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Abstract: Semiconductor heterogeneous photocatalysis, the subject of this review, is a 

versatile, low-cost and environmentally benign treatment technology for a host of 

pollutants. These may be of biological, organic and inorganic in origin within water and 

air. The efficient and successful application of photocatalysis demands that the pollutant, 

the catalyst and source of illumination are in close proximity or contact with each other. 

The ability of advanced oxidation technology to remove low levels of persistent organic 

pollutants as well as microorganisms in water has been widely demonstrated and, 

progressively, the technology is now being commercialized in many areas of the world 

including developing nations. This review considers recent developments in the research 

and application of heterogeneous semiconductor photocatalysis for the treatment of  

low-level concentrations of pollutants in water and air using titanium dioxide as a “model” 

semiconductor. The review considers charge transport characteristics on the semiconductor 

surface, photocatalyst reactor design and organic degradation mechanistic pathways. The 

effects of photoreactor operating parameters on the photocatalytic process are discussed in 

addition to mineralization and disinfection kinetics.  
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1. Introduction 

The field of heterogeneous photocatalysis has expanded rapidly within the last four decades, having 

undergone various developments especially in relation to energy and the environment. It can be 

defined as the acceleration of photoreaction in the presence of a catalyst. The two most significant 

applications of photocatalysis have been in solar water splitting and the purification of air and water 

containing low concentrations of pollutants. The multidisciplinary nature of the field has also increased 

significantly and includes semiconductor physics, surface sciences, photo and physical chemistry, 

materials science and chemical engineering [1]. 

Heterogeneous photocatalysis can be described as the acceleration of photoreaction in the presence 

of a catalyst. In the contexts of history and research, interest in heterogeneous photocatalysis can be 

traced back to many decades when Fujishima and Honda discovered in 1972 the photochemical 

splitting of water into hydrogen and oxygen in the presence of TiO2 From this time, extensive research, 

much of it published, has been carried out to produce hydrogen from water in oxidation reduction 

reactions using a variety of semiconductor catalyst materials. 

In recent years, interest in photocatalysis has focused on the use of semiconductor materials as 

photocatalysts for the removal of ambient concentrations of organic and inorganic species from aqueous 

or gas phase systems in environmental clean-up, drinking water treatment, industrial and health 

applications. This is because of the ability of TiO2 to oxidize organic and inorganic substrates in air and 

water through redox processes In this context, TiO2 has not only emerged as one of the most fascinating 

materials in both homogeneous and heterogeneous catalysis, but has also succeeded in engaging the 

attention of physical chemists, physicists, material scientists and engineers in exploring distinctive 

semiconducting and catalytic properties. 

Inertness to chemical environment and long-term photostability has made TiO2 an important 

material in many practical applications, and, in commercial products ranging from drugs to foods, 

cosmetics to catalysts, paints to pharmaceuticals, and sunscreens to solar cells in which TiO2 is used as 

a desiccant, brightener, or reactive mediator [2]. The U.S. Food and Drug Administration permits up to 

1% TiO2 as an inactive ingredient in food products. While there are no known health effects associated 

with the use of TiO2, a recent study found that 3–6 year old children are the most affected group of 

people that consume TiO2 particles from food products. Many new properties of TiO2 have been 

explored during the past few years [3]. It should be stated that regulatory frame work for the use of 

TiO2 in food products are yet to be firmly established in many countries, especially developing 

nations. The catalyst itself is unchanged during the process and no consumable chemicals are required. 

This results in considerable savings and simpler operation of the equipment involved. 

Large bandgap semiconductors like TiO2 are commonly investigated in the rutile (bandgap 3.0 eV) 

and anatase (bandgap 3.2 eV) phases and TiO2 response to UV light has not only led to photocatalysis 

research [4–6] but also to an extensive investigation of TiO2 superhydrophilicity its use in 

environmental remediation and solar fuel production. Bandgap excitation of TiO2 causes charge 

separation followed by scavenging of electrons and holes by surface adsorbed species, Figure 1: 
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Figure 1. Schematic of semiconductor excitation by band gap illumination [4,7] leading to 

the creation of “electrons” in the conduction band and “holes” in the valance band. 

 

Visible photocatalysis can thus be utilized by doping TiO2 with a sensitizing dye or short bandgap 

semiconductors. By controlling the surface treatment and medium conditions, it is possible to  

fine-tune the photocatalytic properties of TiO2 to desired applications including the effective 

mineralization of contaminants in air, as self-cleaning glass and ceramic tiles. On the other hand, the 

practical use of TiO2 for remediation of chemical contaminants in wastewater is a challenge because of 

catalyst poisoning or deactivation. In addition, there remain some challenges with respect to extending 

the photocatalytic response of TiO2 in the visible region [6], an area that merits fundamental research. 

In spite of the extensive efforts to dope TiO2 with C, N, S and transition metal ions such as Ag, Au, 

Fe, Ru, photocatalytic activity of TiO2 in the visible region has remained quite low, an issue that has 

been addressed in recent articles highlighting issues and challenges associated with the application of 

photocatalysis. Generally, two or more phases are involved in a photocatalytic reaction—a light source 

and a semiconductor material are used to initiate the photoreaction while the catalyst system can 

simultaneously carry out oxidation and reduction reactions using long wavelength, UV light as well as 

sunlight. As a method for contaminant control in water and air, Figure 2, heterogeneous photocatalysis 

using semiconductors such as titanium dioxide is more efficient than conventional methods. This is 

because as the photocatalytic process gradually breaks down the contaminant molecules, no residue of 

the original material remains and therefore no sludge requiring disposal to landfill is produced. The 

catalyst itself is unchanged during the process and no consumable chemicals are required. This results 

in considerable savings and a simpler operation of the equipment involved. Additionally, because the 

contaminant is attracted strongly to the surface of the catalyst, the process will continue to work at 

very low concentrations. Taken together, these advantages mean that the process results in 

considerable savings in water production cost and keeping the environment clean. 
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Figure 2. Schematic of the interplay of photocatalysis treatment, reactor and material 

design and photocatalytic reaction mechanism [1]. Note: This figure is reproduced with 

permission from [1], Copyright © 2012 American Chemical Society. 

 

In order to activate the degradation process, pure TiO2 requires photo-excitation with light at 

wavelengths exceeding the band gap of the active anatase phase of 3.2 eV, that is, wavelengths of  

<387 nm. Indeed, commercially available photocatalytic water treatment plant using artificial UV-light 

as the energy source is available and can be considered as a developed market. 

However, UV in natural sunlight represents only 5%–8% of the solar spectrum at sea level and this 

provides a limitation and the requirement of artificial illumination of the catalysts in order to achieve 

degradation of the organic material in times that are practical for water treatment processing. This 

greatly restricts the application of the technology to areas where abundant electricity supplies are 

available. The need for more stable, efficient catalysts which can be activated by natural sunlight is 

now the goal of researchers. In order to achieve significant improvements in catalytic activity using 

visible light, precise control of the stoichiometry of the catalytic metal oxides and mixed metal oxides, 

addition of dopants, particle shape and pore topology are all critical factors for catalyst developers. 

