asymptotic inference assuming Student’s t-distributions under 
the null hypothesis, and instead capitalize on exact randomization-based inference.

In our study, we go beyond the current state of knowledge on the e�ect of ozone on DNA methylation. In 
observational studies, we do not know whether the estimated associations between ozone and the health out-
comes are confounded by other environmental exposures correlated with ozone (e.g.,  NO2, temperature). In this 
randomized setting, we can directly estimate, with uncertainties expressed by the results of the randomization 
tests, the e�ect of ozone on the DNA methylome of bronchial cells (another “gold standard” for the �eld of air 
pollution epigenetics).

The crossover experiment
Study participants. �e study population and exposure design have been described in detail previously 
by Devlin et al.7, who estimated the causal e�ect of ozone versus clean air on the cardiovascular system. A total 
of seventeen healthy individuals (see their characteristics in Table 1) were recruited to participate in this study 
under a contract with Westat Corporation. Participants were excluded if they were smokers, pregnant, had any 
previous cardiopulmonary disease or allergies (as determined by their medical history and physical examina-
tion), or had a forced vital capacity (FVC) or forced expiratory volume in the �rst second of expiration  (FEV1) 
of less than 80% predicted from their height and age. Prior to enrollment, all participants were informed of the 
study procedures and potential risks, and all provided a written informed consent. �e consent forms and proto-
col were approved by the University of North Carolina School of Medicine and the US Environmental Protection 
Agency. �e study was registered on ClinicalTrials.gov (NCT01492517).

Study design. We conducted a randomized, single-blind, crossover study in which each participant was 
exposed twice, for 2 h to clean air (i.e., PM, CO,  NO2,  SO2 concentrations were below detection limit) or 0.3-ppm 
ozone (2015 US 8-h ozone standard: 0.07 ppm). �e exposures were only for 2 h, in contrast to the standard, 
which is for 8 h. �e actual number of ozone molecules to which a person was exposed in this study was about 
what they would have breathed for 8 h at the current standard. �e exposure sessions were separated by a mini-
mum of 13 days in an attempt to avoid carry-over e�ects associated with the �rst exposure. �e exposure cham-
ber and pollutant generation system are described  elsewhere7. During the 2-h exposure, participants alternated 
between exercising for 15 min on a cycle ergometer and resting for 15 min. Minute ventilation was measured 
during each exercise session, and exercise levels were adjusted to obtain a minute ventilation of approximately 
25 L min−1 m−2 body surface area. All exposures were conducted at the same time of the day and on the same day 
of the week for all participants between July 2010 and June 2011. �e meteorological conditions in Chapel Hill 
during the time of the  study17 are presented in Table 2. As with any empirical studies, one can always object and 
�nd limitations in the study design: the volunteers were not housed and exposed to clean air or ozone for days, 
and some factors were not controlled (e.g., air pollution exposure preceding bronchoscopy).

Table 1.  Characteristics of the seventeen participants.

Min 25th Mean 75th Max

Age 21 23 25.4 27.5 33

Body mass index 17 23 25 27 29

Systolic blood pressure (mmHg) 106 113 121 130 136

Diastolic blood pressure (mmHg) 62 71 74 78 90

Heart rate (beats/min) 52 63 70 75 91

Gender

Male 88%

Female 12%

Race

White 88%

Non-white 12%
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Measurement and pre‑processing of DNA methylation. Twenty-four hours following each expo-
sure, the subjects underwent a research bronchoscopy with brush biopsy to obtain bronchial epithelial cells 
as described  previously18. �e cytology brushes containing epithelial cells tips were placed in a 1.5 mL tube 
with 200 µL Trizol Bu�er (�ermoFisher Scienti�c), DNA extracted using the Gentra Puregene Buccal Cell Kit 
(Qiagen, Inc.). DNA samples were stored frozen at − 80 °C until analysis. DNA extracted from the bronchial 
epithelial cells was sent to a commercial laboratory (Expression Analysis, Durham, NC) for DNA methylation 
assessment using the Illumina HumanMethylation 450 K BeadChip platform. �e extracted DNA samples were 
placed on four chips (see positions in Supplemental Fig. 1). Participants labelled 1, 3, 4, 6, 7, and 13 had both 
extracted DNA, i.e., a�er exposures to clean air and ozone, positioned on the same Chip.