Advances in the manipulation of matter at the nanoscale are leading to potential solutions for the 

depollution of water in remote locations. In recent years, the development of nanoscale metal oxides 

has greatly increased the catalytic activity by virtue of the high specific surface area available for 

reaction of the smaller particles. In addition, the strategy to alter the band gap of the catalyst is an 

important approach as this determines the portion of the solar spectrum the catalyst absorbs and, 

consequently, the amount of energy that is converted to reactive species. Photocatalysts that have high 

activity using wavelengths of light in the visible spectrum (380 nm < λ < 500 nm) have been 

demonstrated where potentially greater amounts of energy is available (solar peak energy is around 

460 nm). This has been achieved by altering the band gap of, for example, TiO2. Doping of TiO2 with 

transition metal ions (for example, V, Cr, Mn, Fe and Ni) as well as with Ag, Au and Ru, have been 

demonstrated to red-shift the TiO2 absorption band from the UV into the visible region, resulting in a 

great increase in the efficiency of solar-light photocatalysis.  

Many industrial waste streams are not suitable for biological processing due to their inherent 

toxicity, but their treatment by traditional non-catalytic chemical processes or by incineration is energy 

intensive [7]. On the other hand, TiO2 photocatalysts has been shown to decompose organic 

contaminants in water efficiently because a strong oxidizing ability is generated when the TiO2 is 

irradiated by appropriate band gap illumination [8]. Increased attention is being paid to heterogeneous 
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solution phase catalysis in order to develop an environment-friendly technology to purify polluted air 

and water without electricity or other energy consuming sources.  

Heterogeneous photocatalytic reactions are carried out either in a slurry-type reactor where the 

catalyst particles are suspended in the contaminated water or in an immobilized-type reactor where the 

catalyst particles are immobilized onto the surface of various inert substrates of various types and 

configurations [9–11] and the process can be explained on the basis of the following mechanism.  

2. Mechanism of Semiconductor Catalysis 

A photocatalyst harnesses UV radiation from sunlight or artificial light and uses the energy to break 

down different substances including organic materials, organic acids, estrogens, pesticides, dyes, 

crude oil, microbes (including viruses) and chlorine resistant organisms, inorganic molecules such as 

nitrous oxides (NOx) and, in combination with precipitation or filtration, can also remove metals 

such as mercury [13–15]. Due to this universal applicability, photocatalysis with nanoparticles as 

catalysts is used to reduce air pollution, in building materials, for self-cleaning surfaces in addition to 

water purification. Titanium dioxide (TiO2) is the most common photocatalyst and comparably little 

research has been conducted on zinc oxide, ZnO, which could be a viable alternative for some 

applications. To avoid free nanoparticles in water, TiO2 nanoparticles are usually immobilized on a 

substrate [16] or integrated into thin-films and other materials. For the activation of TiO2, UV 

irradiation from sunlight or artificial light is needed, with UVB more efficient than UVA. To allow 

activation by visible light, TiO2 can be modified with a second semiconductor, dyes, nitrogen, 

carbon or sulphur. For example, TiO2 doped with nitrogen demonstrated superior photocatalytic 

activities compared to commonly used unmodified TiO2 nanoparticles in both chemical compound 

degradation and bactericidal reactions [17]. 

With respect to a semiconductor oxide such as TiO2, photocatalytic reactions are initiated by the 

absorption of illumination with energy equal to or greater than the band gap of the semiconductor. This 

produces electron-hole (e−/h+) pairs as in Equation (1), Figure 3: 

TiO2 + hv = e−cb (TiO2) + h+vb (TiO2) (1)

where cb is the conduction band and vb is the valence band. Thus, as a result of irradiation, the TiO2 

particle can behave either as an electron donor or acceptor for molecules in contact with the 

semiconductor. The electron and hole can recombine, releasing the absorbed light energy as heat, 

with no chemical reaction taking place. On the other hand, they can participate in redox reactions 

with adsorbed species as the valence band hole is strongly oxidizing while the conduction band 

electron is strongly reducing. On the semiconductor surface, the excited electron and the hole can 

participate in redox reactions with water, hydroxide ion (OH−), organic compounds or oxygen 

leading to mineralization of the pollutant. 
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Figure 3. Schematic of the charge transfer across semicopnductor interface.  

Note: This figure is reproduced with permission from [12], Copyright © 2012 American 

Chemical Society. 

 

In fact, research shows that the charges can react directly with adsorbed pollutants, but reactions 

with water are predominant since the water molecules are more abundant than contaminant 

molecules. Consequently, oxidation of water or OH− by the hole produces the hydroxyl radical 

(·OH), a powerful oxidant. For the purpose of comparison, it is important to compare the oxidation 

potential of hydroxyl radical (·OH) which is 2.8 V relative to the normal hydrogen electrode. Apart 

from electron and their holes, other substances that may be used for water disinfection include ozone 

(2.07 V), H2O2 (1.78 V), HOCl (1.49 V) and chlorine (1.36 V). OH radicals are able to rapidly attack 

pollutants on the semiconductor surface and, as such, are the most important radicals formed in TiO2 

photocatalysis. An important reaction of the conduction band electron is reduction of adsorbed 

oxygen to oxygen radicals and this prevents the electron from recombining with the hole and  

results in an accumulation of oxygen radicals that can also participate in degrading contaminants in 

solution [11,18].  

Published work indicate that heterogeneous photocatalytic process involves at least five separate 

reaction steps [19] and include (1) diffusion of reactants to the surface of semiconductor,  

(2) adsorption of reactants onto the surface of semiconductor, (3) reaction on the surface of 

semiconductor, (4) desorption of products from the surface of the semiconductor and (5) diffusion of 

products from the surface of the semiconductor. There are two routes through which OH radicals can 

be formed—the reaction of the valence-band holes with either adsorbed H2O or with the surface OH 

groups on the TiO2 particle. These processes have been summarized using appropriate equations [20]. 

3. Photocatalyst Materials and Supports 

Current and past research in photocatalytic materials has investigated several photocatalysts and 

their properties. Ideally, a photocatalyst should possess the following properties: photoactivity, 

biological and chemical inertness, stability toward photo-corrosion, suitability for visible or near UV 

light energy harnessing, low cost and lack of toxicity [21]. TiO2 as a semiconductor photocatalyst, has 

excellent pigmentary properties, high ultraviolet absorption and high stability which allow it to be used 

in different applications such as electro-ceramics, glass and in the photocatalytic degradation of 

chemicals in water and air. It has been used in the form of a suspension, or a thin film in water 
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treatment [22,23] and has different crystalline forms, the most common forms being anatase and  

rutile while the third, brookite, is uncommon, unstable and hence does not feature in discussion of 

catalyst materials. 

Anatase TiO2, the most stable form of TiO2 [24], can be converted to rutile by heating to 

temperatures above 700 °C. In photocatalytic applications, research has shown that anatase is more 

efficient than rutile because of its more open structure compared with rutile. Degussa P-25 is the 

commercially available form of TiO2 and consists of two forms of approximating 25% rutile and  

75% anatase, and has been used in many studies of photocatalytic degradation because of its chemical 

stability, ready availability, reproducibility and activity as a catalyst for oxidation processes [13,25]. 

However, studies are being carried out to develop existing or prepare new materials which can be used 

under solar energy and hence shortening the time needed for degradation.  

This development includes increasing the surface area, the active sites, the absorption of photon and 

reducing the band gap energies of the semiconductor. For industrial applications, high activity, 

resistance to poisoning and stability for prolonged use at elevated temperatures, mechanical stability, 

and resistance to attrition, physical and chemical stability in various conditions, are required 

characteristics of catalysts [21]. In addition, in the degradation of organic compounds, the redox 

potential of the H2O/·OH electrode, OH− → ·OH + e−; E0 = −2.8 V, must lie within the band gap of the 

photocatalyst as illustrated in Figure 1. Nowadays, many semiconductors are used as photocatalysts 

because of their narrow band gap between the valence and conduction bands and they need to absorb 

energy equal to or more than this energy gap. This involves the movement of electrons from e−/h+ or 

negatively charged electrons to positively charged hole pairs [26]. 

Many semiconductors have enough band-gap energies for the effective catalysis of many chemical 

reactions and this includes materials such as TiO2, WO3 and ZnO. Though it is well known that metal 

oxides are usually less active catalysts than noble metals in the majority of applications, metal oxides 

are more suitable since they are more resistant to poisoning and deactivation. In addition, combining 

two or more metal oxide catalysts could improve or enhance catalytic activity. TiO2 is the most 

frequently used photocatalyst because of its photostability and low cost, combined with its biological 

and chemical inertness and resistant to photo and chemical corrosion. On the other hand, binary metal 

sulfide semiconductors such as CdS and PbS are regarded as insufficiently stable for catalysis and are 

toxic. ZnO is also unstable in illuminated aqueous solutions while WO3 has been investigated as a 

potential photocatalyst, but it is generally less active catalytically than TiO2. However, these can be 

combined with other semiconductors including TiO2 to achieve greater photocatalytic efficiency or 

stability [27–30].  

There are many semiconductor support materials that have been investigated. Usually, 

semiconductor supports are classified by their chemical nature and these can be organic or inorganic 

supports. They play an important role in immobilizing active catalyst, increase the surface area of 

catalytic material, decrease sintering and improve hydrophobicity, thermal, hydrolytic and chemical 

stability of the catalytic material. Examples include glass, carbon fibers and woven fiber cloths and 

these have been studied as support materials in groundwater denitrification and in the photocatalytic 

oxidation of water pollutants as well as in other applications. When fibrous supports are applied, loss 

of pressure is low and pore diffusion resistance is significantly lower than with pellet shaped catalysts. 



Catalysts 2013, 3 196 

 

Glass possess an advantage as a catalyst support because of its transparency to UV light in 

photocatalytic applications [30].  

Studies by Teoh, Kamat and others [1,9,12,31–33], show that interest in photocatalysis has also 

centered on ZnO, which has similar energy characteristic to TiO2. They report that ZnO however 

suffers from photo-corrosion problems upon excitation in solution. Hematite (α-Fe2O3) on the other 

hand, which is low cost, abundant and has narrow bandgap for harnessing solar energy, suffers from 

rapid charge recombination and a short charge carrier diffusion length. As a result of these draw backs, 

renewed interest in this material has focused on its modification with cationic dopants such as Cr and 

Mo to improve its charge transport properties [34] or doping with Si to reduce the charge diffusion 

path length. Other reviews have also talked about Tungsten trioxide WO3 as another narrow bandgap 

material, 2.7 eV, and, as such, it has received renewed interest. Like hermatite, Tungsten trioxide, has 

the disadvantage of a low electron conduction band, although studies claim that coupling with Pt 

cocatalyst has been observed to be useful in promoting alternative multiple-electron reduction 

processes with lower reduction potentials. This has increased the use of WO3 as one of the very few 

highly visible-light-active single-phase oxide photocatalysts [29–31,34–41]. 

In many cases, the superiority of other photocatalyst materials over P25 is based on a selection of 

test reactions or only a single organic substrate and this has its problems as all of the important factors 

cannot be validated in a single experiment or reaction. An example is the pairing of test substrate 

degradation mechanistic Langmuir-Hinshelwood kinetic model, direct charge transfer, hydroxyl 

radicals, and superoxide radicals with many physicochemical characteristics of the photocatalyst such 

as the crystallinity, hydroxyl group density, size, specific surface area, surface defects, surface 

energetic and aggregation [12]. Even among flame-made TiO2 of similar crystallinity, about 80% anatase 

and 20% rutile, and exact anatase-rutile content, differences in the photocatalytic activity of P25 were 

observed [42] due mainly to the class of organic substrate [43] used and the materials intrinsic 

efficiencies for ·OH generation and direct charge transfer, which governed the dominant degradation 

mechanism for each of the substrate functional groups. In a broader context, Ryu and Choi [44] 

compared the photocatalytic performance of commercial variants of TiO2 and observed that one 

photocatalyst cannot meet all photocatalytic requirements, a fact borne out by several studies [45].  

With respect to the synergy between anatase and rutile, the dominant phases of TiO2 studies [46] 

have suggested that polymorphic characteristics of these materials was one of the reasons for the high 

photocatalytic efficiency of P25 and that the heterojunction of anatase-rutile promoted efficient charge 

separation as evidenced by studies indicating discrete trapping of electrons and holes across the 

different crystal phases. Any synergistic effect, however, is difficult to measure because of the 

differences in the physicochemical characteristics of pure anatase and rutile (surface area, crystallite 

size, defect content, surface hydroxylation, etc.), compared with the individual components in the 

mixture. Ohtani and other studies [46–48] on the other hand, isolated the individual components of 

P25 by selective acid dissolution and assessed the single components for a range of photocatalytic 

reactions. The studies concluded, at least for P25, a less probable synergistic effect beyond the 

photocatalytic activity of the individual components. By carefully synthesizing highly crystalline and 

physically similar anatase and rutile nanoparticles, Kho [49,50] and other studies demonstrated higher 

rates of hydrogen evolution from aqueous methanol across a wide range of mixed anatase-rutile 

compositions. The effect, however, was only observed when a strong inter-particle contact existed 
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between the anatase and rutile nanocrystals, supporting the view of an efficient charge separation 

across heterojunctions in these materials [1]. 

Doping of TiO2 with fine noble metals such as silver (Ag), gold (Au) and palladium (Pd) has been 

carried out extensively as a means of enhancing charge separation. Doping has been reported [51] to 

establish a barrier through equilibration between the photocatalyst and metal deposits and is governed 

by the difference in work function of the deposits and the electron conduction band of the 

photocatalyst and does not influence the mechanism of the specific reaction [1]. Previous studies noted 

differences in the enhancement by Pt and Ag as well as other noble metals, on TiO2 over a range of 

organic classes arising from the combination of substrate or functional group specificity and the dark 

catalytic oxidation effects [12,32,33,51,52]. The latter included the catalytic oxidation of formic acid, 

oxalic acid, methanol, and the opening of aromatic rings, with each reaction induced by the catalytic 

properties of the metals. Studies have shown that when a photocatalyst is illuminated, a type of 

synergistic effect between the catalytic and photocatalytic processes is possible and in fact studies have 

shown these effects do exist. [33,52,53].  

With respect to new materials for use in photocatalytic work, Teoh et al. [1] reported in a recent 

article that a graphene oxide material was demonstrated to act as a mediator for electron transport and 

for visible-light water splitting in photocatalysis. It has to be stated that prior to this development, 

electron mediators were largely based on aqueous redox couples such as Fe2+/Fe3+ and CO2
+/CO3

+ as 

well as Au and Ag. A recent study by Wei and coworkers [54] using hybrid Fe2O3-Pd nanoparticle 

photocatalyst grown by epitaxial growth of Fe2O3 on Pd nanoparticles, showed improved 

photocatalytic efficiency, although this was limited by the presence of organic stabilizers which are 

difficult to remove. Other materials considered in recent work include ZnS, ZnO, CdSe, Fe2O3 and  

InP [55]. Some of these materials were reported to show some photocatalytic promise, but with 

uncertainty over their efficiencies and spectral characteristics [56]. Fe2O3 is particularly interesting 

because of its stability against photo/chemical corrosion at neutral or basic pH and has band gap 

energy of about 2.0 to 2.2 eV corresponding to the absorption of 564 to 620 nm light [54]. 