We performed background correction using  noob19, dye bias corrections, and corrected for probe design bias 
arising from Type I and Type II probes with the Beta-mixture quantile normalization method (BMIQ)  method20. 
Although the modes of probe-type DNA methylation distributions were di�erent, they were well aligned a�er 
the BMIQ procedure (see Supplemental Fig. 2). Methylation values are reported as the methylation beta value, 
i.e., the ratio of methylated probe signal intensities to methylated and unmethylated probe signal intensities. 
A small o�set of 100 is added to the denominator to prevent in�ated values when the sum of methylated and 
unmethylated probe signal intensities is low. A�er this pre-processing, the epigenomic analyses considered a set 
of 484,531 CpG sites, which we index by k.

Epigenomic data. �e seventeen DNA methylome distributions observed a�er exposure to clean air, 
denoted by  Yi

obs(wi = 0)—ignoring the crossover time period, and the seventeen ones observed a�er exposure to 
ozone, denoted by  Yi

obs(wi = 1), are shown in Fig. 1. We denote the mean participant methylation at site k a�er 
clean air and ozone exposures by  m0,k = ( 1

17
 ) Σi=1:17  Yi,k

obs(wi = 0), and  m1,k = ( 1
17

 ) Σi=1:17  Yi,k
obs(wi = 1), respectively. 

�e full set of K = 484,531 CpG sites includes locations near promoter regions. Although the empirical distribu-
tion of  m0,k was bimodal among the overall set of 484,531 CpGs, the empirical distribution of  m0,k was unimodal 
among 91,795 CpGs sites near promoter regions (see Supplemental Fig. 3), which supports the hypothesis that 
methylation sites near promoter regions tend to be hypomethylated compared to other CpG sites. Similar modes 
occur for the empirical participant median densities a�er exposure to clean air, median{Yi,k(wi = 0)}, among 
both sets of methylation sites (results not shown). �e boundaries displayed in Supplemental Fig. 3 (i.e., at levels 
0.2%5mC and 0.8%5mC) de�ne three levels of methylation (i.e., low, medium, and high) throughout the paper. 

Table 2.  Meteorological conditions in Chapel Hill during the study time.

Min 25th percentile Mean Median 75th percentile Max

Ozone (ppm) 0.002 0.019 0.026 0.025 0.033 0.063

PM2.5 (µg/m3) 1.0 7.8 10.9 9.9 13.2 28.2

Temperature (°C) − 7.6 7.3 15.1 15.6 23.3 32.8

Relative humidity (%) 26.5 57.9 67.9 70.0 78.4 96.3

Barometric pressure (hPa) 1,001.4 1,014.0 1,018.2 1,018.0 1,021.9 1,036.4

Figure 1.  Participant distributions of DNA methylation a�er exposures to clean air (red) and ozone (blue).
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Figure 2.  Participant-speci�c Q-Q plots for the empirical epigenomic participant methylation distributions 
a�er ozone versus a�er clean air.
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�ese values were chosen based on the bimodal empirical distributions of the participant methylation mean and 
median among the overall set of CpGs a�er exposure to clean air.

Here, we perform statistical analyses on four sets of CpG sites: the epigenomic set of K = 484,531 CpG sites, 
and the sets of CpG sites with low, medium, and high methylation.

�roughout, we use f(D) to denote the empirical distribution of the generic K-component vector D. �e joint 
bivariate epigenomic distribution of: (1) the participant mean methylation distribution under clean air, and (2) 
the mean methylation distribution under ozone exposure, f(m0,k,  m1,k)k=1:484,531, also suggests two modes, around 
low and high methylation levels (data not shown). �e Q–Q plot between the empirical epigenomic participant 
mean methylation distribution a�er ozone versus a�er clean air, f(m1,k)k=1:484,531 versus f(m0,k)k=1:484,531 suggests 
that these two distributions are similar (results not shown). However, the participant-speci�c Q-Q plots show 
some deviations between the empirical epigenomic participant methylation distributions a�er ozone versus a�er 
clean air, Yi

obs(wi=2) vs. Yi
obs(wi=0), with the largest deviation for Participant 4 (Fig. 2). 

Methods
�e overall statistical strategy we follow comprises �ve stages:

1. “Global analyses” assess the overall e�ect of ozone exposure on the DNA methylome,
2. “Regional analyses” assess whether ozone exposure changes DNA methylation of genomic regions,
3. “Local analyses” estimate the ozone e�ect on DNA methylation measured at each CpG site,
4. “Responsiveness analyses” assess whether the seventeen participants exhibit di�erential epigenomic responses 

to ozone exposure,
5. “Enrichment analyses” identify for each participant whether CpG sites are over-represented among the set 

of responsive CpG sites.