4. Photocatalytic Test Materials 

Investigations of photcatalytic degradation processes including the mechanisms have usually been 

carried out by using model compounds. This can strongly influence the photocatalytic performance of 

a material according to Teoh and co-workers [1] because of the effect of the structure of such model 

compounds and other factors on the degradation process. The study show that, for example, while 

monitoring the decolourization of dyes in solution using spectroscopic techniques is simple and 

convenient, using a dye as the model compound can yield unreliable results as this may not represent 

the intrinsic photocatalytic activity of the semiconductor, especially for visible-light-activated 

materials for which dyes are a good example and these include methyl orange, congo red, alizarin 

yellow, etc.  

Cationic and anionic azo-dyes can undergo photolysis or sensitize the semiconductor and thereby 

inject an electron into its conduction band [1,12]. In addition, because of their complex structure, dyes 

have complex photodegradation mechanistic pathways thus making determining accurate 

photocatalytic efficiencies a very difficult exercise [56]. In addition, studies [1] have indicated that 

dyes do not necessarily require carbon oxidation for decolorization to occur. Although photocatalysis 
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can play a significant role in treating dye-polluted systems [57], the choice of a model pollutant 

substrate should be undertaken with due consideration when assessing a photocatalytic activity under 

visible illumination. This reviewer has carried out photocatalytic work using azo-dyes as model 

substrates and would agree with the conclusion reached regarding the use of model compounds 

activated by visible light to validate photocatalytic degradation mechanisms and efficiency. 

5. Doping Mechanisms 

Research into photocatalyst doping has spanned several decades. Usually doping involves the use of 

metals or non-metals and is designed to extend the photocatalytic activity of a semiconductor lower 

energy excitation. Technically, doping is the introduction of foreign elements into the parent 

photocatalyst without giving rise to a new crystallographic forms, phases or structures and the aims  

are [1] to enhance the net separation of photogenerated charges and thereby efficiently harness the 

wide visible-light component of about 43% in the solar spectrum as opposed to the narrow ultraviolet 

component of 5%. It is thus an area of increasing research activity in photocatalysis.  

Although discovered as a modification technique in the early 1980s, doping has become a standard 

and routine method in the design of water-splitting photocatalysts [12]. Modifying pure photocatalyst 

materials with metal ions, especially d block metal ions such as Fe3+ and Cr3+ results in the insertion of 

impurity energy levels between the parent conduction and valence bands. In this case, the inserted 

energy levels provide sub-bandgap irradiation from which electrons can be excited from dopant d-band 

to conduction band or from valance band to dopant d-band by lower energy photons than are required 

by the pure photocatalysts. However, there are a number of issues associated with metal ion doping, 

related to the efficiency of subsequent photocatalytic processes. Whereas the presence of metal 

dopants was found in some cases to enhance charge separation as well as interfacial charge  

transfer [58,59] in many other cases, the metal dopants actually resulted in rapid charge recombination 

through their switchable redox states, for example, Fe3+ ↔ Fe2+ and thereby reducing the electron 

diffusion length and lifetime [1,9,12,60]. This is one of the reasons for the reduced quantum efficiency 

in many photo response-extended doped photocatalysts. 

Several studies have indicated that doping creates structural defects that could be sources for charge 

recombination and in this sense are potentially negative in their effects. The only exception being 

doping using high-energy RF and magnetron sputtering, which provide the uncommon existence of 

tetravalent dopants such as Fe4+ and Cr4+ that match the valency of Ti4+ in TiO2 [61]. Co-doping with  

a conjugate metal cation pair such as Rh3+/Sb5+ can preserve charge equality of the doped 

photocatalysts and result in improved and extended photocatalytic ability. However, this may not 

necessarily prevent structural defects arising from the differences in cationic radii between dopants and 

the host photocatalyst. In a recent study, Serpone and co-workers [62] provided a substantiated 

alternative argument that the extended photo-response instead of arising from d-band insertion, may 

actually originate from the color centers and oxygen vacancies that arise from the doping [63,64]. 

Doping involving the use of non metals has also been investigated and studies have reported that 

the introduction of non-metal such as N, C and S impurity energy levels above the parent photocatalyst 

valence band has been a popular doping technique and although doping wide bandgap photocatalysts 

such as TiO2 and ZrO2 with F [64–69] does not result in coloration, their enhanced photocatalytic 

efficiencies, even under sub-bandgap excitation, likely results from enhanced stoichiometric defects 
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and this is useful in photocatalytic processes. Higher photocatalytic activity, stability [28] and 

nontoxicity of dopant ions are among the advantages of nonmetal over metal dopants and, in general, 

TiO2 and several other materials have been studied including the effect of impurity levels in the dopant 

on photocatalytic efficiency. In addition, results obtained using TiO2 and oxides such as WO3, Ta2O5 

and Ba5Ta4O15 have been published [69–71]. By studying nitrogen doped TiO2 using real-time 

fluorescence imaging, Tachikawa and coworkers [72] confirmed the absence of ·OH under  

sub-bandgap irradiation but retained the formation of O2
�–, which, in turn, became the dominant 

radicals. Whereas full band gap excitation from the valance to the conduction band may result in the 

original oxidative potential of the parent photocatalysts, the quantum efficiency is hampered because 

of the pronounced charge recombination at dopant-induced defect sites [36]. 

Similar to metal-doping strategies, anionic co-doping, for example involving N/F-TiO2 or  

N/F- and C/N-ZnWO4 [73–75] has been used to lower charge defects, but in many cases,  

the quantum efficiencies remain unmatched compared with the excited photocatalysts. Many studies, 

for example [76,77], have also reported that new conduction and valence bands are produced in a 

semiconductor when significant levels of foreign elements are introduced to the photocatalyst. 

Research using this band gap engineering approach has been carried out successfully and resulted in 

the emergence of new photocatalytic materials for water-splitting purposes including Bi3+, Ti4+ and 

W6+ [78,79]. From the various studies carried out on doping and the effect of doping, it is obvious that 

the exploration of new photocatalytic doping materials will continue to be driven mainly by efforts in 

water splitting reactions although these materials will find relevance in other photocatalytic 

applications such as PbBi2Nb2O9, for the treatment or remediation of aqueous pollutants, CaBi2O4 for 

the oxidation of gaseous pollutants and ZnGa2O4 for the reduction of carbon dioxide and similar 

materials [77,80,81]. 

6. Morphology of Photocatalyst Materials 

Generally, for all catalyst materials, a high surface area is an advantage in terms of a greater 

concentration of active sites per square meter and this generally leads to higher reactivity. The smaller 

the particle size, the larger the surface area, and the higher the expected activity [81]. This can be 

explained in terms of an increase in the number of active sites per square meter as well as greater 

absorbance of the pollutant on the catalyst surface [80]. It has often been reported however that while 

the activity of the TiO2 catalyst is affected by its external surface [82], photocatalytic activity is not a 

function of the surface area alone. For example, while an increase in the extent of heat treatment 

applied leads to a reduction in the surface area, the impact of this reaction on the photocatalytic 

activity is not as significant as that of the phase transformation. The increase in crystallite size and 

changes in the microstructure with a decrease in surface area greatly influence the photocatalytic 

property of the catalyst [83,84]. 

One of the ways to increase the efficiency of photocatalytic reaction is to couple semiconductor 

nanoparticles to noble metal co-catalysts to enhance the quantum yield of the electron transfer 

processes through improvement in charge separation in the semiconductor, discharging photogenerated 

electrons across the interface and providing a redox pathway with low over-potential. The interfacial 

charge transfer processes are influenced by the presence of a metal co-catalyst or surface bound 

molecular relays. If metal nanoparticles are coupled to the semiconductor nanoparticle, then they 
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readily accept and shuttle electrons to an acceptor molecule at the interface easily. The discharge 

capacity of metal nanoparticles plays an important role in dictating Fermi level equilibration between 

semiconductors and metal nanoparticles [1,9,12]. 

It follows from these studies that in order to enhance the photoactivity of titanium oxide particles, 

interfacial charge-transfer reactions need to be enhanced. Improved charge separation and inhibition of 

charge carrier recombination is essential in improving the overall quantum efficiency for interfacial 

charge transfer. This can be achieved by modifying the properties of the particles by selective surface 

treatment and several approaches have been taken to achieve this including surface modification of the 

semiconductor particles with redox couples or noble metals and the coupling of two semiconductor 

particles with different electronic energy levels. To this end, catalytic thin films, foams and  

hybrid nanoparticles of TiO2 as well as gels have been made and used in various catalytic  

applications [85–88] as described in this review. 

7. Semiconductor Films and Foams 

In thin film deposition, a thin layer of material is prepared on a suitable substrate or a previously 

deposited layer. “Thin” is a relative term, since a film may look operationally thin or thick compared 

to the wavelength of the light used. Compared to conventional thin film forming processes such as 

evaporation, or sputtering, sol-gel processing makes it possible to control the microstructure of the 

deposited film including the pore volume, pore size, and surface area [89] and uses mainly alkoxide, 

organic/ inorganic salts, metal oxides and other salts in a liquid phase chemical reaction. The method 

provides excellent chemical homogeneity and the possibility of deriving unique metastable structures 

at low reaction temperatures [90]. The liquid phase reaction enhances the uniformity of the product 

produced and the process can be operated under ambient conditions. The reactant concentration, 

temperature and type of solvent will affect the quality of the final product.  

In the production of TiO2 particles, calcinations at high temperatures are necessary to change the 

crystalline structure of TiO2 that possesses photo catalytic activity and the specific surface area, 

particle size, and other properties of TiO2 can be altered after calcinations at different temperatures. 

Thus thin films formed by dipping or spinning, use little raw materials and may be processed quickly 

without cracking and thus overcoming most of the disadvantages of sol-gel processing. In addition, 

large substrates may be accommodated and it is possible to uniformly coat both sides of planar and 

axially symmetric substrates such as pipes, tubes, rods and fibers which are not easily handled by more 

conventional coating processes. 

There are two main ways to synthesize gels at room temperature: spin coating and dip coating. Spin 

coating is used for applications where relatively flat substrates or objects are coated with thin layers of 

material. On the other hand, the dip-coating process, involves immersion, start-up, deposition, 

evaporation and drainage. The substrate is slowly dipped into and withdrawn from a tank containing 

the sol, with a uniform velocity, in order to obtain a uniform coating. The gel samples are dried at  

100 °C and then fired at 450 °C to remove organics from the film pyrotically. Once the sample has 

reached the desired thickness through multiple coatings, it is crystallized by heating. The maximum 

thickness of crack free coatings that can be achieved is 0.5 microns. Sol-gel and “doctor blade” TiO2 

films vary in thickness from 0.2 microns to 0.8 microns. 
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A foam is a substance that is formed by trapping pockets of gas in a liquid or solid. Particle sizes, 

porosity differ for various materials depending on the synthetic routes chosen, we have synthesized 

TiO2 foams (reported in nano-letters) of 100–500 nm in thickness. TiO2 films similarly have various 

thicknesses ranging from a few microns to hundreds or even more depending on the synthetic 

conditions. We have produced sol-gel and “doctor blade” TiO2 films varying in thickness from  

0.2 microns to 0.8 microns. Generally, the porosity of the foam is larger than that of films (depending 

on the film and process conditions). Foams usually offer more diffusion pathways than films especially 

for solution phase degradation. Films on the other hand are usually easier to integrate into structured 

photocatalytic reactors and light absorption is better than in films. Foams usually get “clogged” at 

some stage during the photocatalytic process. The synthetic route for TiO2 foam as reported in the 

literature [91]. The thickness of the TiO2 foam produced by this process was 100 nm and it should be 

pointed out that particle size of 500 nm is possible depending on the synthetic process. The TiO2 foam 

offers extended porosity which is important for “light harvesting”, Figure 4. 

Figure 4. Degradation of Benzene, Toluene and Xylene in contaminated air with TiO2 

Foam [82,86]. The porous structure results in “improved light harvesting” by the catalyst. 

 

The TiO2 foams have been used as catalyst materials in the degradation of low concentrations  

of benzene, toluene and xylene (BTX) in contaminated air. The degradation of anionic and cationic 

dyes in industrial effluents [8,82,86] as shown in Figure 5, an example given with methyl orange has 

been undertaken. 

A metal can affect the surface properties of a semiconductor by generating a “barrier” which acts as 

an electron trap of the metal in contact with the semiconductor surface. Similarly, doping of transition 

metal ions to semiconductors improves the trapping of electron and inhibits e−/h+ recombination 

because the relatively low photoactivity of TiO2 is believed to be due to the fast recombination of 

photogenerated electrons and holes. In recent years, researchers have focused on the combination of 

different kinds of metallic oxide particles. Oliviero et al. [89] showed that Ru/CeO2 particle catalysts 

have very different behavior in the catalytic wet air oxidation of acrylic, succinic and acetic acids 

depending on the support morphology and the metal/support contact. The use of metal nanoparticles 

and hybrids has also been researched [92] and the synthetic route for TiO2/RuO2/SiO2 nanoparticles is 
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reported elsewhere [92]. These materials have been used in the degradation of low concentrations of 

anionic and cationic azo-dyes in industrial effluents, Figure 6. 

Figure 5. The photocatalytic degradation of an anionic azo-dye in a UV irradiated porous 

titania foam [8,86]. The decrease in absorption peaks is an evidence of degradation.  

This evidence cannot however be conclusive (see section 4-on the use model compounds in 

this review). 
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Figure 6. The photocatalytic activity of TiO2 foam and surface modified binary oxide 

nanoparticles [8,86]. As expected, a higher catalyst concentration results in increased 

photocatalytic efficiency until a maximum catalyst loading is reached. 
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Recent work by Wei et al. [54] using hybrid Fe2O3/Pd nanoparticulate photocatalyst grown by 

epitaxial growth of Fe2O3 on Pd nanoparticles showed improved photocatalytic efficiency, although 

this was limited by the presence of organic stabilizers which are difficult to remove. Other materials 

considered in recent work include ZnS, ZnO, CdSe, Fe2O3 and InP [93]. Some of these materials were 

reported to show some photocatalytic promise, but with uncertainty over their efficiencies and spectral 

characteristics. Fe2O3 is particularly interesting because of its stability against photo and chemical 

corrosion at neutral to basic pH and has a band gap energy of about 2.0 to 2.2 eV corresponding to the 

absorption of 564 to 620 nm light. 
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8. Photocatalytic Reactor Design 

Significant advances have been made in reactor design for various photocatalytic reactions. 