Global tests for the  O3 effect on the epigenome. Distributional tests. �e mean participant 

methylations at site k a�er clean air and ozone exposures can be re-expressed as  m0,k = ( 1
NCA-O3) Σi,j:{wi,j=1}=0 

 Yi,j=1,k(wi,j=1 = 0) + ( 1
NO3-CA) Σi,j:{wi,j=2}=0  Yi,j=2,k(wi,j=2 = 0), and  m1,k = ( 1

NCA-O3) Σi,j:{wi,j=2}=1  Yi,j=2,k(wi,j=2 = 1) + ( 1
NO3-CA) 

Σi,j:{wi,j=1}=1  Yi,j=1,k(wi,j=1 = 1), where  NCA-O3 and  NO3-CA are the number of participants who were �rst exposed 
to clean air (CA) or ozone  (O3), respectively. �e stochasticity of the exposure assignment mechanism re-
sides in the order each participant is exposed to clean air or ozone, which, if we assume a Bernoulli (with 
probability 1/2) assignment mechanism, implies the existence of  217 = 131,072 possible allocations. Using the 
Fisherian procedure to test the sharp null hypothesis  (H00) stating for each participant i, for each CpG site k, 
 Yi,j=1,k(wi,j=1 = 0) = Yi,j=1,k(wi,j=1 = 1) and  Yi,j=2,k(wi,j=1 = 1,  wi,j=2 = 0) = Yi,j=2,k(wi,j=1 = 0,  wi,j=2 = 1), as described by Bind 
and  Rubin21, we performed four randomization tests that compared the empirical participant mean methyla-
tion distributions under ozone versus clean air exposures for the four sets of CpG sites: (1) f(m0,k)k=1:484,531 ver-
sus f(m1,k)k=1:484,531, (2) f(m0,k)k=1:197,754 versus f(m1,k)k=1:197,754, (3) f(m0,k)k=1:112,190 versus f(m1,k)k=1:112,190, and (4) 
f(m0,k)k=1:174,587 versus f(m1,k)k=1:174,587. We chose the Kolmogorov–Smirnov (KS) distance as the test statistic to 
compare the two mean distributions of clean air versus ozone. �en, we calculated the KS distance for all pos-

Table 3.  Science table of the crossover randomized experiment.

Participant i Visit j

Epigenomic potential outcomes

Unit-level causal e�ectYi,j,k(wi,j = 0) Yi,j,k(wi,j = 1)

1 1 Y1,1,k(w1,1 = 0) Y1,1,k(w1,1 = 1) τ1,1,k = Y1,1,k(w1,1 = 1) − Y1,1,k(w1,1 = 0)

… … … … …

17 1 Y17,1,k(w17,1 = 0) Y17,1,k(w17,1 = 1) τ17,1,k = Y17,1,k(w17,1 = 1) − Y17,1,k(w17,1 = 0)

1 2 Y1,2,k(w1,2 = 0) Y1,2,k(w1,2 = 1) τ1,2,k = Y1,2,k(w1,2 = 1) − Y1,2,k(w1,2 = 0)

… … … … …

17 2 Y17,2,k(w17,2 = 0) Y17,2,k(w17,2 = 1) τ17,2,k = Y17,2,k(w17,2 = 1) − Y17,2,k(w17,2 = 0)

Table 4.  Observed table of the crossover randomized experiment.

Participant i Visit j wi,j

Epigenomic potential outcomes

Observed participant di�erence  di,kYi,j,k(wi,j = 0) Yi,j,k(wi,j = 1)

1 1 w1,1 = 0 Y1,1,k(w1,1 = 0) ?
d1,k = Y1,2,k(w1,2 = 1) − Y1,1,k(w1,1 = 0)

1 2 w1,2 = 1 ? Y1,2,k(w1,2 = 1)

… … … … … …

17 1 w17,1 = 1 ? Y17,1,k(w17,1 = 1)
d17,k = Y17,1,k(w17,1 = 1) − Y17,2,k(w17,2 = 0)

17 2 w17,2 = 0 Y17,2,k(w17,2 = 0) ?
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sible allocations of the N × 2 matrix of exposure assignment w = (wj=1,wj=2) assuming the sharp null hypothesis 
 (H00). Here, note that because the test statistic is symmetric, the number of unique values of KS distances under 
 H00 is  217/2 = 65,536 (assuming no ties).

Causal estimands and estimators. We de�ne three causal estimands, none of which, as with all causal esti-
mands, is directly observable:

1. the i–j unit causal e�ect (UCE) for site k, τi,j,k, as the unobservable contrast τi,j,k = Yi,j,k(wi,j = 1) − Yi,j,k(wi,j = 0) 
(see Table 3),

2. the participant i (also unobservable) causal e�ect (PCE) for site k, τi,k, as the average of the two unit-level 
causal e�ects, τi,1,k, and τi,2,k, i.e., τi,k = (1

2
 ) (τi,1,k + τi,2,k), and

3. the �nite population, or average participant causal e�ect (APCE) for site k, τk, as the average of the N 
individual-level causal e�ects τi,k’s, τk = ( 1

17
 ) Σi=1:17 τi,k; this is estimable under fewer assumptions than either 

UCE or PCE is.