Published literature contains several types and designs of photocatalytic reactors [1,12,92–94] .Apart 

from the conventional reactor design parameters, the major challenge in the design of a photocatalytic 

reactor is the efficient illumination of the catalyst. For a high activity in the reactor, a large area has to 

be illuminated. Therefore, in immobilized systems the thickness of the supported catalyst layer should 

be small enough to enable the light to reach all the catalyst. Therefore, one of the most important 

parameters in design consideration for photocatalytic reactors is light intensity and how the reactor is 

to be designed to accommodate various light sources. Types of reactors developed include fixed bed 

and slurry bed. With regard to design considerations, various models have been reported to deal with 

irradiation of the photocatalyst and how the photocatalyst affects the irradiation—the degree of 

absorption, scattering, the nature and type of particles, surface of the photocatalyst, etc. Light intensity 

is an important reactor design factor when considering light sources because the major requirement of 

any photocatalytic process is that the catalyst, pollutant and source of illumination must be in close 

proximity. This partly because studies have shown that the rate of photocatalytic degradation has a 

nonlinear dependence on light intensity and is proportional to I
0.5 at high intensity and I

1.0 at low 

intensity [93]. It has also been shown that an excess of light promotes a faster electron-hole 

recombination and the low activation energy of photocatalytic reactions (5–20 kJ/mol), compared with 

ordinary thermal reactions. In slurry type systems, catalyst loading is an important design parameter 

for the effective use of reactor space and photocatalyst and a wide range (0.15 to 8 g/L) of optimal 

catalyst loading in aqueous suspensions has been reported for different photocatalyst systems and 

reactor configurations [1,12,91–99], Figure 7: 

Figure 7. Schematic diagram of Channelled Optical Fiber Reactor (COFR) system for  

gas-phase photocatalytic degradation of volatile organic compounds [1].  

 

Another example of a design that has been used in the degradation of organic in polluted air  

is shown in Figure 8. This reactor is filled with silica beads coated with titania paste and is  

externally irradiated by UV irradiation and used in the photocatalytic degradation of organic pollutants 

in air or water.  



Catalysts 2013, 3 204 

 

Figure 8. A photocatalytic reactor filled with silica beads coated with titania paste 

externally irradiated by UV irradiation [4]. 

 

The design and selection of a photocatalytic reactor depends on the experimental conditions and the 

application and two main types have been extensively researched-reactors that use a catalyst as 

suspension form and reactors that use a thin film catalyst either coated to the reactor wall or coated in 

spherical glass beads. Both reactors can be designed as an immersion wall or flat wall. Immersion well 

photoreactors are normally used at laboratory scale for evaluation purposes and are operated in batch 

or continuous mode where oxidant flow and temperature can be easily monitored. The light source can 

be either single or multiple with or without reflectors. Catalyst in these reactors can be used as thin film or 

as suspension form, with suspension system more preferable as they are more efficient than thin film 

reactors due to the large surface area in contact with the substrates. This allows more number of photons to 

hit the catalyst and large adsorption capacity results. Other reactors are flat wall and tubular photoreactors, 

which are simple and easy to design and generally use solar energy. In tubular reactors, reflectors are used to 

concentrate the light and enhance the photoreaction. 

9. Applications of Photocatalysis 

Selected applications of photocatalysis are given in Tables 1–3. Heterogeneous photocatalysis has 

been demonstrated as a low cost and sustainable technology for the treatment of a host of pollutants in 

air and water including organics and heavy metals, etc., with Japan, USA, India and China as major 

users of this technology as partly demonstrated by the number of research publications in this area, 

Figure 9 [1]. Unlike reverse osmosis, nano and ultrafiltration, photocatalysis is a cheap and  

a potential “stand alone” technology for water treatment. As photocatalysis makes use of sunlight or 

UV radiation, the technology is inexpensive, environmentally friendly and can be applied worldwide. 

It requires minimal equipment, is highly deployable and appropriate for developing countries and 

remote sites with no access to electricity. Photocatalysis has also been used successfully in many 

developing nations to destroy pathogens [5, 92] and algal blooms in fresh water supplies. 

Photodisinfection sensitized by TiO2 has been used to degrade the green algae, treat humic  

substances [100] which act as substrates for bacterial growth, inhibit bacterial degradation of 

impurities in natural water, and aid the transport of metals in the environment and complex with Fe, 

Pb, Mn, making it harder to remove them. Specific examples of applications are as follows. 
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Figure 9. Number of publications pertaining to photocatalysis since 1970.  

China, Japan, USA and India have the edge in the number of publications on this Subject. 

Note: This figure is reproduced with permission from [1], Copyright © 2012 American 

Chemical Society. 

 

Table 1. Selected applications of photocatalysis. Note: this Table is reproduced with 

permission from [92], Copyright © 2000 Elsevier Science S.A. 

Property Category Application 

Self-cleaning Materials for residential 

and office buildings 

Exterior tiles, kitchen and bathroom components, interior furnishings, plastic 

surfaces, aluminum siding, building stone and curtains, paper window blinds 

Indoor and outdoor lamps 

and related systems 

Translucent paper for indoor lamp covers, coatings on fluorescent lamps and 

highway tunnel lamp cover glass 

Materials for roads Tunnel wall, soundproofed wall, traffic signs and reflectors 

Others Tent material, cloth for hospital garments and uniforms and spray coatings for cars

Air cleaning Indoor air cleaners Room air cleaner, photocatalyst-equipped air conditioners and interior air cleaner 

for factories 

Outdoor air purifiers Concrete for highways, roadways and footpaths, tunnel walls, soundproof walls 

and building walls 

Water 

purification 

Drinking water River water, ground water, lakes and water-storage tanks 

Others Fish feeding tanks, drainage water and industrial wastewater 

Antitumor 

activity 

Cancer therapy Endoscopic-like instruments 

Self-sterilizing Hospital Tiles to cover the floor and walls of operating rooms, silicone rubber for medical 

catheters and hospital garments and uniforms 

Others Public rest rooms, bathrooms and rat breeding rooms 
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Table 2. Applications of super hydrophilic technology. Note: this Table is reproduced with 

permission from [92], Copyright © 2000 Elsevier Science S.A. 

Property Category Application 

Self-cleaning Roads Tunnel lighting, tunnel walls, traffic signs and sound proof walls 

Houses Tiles on kitchen walls and bathrooms, exterior tiles, roofs and windows

Buildings Aluminum panels, tiles, building stone, crystallized glass and glass film

Agriculture Plastic and glass greenhouses 

Electrical and electronic 

equipment 

Computer displays and cover glass for solar cells 

Vehicles Paint work, coatings for exterior surfaces of windows and headlights 

Daily necessities and 

consumer products 

Tableware, kitchenware and spray-on anti-fouling coatings 

Paint General-purpose paints and coatings 

Anti-fogging property Roads Road mirrors 

Houses Mirrors for bathrooms and dressers 

Stores Refrigerated showcases 

Electrical and electronic 

equipment 

Heat exchangers for air conditioners and high-voltage electric 

transmission equipment 

Vehicles Inside surfaces of windows, glass films, rear-view mirrors and windshields

Daily necessities and 

consumer products 

Spray-on antifogging coatings and films 

Paint General-purpose paints and coatings 

Optical instruments Optical lenses 

Bio-compatibility Medical instruments and 

supplies 

Contact lenses and catheters 

Table 3. Waterborne microbial species known to be inactivated by solar disinfection [5]. 