The observed participant difference due to ozone versus clean air for site k ,   d i,k,  is: 
 Yi,j=2,k(wi,j=2 = 1) − Yi,j=1,k(wi,j=1 = 0) if participant i is exposed to clean air first (i: 1, …,  NCA-O3), and 
 Yi,j=1,k(wi,j=2 = 1) − Yi,j=2,k(wi,j=2 = 0) if participant i is exposed to ozone �rst (i: 1, …,  NO3-CA) (see Table 4). We 
estimated the K = 484,531 average participant causal e�ects (APCEs) using  dk, the average of the seventeen  di,k’s.

Average participant causal e�ects (APCEs) along the epigenome. We consider the marginal average participant 
causal e�ect (APCE) along the entire epigenome, and three conditional APCEs de�ned by boundaries of mean 
participant methylation at site k a�er clean air exposure,  m0,k: low methylation;  m0,k ≤ 0.2%5mC; medium meth-
ylation, 0.2%5mC < m0,k < 0.8%5mC; and high methylation, 0.8%5mC ≤ m0,k ≤ 0.2%5mC).

In particular, f(τ) denotes the density of the K(= 484,531)-dimension vector of APCEs. Slightly abusing nota-
tion, we write τ = (τlow, τmed, τhigh) as a permutation of τ such that:

1. f(τlow) is the density of the  klow(= 197,754)-dimension vector of APCEs such that  m0,k ≤ 0.2%5mC,
2. f(τmed) is the density of the  kmed(= 112,190)-dimension vector of APCEs such that 0.2%5mC < m0,k < 0.8%5mC,
3. f(τhigh) is the density of the  khigh(= 174,587)-dimension vector of APCEs such that 0.8%5mC ≤ m0,k.

Table 5.  Global Fisher-exact tests. �e asymptotic Kolmogorov-tests led to highly signi�cant p-values (< 10−10) 
compared to the ones obtained using the actual randomization of the crossover experiment.

Null hypothesis: no e�ect of ozone versus clean air Kolmogorov–Smirnov distance Fisher-exact p-value

f(m0,k)1:484,531 versus f(m1,k)1:484,531 D = 0.0083 0.21

f(m0,k)k=1:197,754 versus f(m1,k)k=1:197,754 D = 0.0204 0.17

f(m0,k)k=1:112,190 versus f(m1,k)k=1:112,190 D = 0.0138 0.12

f(m0,k)k=1:174,587 versus f(m1,k)k=1:174,587 D = 0.0124 0.07

Figure 3.  Empirical distribution of the estimated average participant causal e�ects (K = 484,531 APCEs).
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Figure 4.  Empirical distributions of the estimated average participant causal e�ects (APCEs) for low, medium, 
and high DNA methylation sites (i.e., low: [0.0%5mC; 0.2%5mC], medium: ]0.2%5mC–0.8%5mC[, and high: 
[0.8%5mC; 1.0%5mC]).
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We examined the characteristics of the empirical distributions of the APCEs for all sites, that is, f(τ), and for 
the three subsets of CpG sites (low, medium, and high), that is, (1) f(τlow), (2) f(τmed), and (3) f(τhigh).

Regional epigenomic analyses. Comb-p. To identify potential di�erentially methylated regions 
(DMRs), we used Comb-p (Python), which groups neighboring Fisher-exact p-values that are small and weight-
ed according to their observed  autocorrelation22. We calculate the univariate Fisher-exact p-values based on the 
standard paired statistic and on the 2 17

2
 possible randomizations:

We use these Fisher-exact p-values to identify DMRs associated with ozone exposure with a minimum dis-
tance of 500 base pairs and a required p-value of  10−3 to start a region. For each CpG site within regions suggested 
by the Comb-p analysis, we report the estimated APCE and the associated Fisher-exact p-value.

DMRcate. We also examined averaged regional DNA methylation changes a�er ozone exposure using the 
R Bioconductor package DMRcate23. Brie�y, this algorithm for regional DNA methylation analyses �ts linear 
regression models via limma for each CpG and subsequently applies a Gaussian kernel smoothing function to 
test-statistics grouping signi�cant probes based on genomic proximity. We modeled the mean DNA methylation 
di�erence between the clean air and ozone exposure at each CpG with an intercept only. For the discovery of 
candidate regions, given the multiple comparison issue, we chose the  10−6 threshold for statistical signi�cance 
for the asymptotic, meaningless, p-values provided by limma.