Microbe Species 

Bacteria Campylobacter jejuni 

Enterococcus sp. 

Enteropathogenic E. coli 

Mycobacterium avium 

Mycobacterium intracellulare 

Pseudomonas aeruginosa 

Salmonella typhi 

Salmonella typhimurium 

Shigella dysenteriae type 1 

Shigella flexneri 

Streptococcus faecalis 

Staphylococcus epidermidis 

Vibrio cholerae 

Yersinia enterocolitica 
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Table 3. Cont. 

Viruses Bacteriophage f2 

Encephalomyocarditis virus 

Polio virus 

Rotavirus 

Coxsackie virus A/B  

Hepatitis A  

Protozoa Acanthamoeba polyphaga (cyst ) 

Cryptosporidium parvum (oocyst) 

Entamoeba sp. (cysts) 

Giardia sp. (cysts) 

Naegleria sp.  

9.1. Water Treatment 

Growth in the global population, the diminishing supply of clean water, heightened environmental 

concerns, and the strong link between water quality and human health require the identification and 

employment of effective sustainable water treatments to meet the urgent global need for clean water. 

Advanced oxidation processes (AOPs) have shown tremendous promise in water purification and 

treatment, including for the destruction of naturally occurring toxins, contaminants of emerging 

concern, pesticides, and other deleterious contaminants. One of the first references to AOPs was by 

Glaze in 1987 as processes that involve the generation of hydroxyl radicals in sufficient quantity to 

affect water purification. The definition and development of AOPs have evolved since the 1990s and 

include a variety of methods for generating hydroxyl radical and other reactive oxygen species 

including superoxide anion radical, hydrogen peroxide, and singlet oxygen. However, hydroxyl radical 

is still the species most commonly tied to the effectiveness of AOPs. Most organic compounds react 

with hydroxyl radical by addition or hydrogen abstraction pathways to form a carbon-centered radical. 

The resulting carbon-centred radical reacts with molecular oxygen to form a peroxyl radical that 

undergoes subsequent reactions, ultimately producing a host of oxidation products such as ketones, 

aldehydes and alcohols [21].  

Hydroxyl radical can also abstract an electron from electron-rich substrates to form a radical cation, 

which in aqueous media, is readily hydrolyzed, ultimately leading to an oxidized product. The 

oxidation products are often less toxic and more susceptible to bioremediation. AOPs include UV/O3, 

UV/H2O2, Fenton, photo-Fenton, non-thermal plasmas, sonolysis, photocatalysis, radiolysis and 

supercritical water oxidation processes. Problematic substances in wastewater can include organic 

matter and/or different trace contaminants and industrial wastewater may also contain heavy loads of 

metals or organic compounds and these cannot be treated by disinfection. In drinking water production 

microbe contamination is a problem especially in developing countries and remote locations without 

access to a centralized drinking water supply.  

In Europe, conventional technologies for wastewater treatment are in most cases able to meet the 

current water quality standards. The chances and potential fields of application of photocatalytic 

systems with artificial UV-sources include new water treatment plants or plants where conventional 
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methods need to be replaced and the treatment of water contaminated with trace contaminants such as 

estrogens, the treatment of industrial wastewater contaminated with high loads of organic compounds 

or metals as well as small scale systems, for example, for the disinfection of swimming pools [92,100]. 

Globally, 1 billion people lack access to safe water supplies and 2.6 billion are without access to 

basic sanitation [5]. This is especially true for the least developed regions of Asia, Central and South 

America, and Africa, innovative methods for water treatment are needed urgently. In the most 

developed markets such as the USA, Canada, Japan, and most of Western Europe, the success of a new 

water treatment method is mainly based on its ability to improve the quality of drinking water and/or 

to reduce water contamination. The beneficial effects of clean water are obvious. Most importantly, the 

improvement of water supply, sanitation, hygiene, and management of water resources could prevent 

almost one-tenth of all diseases worldwide. Nanotechnology is one of the most promising emerging 

technologies for efficient, economical and environmentally friendly water and waste water treatment 

offering great potential for manufacturers in Europe.  

The demand for water treatment products globally reached $44.6 billion in 2008 and it is predicted, 

by Freedonia Group Inc., to increase annually by 5.7% reaching $59 billion by 2013 [5]. The fastest 

annual growth was predicted to be in large developing countries like China and India due to rapid 

industrialization and increased efforts to expand access to safe water supplies and adequate sanitation 

facilities especially in rural areas. The worldwide turnover of nanotechnological applications in water 

and wastewater treatment reached $1.6 billion in 2007 and was predicted to increase to $6.6 billion in 

2015. In 2015 the leading countries in water treatment with nanoparticle-based methods are the USA, 

Germany, Japan, and China [101]. Disinfection is one of the fastest growing market segments with 

broad applications and benefits; photocatalysis with nano-catalysts is a promising method for 

disinfection. In addition, photocatalysts combined with filtration membranes can reduce membrane 

fouling and thus enhance water cleaning efficiency significantly. Small-scale photocatalytic systems 

with artificial UV-light have already been on the market for several years whereas solar photocatalytic 

water treatment plants are at a demonstration phase and pilot projects for drinking water purification 

in developing countries have only just started. 

Recently, humic substance was also decomposed both in highly saline and natural seawater using 

different photocatalytic materials. The decomposition rate of humic substances in seawater was slow 

compared with pure water media and no toxic byproducts were detected during the decomposition. 

Minero and other workers [29,100,102–104] studied the decomposition of dodecane and toluene in 

crude oil in seawater media and found that no chlorinated compounds were detected during the irradiation. 

Complete decomposition was achieved after a few hours of irradiation. Another study conducted on the 

decomposition of seawater-soluble crude-oil fractions found that it can be decomposed under 

illumination of nanoparticles of TiO2 using artificial light [47]. 

Photocatalysis can also be used to destroy bacteria and viruses [92,100,105]. The increasing 

incidence of algal blooms in fresh water supplies and the consequent possibility of cyanobacterial 

microcystin contamination of potable water Microcystin toxins are also degraded on immobilized 

titanium dioxide catalyst. Photodisinfection sensitized by TiO2 had some effect on the degradation of 

the green algae which has a thick cell wall. This is being used to great advantage in many developed 

and developing nations to treat water especially in remote and disaster areas without portable water 

supply or electricity, as shown in Figure 10. 
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Figure 10. Inactivation of bacteria Ecoli K-12 in drinking water exposed to solar 

irradiation. Adapted from EU Contract Number INCO-DEV 031650 (2006) [5]. 

 

Specific successful applications have been in the following areas, amongst others. 

9.2. Removal of Trace Metals 

Trace metal such as mercury (Hg), chromium (Cr), lead (Pb) and others metals are considered to be 

highly health hazardous. Thus, removing these toxic metals is essentially important for human health 

and water quality. The environmental applications of heterogeneous photocatalysis include removing 

heavy metals such as (Hg), chromium (Cr), lead (Pb), Cadmium (Cd), lead (Pb), Arsenic (As), nickel 

(Ni) copper (Cu). The photoreducing ability of photocatalysis has been used to recover expensive 

metals from industrial effluent, such as gold (Au), platinum (Pt) and silver (Au) [22]. 