Local analysis of the average participant causal effects (APCEs) and associated meaningful 
p‑values. For each CpG k, we compared the participant methylation mean a�er clean air exposure  (m0,k) 
versus the participant methylation mean a�er ozone exposure  (m1,k) using univariate Fisher-exact two-sided 
tests, similarly as in Bind and  Rubin21. We then constructed Q–Q plots of observed versus “expected” p-values, 
 Manhattan24 and  Volcano25 plots, i.e.,

1. quantile–quantile of observed − log10(p-value) versus “expected” − log10(p-value),
2. − log10(p-value) versus chromosome number, and,
3. − log10(p-value) versus APCEs, respectively.

We compared (2) and (3) plots for p-values calculated with the Fisher-exact and approximating asymptotic 
paired Student’s tests.

Tk, paired =

∣

∣

∣

∣

(

1

17

)

�i=1:17di,k

∣

∣

∣

∣

/
[

sD/171/2
]

,

where s2D = [1/16]
[

�i=1:17

(

di,k − (1/17) �i=1:17di,k
)2

]

.

Table 6.  Di�erentially methylated regions (DMRs) and associated CpGs found using Comb-p analysis. a Based 
on  217 replications.

Genomic location
Number of 
CpGs Nearby Gene CpG site

Estimated average 
participant causal e�ect 
(APCE) Fisher exact p-valuea

Chromosome 3 
(146262175–146,262,422)

2
PLSCR1
(so�ware p-value = 0.0026)

cg10679755 0.0252 − 0.0212 = 0.0040 0.0187

cg23486067 0.0258 − 0.0194 = 0.0064 0.0154

Chromosome 12 
(123215011–123215554)

9
GPR81
alias HCAR1
(so�ware p-value = 0.0019)

cg22534509 0.3834 − 0.3560 = 0.0274 0.0135

cg05290737 0.3522 − 0.3328 = 0.0194 0.0153

cg22972858 0.4241 − 0.4025 = 0.0216 0.0068

cg20566840 0.4294 − 0.3998 = 0.0296 0.0428

cg01306688 0.2559 − 0.2356 = 0.0203 0.1680

cg19975916 0.2122 − 0.1987 = 0.0135 0.2715

cg19328828 0.1503 − 0.1251 = 0.0252 0.1268

cg23505823 0.3863 − 0.3537 = 0.0327 0.0499

cg13702536 0.4898 − 0.4543 = 0.0355 0.0138

Chromosome 6 (33560954–
33561450)

8
C6orf227
Alias LINC00336
(so�ware p-value = 0.0084)

cg04329454 0.2349 − 0.2018 = 0.0331 0.0039

cg01392313 0.1600 − 0.1315 = 0.0284 0.0015

cg06289138 0.1711 − 0.1535 = 0.0176 0.0949

cg08301503 0.1479 − 0.1276 = 0.0203 0.0015

cg07873320 0.1926 − 0.1852 = 0.0073 0.1752

cg05602975 0.1069 − 0.0978 = 0.0091 0.0877

cg19869469 0.1632 − 0.1454 = 0.0178 0.0007

cg00536532 0.6582 − 0.6683 =  − 0.0101 0.2623
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“Epigenomic responsiveness” to ozone. We estimated whether each participant i “responded” to ozone 
(with respect to the epigenome) by calculating the Cook’s  distance26 of the estimated individual causal e�ect for 
the 484,531 CpG sites. Participant i was de�ned as an ozone “epigenomic responder” at CpG k if the Cook’s dis-
tance of its estimated individual causal e�ect was greater than four times the mean of the Cook’s distances of the 
estimated individual causal e�ects across the 17 participants. For each participant, we compare “responsiveness” 
counts, which are bounded by 484,531, the total number of CpG sites. As sensitivity analyses, we also increased 
the “epigenomic responsiveness” threshold from four to �ve and six times the mean of the Cook’s distances.

Enrichment analyses for “responsive” CpGs. Based on the Cook’s distances described in the previ-
ous section, we identi�ed (1) the individual(s) with a large number of responsive CpGs and describe them 
as “most-extreme responder(s)”, and (2) the individual(s) with a low number of responsive CpGs, the “least 
responder(s)”. We compared them in enrichment analyses. For each responder, we took the list of CpGs that 
were responsive in that individual, then removed from that list all the CpGs that were also responsive in the 
non-responders and performed enrichment analysis on the �nal gene list. �us, enrichment analyses were per-
formed for each responder based on an inter-individual comparison of responsive CpGs for responder(s) versus 
non-responder(s). We examined enrichment for Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways 
using the missMethyl R package while adjusting for varying gene size to avoid bias from large genes being over-
represented among the CpGs. We used the corrected p-values using the false discovery rate (FDR) to identify 
possible enriched pathways at a signi�cance level of 0.05.

All methods were performed in accordance with the relevant guidelines and regulations.

Table 7.  Di�erentially methylated regions (DMRs) and associated CpGs found using DMRcate with a 
threshold p = 10−6. a Based on  217 replications.

Genomic location Number of CpGs Nearby Gene CpG site

Estimated average 
participant causal e�ect 
(APCE)

Fisher exact 
paired 
p-valuea

chromosome3
(146261941–146262421)

6 PLSCR1

cg05452836 0.0284 − 0.0250 = 0.0034 0.0083

cg10679755 0.0252 − 0.0212 = 0.0040 0.0187

cg12662193 0.0346 − 0.0257 = 0.0089 0.0004

cg14795253 0.0287 − 0.0226 = 0.0061 0.0012

cg15437043 0.2160 − 0.2143 = 0.0017 0.8154

cg23486067 0.0258 − 0.0194 = 0.0064 0.0154

Chromosome 12 
(123215010–123215308)

7 HCAR1

cg00357958 0.4270 − 0.4037 = 0.0234 0.0034

cg01306688 0.2559 − 0.2356 = 0.0203 0.1680

cg05290737 0.3522 − 0.3328 = 0.0194 0.0153

cg19975916 0.2122 − 0.1987 = 0.0135 0.2715

cg20566840 0.3998 − 0.4294 = 0.0296 0.0428

cg22534509 0.3834 − 0.3560 = 0.0274 0.0135

cg22972858 0.4241 − 0.4025 = 0.0216 0.0068

Chromosome 6 (33560953–
33561449)

9 LINC00336

cg00536532 0.6582 − 0.6683 =  − 0.0100 0.2623

cg01392313 0.1600 − 0.1315 = 0.0284 0.0015

cg04329454 0.2349 − 0.2018 = 0.0331 0.0039

cg05602975 0.1069 − 0.0978 = 0.0091 0.0877

cg06289138 0.1711 − 0.1535 = 0.0176 0.0949

cg07873320 0.1926 − 0.1852 = 0.0073 0.1752

cg08301503 0.1479 − 0.1276 = 0.0203 0.0015

cg19735538 0.0763 − 0.0644 = 0.0118 0.1153

cg19869469 0.1632 − 0.1454 = 0.0178 0.0007

Table 8.  Characteristics of CpG sites that achieve the minimum Fisher-exact p-value.

CpG site Chromosome Location UCSC gene UCSC region Relation to CpG island CpG island

cg00605859 15 73089234 Island 73089132–73089545

cg21964391 1 218253368

cg20129242 6 75915754 COL12A1 TSS200 Island 75914705–75916387

cg11797346 8 55367611 Island 55366180–55367628

cg25265081 15 29346097 APBA2 Body
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Results
Global tests of the  O3 effect on the epigenome. According to the four randomization tests comparing 
the participant mean methylation distributions under clean air versus ozone, we found some evidence against 
one or two of the four sharp null hypotheses (0.07 ≤ p-values ≤ 0.21, Table 5). �e randomization distributions 
assuming the sharp null hypothesis are presented in Supplemental Fig. 4, suggesting that the asymptotic KS 
p-values, all less than  10−10, are deceptive.

�e histogram of the estimated average participant causal e�ects (APCEs) for all loci, f(dk)k=1:484,531, appears 
to follow roughly a double-exponential distribution (Fig. 3). Similarly, (1) for loci with low methylation 
(≤ 0.2%5mC), f(dk,low)k=1:197,754, appears to follow roughly a double-exponential distribution (Fig. 4, top panel), 
(2) for loci with medium methylation (> 0.2%5mC and ≤ 0.8%5mC), f(dk,med)k=1:112,190, appears to follow a bell-
shaped distribution (Fig. 4, middle panel), and (3) for loci with high methylation (> 0.8%5mC), f(dk,high)k=1:174,587, 
appears to follow a roughly double-exponential distribution (Fig. 4, bottom panel). �e characteristics of these 
distributions for di�erent boundaries (e.g., at 0.1%5mC and 0.9%5mC or at 0.3%5mC and 0.7%5mC) do not alter 
these conclusions (results not shown). We chose the exponential distribution to model the empirical distributions 
across CpG sites of the: (1) positive and (2) negative estimated APCEs and estimated the rate using the “�tdist” R 

Figure 5.  Manhattan plots of the univariate asymptotic p-values (top) and Fisher exact p-values (bottom).
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function. We constructed a Q–Q plot between random draws from an exponential distribution (with estimated 
rate equal to 190) and the positive APCEs across 484,531 CpG sites (Supplemental Fig. 5, le� graph). We pro-
ceed similarly for the negative APCEs and constructed a Q–Q plot between random draws from an exponential 
distribution (with estimated rate equal to 186) and the absolute value of the negative APCEs across 484,531 
CpG sites (Supplemental Fig. 5, right graph). We observed that the negative APCEs can be �t with exponential 
distributions, although it appears more complex to �nd the approximating distributions for the positive APCEs.