9.3. Destruction of Organics 

Photocatalysis has been used for the destruction of organic compounds such as alcohols, carboxylic 

acids, phenolic derivatives, or chlorinated aromatics, into harmless products, for example, carbon 

dioxide, water, and simple mineral acids. Water contaminated by oil can be treated efficiently by 

photocatalytic reaction. Herbicides and pesticides that may contaminate water such as  

2,4,5 trichlorophenoxyacetic acid, 2,4,5 trichlorophenol, S-triazine herbicides and  

1,1,1-trichloro-2,2-di(4-chlorophenyl)ethane (DDT) have also been successfully degraded [22]. 

9.4. Removal of Inorganic Compounds 

In addition to organic compounds, wide ranges of inorganic compounds are sensitive to 

photochemical transformation on the catalyst surfaces. Inorganic species such as bromate, or chlorate, 

azide, halide ions, nitric oxide, palladium and rhodium species, and sulfur species can be decomposed. 

Metal salts such as AgNO3, HgCl and organometalic compound (e.g., CH3HgCl) can be removed from 

water as well as cyanide, thiocyanate, ammonia, nitrates and nitrites [22]. 

9.5. Degradation of Natural Organic Matter 

Humic substances have also been degraded photochemically. Humic are naturally occurring 

biogenic heterogeneous organic substances characterized as being yellow brown and having high 

molecular weights They can also be described as the fraction of filtered water that adsorbs on  
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non-ionic polymeric adsorbent at pH 2. They are the main constituents of the dissolved organic carbon 

pool in surface and ground waters, imparting a yellowish-brown color to the water system.  The 

concentration of humic substances varies from place to place, the values in seawater being normally 

from 2–3 mg/L. Humic substances affect the behaviour of some pollutants in natural environments, 

such as trace metal speciation and toxicity, solubilization and adsorption of hydrophobic pollutants. 

They act as substrates for bacterial growth; inhibit the bacterial degradation of impurities in natural 

water, complex with heavy metals such as Fe, Pb, Mn making it harder to remove them. Advanced 

oxidation has been used to decrease the organic content in water including humic acid [100] and it has 

the advantage of not leaving any toxic byproducts or sludge. 

Bekbolet and Ozkosemen [103] investigated the photocatalytic degradation using humic acid as  

a model and observed that after 1 h irradiation and in the presence of 1.0 g/L TiO2 (P25), 40% TOC 

and 75% of the colour (400 nm) were removed. On the other hand, Eggins and coworkers found the 

suspension of TiO2 (P25) irradiated by a mercury lamp showed a very efficient reduction of humic 

acid concentration of about 50% in 12 min. Heterogeneous photocatalysis has also been coupled with 

other physical methods in order to increase the degradation rate of organic molecules including humic 

substances [100,103]. 

9.6. Medical Applications 

Application in TiO2 Fabrics is a major and important application of TiO2 photocatalysis. The ability 

of TiO2 to disinfect microbes, viruses and bacteria has been put into good used by Japanese 

researchers. Hospital garments worn by doctors and nurses have “doses” of TiO2 added to the fabric 

during processing operations and the fabric are used to make hospital garments that are worn to control 

hospital infections, including MRSA. Many lives have been lost because of methicillin resistant 

Staphylococcus (MRSA) and research is concentrating efforts on “TiO2 fabrics” as well as the use of 

antimicrobial photodynamic therapy (APDT) to decolonize MRSA from patients [92]. 

9.7. Application Photodynamic Therapy 

Targeting cancer such as colon or kidney cancer (tumor therapy) in an organism with a source of 

irradiation is easy. However, tumors in rats have shown to respond to PDT treatment. Basically, TiO2 

is introduced in the site of the cancer and illuminated by and is photo sensitized using an optic fiber 

cable to introduce the illumination [92]. The activation of the photo sensitizer on illumination creates 

reactive oxygen species that kill the surrounding cells of the tumor.  

9.8. Applications in Construction 

TiO2 cement (“pellite cement”) containing TiO2 has been used in road construction (tunnels) in 

some European countries to control exhaust emissions due principally to NO and NO2. These are 

especially severe in summer months especially in dense and large urban cities with high traffic levels. 

This application however, is not new to the market [106]. 
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10. Societal Impact of Photocatalysis 

The widespread application of nanoparticle TiO2 should, in theory, have beneficial impacts on the 

health of the general public and thus on the quality of life [3]. Since nanoparticle TiO2 particles are 

inexpensive and may be integrated into different materials, photocatalytic systems and surfaces, they 

are not limited to large-scale applications in water treatment facilities. They may also be applied in 

homes, hospitals, or offices for disinfection or the degradation of water and air pollutants [6,9–11]. The 

use of nanoparticle TiO2 for water treatment and disinfection is expected to have a positive effect on 

the environment, as it can replace more toxic substances such as organic biocides. This has a 

significant implication for developing nations. It can also improve the quality of the water released 

from water treatment plants by assisting traditional treatment methods to target more substances and 

thereby obtain a higher efficiency of the whole process [14–16]. 

11. Outlook and Challenges 

TiO2 has been extensively studied worldwide resulting in more than 13,600 publications between 

2010 and 2011. Opportunities for TiO2 now lie in areas such as energy conversion and storage.  

TiO2 nanostructures have shown promise in designing Li-ion and Na-ion storage batteries and  

shape- and size-controlled TiO2 nanostructures will continue to provide the base architecture to 

construct light-harvesting assemblies and facilitate photo-induced charge separation processes. As 

stated earlier in this review, pure nanoparticle TiO2 is only activated by UV-light and this means that 

for indoor applications it is important to develop a TiO2 based catalysts that can absorb visible  

wavelengths.  Furthermore, the most efficient system set-up and substrate materials have to be 

determined for different applications in private and public facilities to assure maximal longevity, 

efficiency, and functionality of the photo-catalyst. A significant problem that still needs to be 

addressed is suppressing charge recombination in semiconductor materials. Studies have shown that 

manipulation of interfacial charge transfer can assist in improving photocatalytic and solar cell 

conversion efficiency. This may be achieved by surface modification surface modification and/or with 

a co-catalyst [12]. 

Another major challenge is that nanoparticle TiO2 does not only destroy all organic materials but 

also the organic matrix in which the nanoparticles are embedded. This limits its application to 

inorganic environments. Nanoparticle TiO2 is expected to have minimal negative effect both on human 

health and the environment since it is usually immobilized in/on a substrate material, for example, 

metals, tiles, or glass beads. However, nanoparticle TiO2 can accumulate if its use is widespread and 

could potentially have health impacts for workers exposed to nanoparticle TiO2 dust. There are currently 

no regulations related to the use of nanoparticle TiO2 for water treatment, but standards on test 

methods for photocatalytic water purification are under development. Stricter water treatments standards 

would require new treatment methods and could thus further the application of photocatalytic 

systems with nanomaterials. 
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12. Conclusion 

This review covered mainly TiO2 semiconductor as well as RuO2 and SnO2. The principles and 

methods covered in this review apply to all photocatalyst materials in general. It is now possible to 

tailor catalysts to specific applications and there are ways of enhancing photocatalyst activity and 

improving performance. As well as destruction of viruses and bacteria, heterogeneous photocatalysis has 

been used to decompose natural organic matter, volatile organic compounds in water, air and soil and 

there are applications in consumer goods, food and medicine. Extending the wavelength for TiO2 

application is an area of increasing research. One of the ways of doing this is by doping, as already 

described in this review and this merits continuing research efforts. 
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