Regional tests of the ozone effect on the epigenome. Comb-p. Although we found limited evi-
dence of a global e�ect of ozone on the epigenome, using regional analyses, we observed di�erences in DNA 
methylation of two CpGs in the Phospholipid Scramblase 1 (PLSCR1) gene, nine CpGs in the Hydroxycarboxylic 
Acid Receptor 1 (HCAR1) gene, and eight CpGs in the Long Intergenic Non-Protein Coding RNA 336 (LINC00336) 
gene a�er exposure to ozone compared to clean air (Table 6).

DMRcate. �e genes detected by the Comb-p approach were also detected by the limma-based approach DMR-
cate: six CpGs in the PLSCR1 gene, four CpGs in the HCAR1 gene, and four CpGs in the LINC00336 gene 
(Table 7).

Local analysis of the average participant causal effects and associated p‑values. Supplemental 
Fig. 6 displays the distribution of the univariate Fisher-exact p-values. Five CpG sites achieved the minimum 

Figure 6.  Volcano plots of the univariate p-values versus the average causal e�ect. Top plot: asymptotic 
p-values, bottom top: Fisher-exact p-values, and red line: maximum of − log10(p-value) that can be reached in 
this crossover experiment.
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p-value: cg00605859, cg21964391, cg25265081, cg20129242, and cg11797346 (see Table  8 for a description of 
these CpG sites).

Even though the ratios of the median of the empirically observed distribution of the test statistic to the 
“expected” median are close to λ = 1, we observed some deviation of the observed − log10(pvalue) compared to 
the “expected” − log10(pvalue) (Supplemental Fig. 7). �e deviation from the “expected” − log10(pvalue) could be 
explained by the CpG dependence, which is not taken into account for the construction of the “expected” 
− log10(pvalue). �e Manhattan and Volcano plots are presented in Figs. 5 and 6, respectively. �ese plots were 
constructed using the Fisher-exact and approximating asymptotic p-values. We observed that the minimum pos-
sible p-value 2/217 (or on the logarithmic scale, − log10(2/217) = 4.8) was subceeded by some univariate asymptotic 
p-values. �e Manhattan plot also indicates that the Bonferroni adjustment (with a threshold around 6 on the 
logarithmic scale) o�ers no power in this high-dimensional setting with small sample size. �e asymptotic and 
Fisher-exact (two-sided) p-values do not agree in this crossover experiment (Fig. 7).

“Responsiveness” to ozone with respect to the epigenome. We observed a di�erence in “epig-
enomic responsiveness” to ozone exposure: Participants 4, 5, 10, and 14 had larger “epigenomic responses” to 
ozone than other participants, whereas Participant 6 had lower “epigenomic responses” (Fig. 8). �at is, Partici-
pants 4, 5, 10, and 14 were de�ned as “most-extreme responders” and Participant 6 as “least responder”.

Enrichment analysis. When comparing the CpGs present among the most-extreme responders, there was 
no CpG that “responded” in all four of the responsive individuals. In contrast, at the pathway level, there was 
overlap between the pathways that were enriched among the responsive CpGs for Participants 4, 5, 10, and 14. 
Using Cook’s distance greater than four to de�ne responsive CpGs, thirty pathways were enriched in the respon-
sive CpGs for Individuals 4, 5, 10, and 14, but were not enriched in Individual 6, the least responder (see Sup-
plemental Table). Among these thirty pathways, twenty-one were enriched in all four responders and only two 
were enriched in just one responder. Pathways enriched in all four responders were linked to fatty acid and lipid 
metabolism, amino acid metabolism, and hormone/signaling molecule metabolism/biosynthesis.

Discussion
We found some modest evidence for regional changes in the DNA methylome of bronchial cells a�er ozone expo-
sure compared to clean air exposure. In contrast to observational studies examining the  health1,2 or  epigenetic13,14 
e�ects of short-term exposure to ozone, these �ndings (1) are designed to be unconfounded, (2) are based on 
DNA methylation of respiratory tract cells, primary targets of inhaled ozone, and (3) do not assume approximat-
ing asymptotic distribution that can be inaccurate in small  studies21. Airway epithelial cells present in where we 
obtained the biopsies consist of at least three cell types: ciliated cells, Clara cells (mucin secreting), and basal 
cells. In this study, we cannot determine the contribution of each cell type to the methylation results.

�e thorough description of the characteristics of: (1) the DNA methylation distributions a�er exposures to 
clean air and ozone, (2) the empirical distributions of the average participant causal e�ects for the sites with low, 
medium, and high methylations, should motivate future statistical work. Traditional epigenome-wide analyses 
rely mostly on approximate asymptotic p-values, which is an issue in human experimental settings with small 
samples. Here, we perform statistical tests of the ozone e�ect on the DNA methylome and on site-speci�c tests 
using randomization-based inference to compute Fisher-exact p-values. Global tests did not reveal substantial 
changes in DNA methylome measured a�er ozone versus clean air, but there were some regional di�erences, as 

Figure 7.  Asymptotic versus Fisher-exact (two-sided) p-values.
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well as inter-individual di�erences. By comparing inter-individual di�erences, we were able to discover pathways 
that are potentially related to the “epigenomic responsiveness” to short-term ozone exposure.

To our knowledge, this is the �rst time that personalized epigenomic responsiveness is suggested. It is interest-
ing that healthy participants are not responding homogeneously to short-term ozone exposure. New statistical 
methods should be developed to investigate responsiveness, in particular in high-dimensional settings. A study 
should further examine the estimated individual causal e�ects, especially whether the observed heterogeneity can 
be explained by background covariates such sex, age, race, DNA methylation under clean air. Future statistical 
research should also focus on the understanding of the high-dimensional characteristics of estimated average 
causal e�ects and should explore whether these distributions approximately follow double-exponential distribu-
tions, which has been used to model noise  accumulation27. Other strategies that focus on computing accurate 
and robust p-value adjustments should also be  explored28.

Using the number of CpGs per individual with substantial responsiveness to ozone based on their Cook’s 
distance, we were able to identify individuals who had an apparent excess, or de�cit, of responsive CpGs. Four 
individuals were highly responsive to ozone from the perspective of DNA methylation loci changes, whereas one 
individual was “under-responsive”. Although there was no overlap in the individual CpGs among the responders, 
there was substantial overlap in the pathways enriched for altered CpGs among the most-extreme responders. 
Among “responsive” CpGs identi�ed in the responders, 70% were present in all “ozone responders” and linked to 
pathways related to lipid and fatty acid metabolism and amino acid metabolism, among others. Long-chain fatty 
acids have been previously shown to be responsive to short-term exposure to  NO2

29. In the same participants of 
our study, fatty acid metabolism and amino acid metabolism were found to be enriched a�er ozone exposure 
compared to before the  exposure30. Particulate matter-associated amino acids were also strongly associated with 
markers of in�ammation and lung  function31.

At the pathway level, there were three genes (i.e., HCAR1, PLSCR1, and LINC00336) that were uncovered 
in both the DMRcate and Comb-p analyses. HCAR1 is located in an ozone exposure DMR on chromosome 12. 
HCAR1 is an important lactic acid receptor molecule, which itself has a variety of known functions. Some func-
tions are mediated by HCAR1, including inhibition of pro-in�ammatory and cytotoxic responses. In the brain, 
HCAR1 mediates  angiogenesis32 and is related to wound  healing33. �ese functions have not been examined in 
the lung but may be a key function linking HCAR1 and ozone given the tissue damage induced by ozone expo-
sure. PLSCR1 is related to epidermal growth factor (EGF) and its receptor (EGFR) signaling pathway. �is gene 
is closely linked with apoptosis and cellular growth. In a mouse model, cells with elevated PLSCR1 expression 
showed an eightfold decrease in  growth34. Cellular growth is an important component of epithelial-layer revival 
a�er exposure to ozone. LINC00336 is a long non-coding RNA that is involved in ferroptosis (i.e., type of pro-
grammed cell death dependent on iron and characterized by the accumulation of lipid peroxides) in the  lung35.

Conclusion
Short-term exposure to ozone may alter the epigenome in young, healthy individuals who had epigenomes with 
variable responsiveness to an identical exposure to ozone. �e most responsive individuals had several shared 
enriched pathways that mirrored e�ects of short-term exposure to ozone on fatty acid and amino acid metabolism 
as seen in metabolomics data from the same individuals and independent cohorts. Future studies are needed 
to further expand on the e�ects observed here and to integrate data to obtain a multiomic understanding of 
short-term ozone exposure e�ects.
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