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There has been a belief that with the directing power of the
market, the efficient state of a resource-allocating system can
eventually be reached even in a case where the resource is
distributed in a biased way. To mimic the realistic huge system for
the resource allocation, we designed and conducted a series of
economic experiments. From the experiments we found that effi-
cient allocation can be realized despite a lack of communications
among the participants or any instructions to them. To explain the
underlying mechanism, an extended minority game model called
the market-directed resource allocation game (MDRAG) is con-
structed by introducing heterogeneous preferences into the strat-
egy-building procedures. MDRAG can produce results in good
agreement with the experiments. We investigated the influence of
agents’ decision-making capacity on the system behavior and the
phase structure of the MDRAG model as well. A number of phase
transitions are identified in the system. In the critical region, we
found that the overall system will behave in an efficient, stable,
and unpredictable mode in which the market’s invisible hand can
fully play its role.

biased distribution � invisible hand � economic experiments �
minority game � resource allocation

Most of the social, economic, and biological systems involv-
ing a large number of interacting agents can be regarded

as complex adaptive systems (CAS) (1), because they are char-
acterized by a high degree of adaptive capacities to the changing
environment. The interesting dynamics and phase behaviors of
these systems have attracted much interest among physical
scientists. A number of microscopic CAS models have been
proposed (2–6), among which the minority game (MG) (7–9)
becomes a representative model. Along with the progress in the
research of econophysics (10), MG has been mostly applied to
simulate one kind of CAS, namely the stock market (11, 12).
Alternatively, MG can also be interpreted as a multiagent system
competing for a limited resource (13, 14) that distributes equally
in 2 rooms. However, agents in the real world often have to face
a competition to the limited resource, which distributes in
different places in a biased manner. Examples of such phenom-
ena include companies competing among markets of different
sizes (15), drivers selecting different traffic routes (16), people
betting on horse racing with the odds of winning a prize, and
making decisions on which night to go to which bar (17).

From a global point of view, the ideal evolution of a resource-
allocating system would be the following: Although each agent
would compete against others only with a self-serving purpose,
the system as a whole could eventually reach a harmonic
balanced state where the allocation of resource is efficient,
stable, and arbitrage-free (which means that no one can benefit
from the ‘‘misdistribution’’ of the resource). Note that during the
process of evolution to this state, agents could neither have been
told about the actual amount of the resources in a specific place
nor could they have any direct and full communications, just as
if there were an ‘‘invisible hand’’ directing them to cooperate
with each other. Then, does this invisible hand always work? In
practice, there is plenty of evidence that the invisible hand does

have very strong directing power in places such as financial
markets, although sometimes it does fail to work. Such tempo-
rary ineffectiveness implies that there must be some basic
conditions required for the invisible hand to exert its full power.
Through an experimental study and a numerical study with a
market-directed resource allocation game (MDRAG, which is
an extended version of the MG model), we found that agents
equipped with heterogeneous preferences as well as a decision-
making capacity that matches with the environmental complex-
ity are sufficient for the spontaneous realization of such a
harmonic balanced state.

To illustrate the system behavior, we designed and conducted
a series of economic experiments, in collaboration with univer-
sity students. In the experiments, 89 students from different
(mainly physics, mathematics, and economics) departments of
Fudan University were recruited and randomly divided into 7
groups (Groups A–G, see Tables 1–4). The number of students
in each group was just set for convenience and denoted by N in
Tables 1–4. In the games played in the experiments, students
were told that they had to make a choice among a number of
rooms, in each round of a session, for sharing the different
amounts of virtual money in different rooms. Students who got
more than the global average, namely those belonging to the
relative minority, would win the payoff. At the beginning of a
session, participants were told the number of rooms (2 or 3) and
in some cases, the different but fixed amount of virtual money
in each room. In the following, Mi is used to denote the amount
of virtual money in room i. A piece of global information about
the payoff in the preceding round in all rooms is announced
before a new round starts. In each round, the students must make
their own choices without any kind of communication. The
payoff per round for a student in room i is 2 points if Mi/Ni �
¥Mi/N, and �1 point otherwise. Here, Ni is the number of the
students choosing room i. The total payoff of a student is the sum
of payoffs of all rounds, which will be converted to money payoffs
in Renminbi (RMB, or Chinese yuan) with a fixed exchange rate.
Because the organizational and statistic procedures were done
by a human, one session of 10 rounds took �20 min. More details
can be found in the leaflet to the experiments in Appendix.

Three kinds of games, GAME-I, GAME-II, and GAME-III,
have been investigated. GAME-II differs from GAME-I in the
global information being announced. In GAME-I, both the
resource distribution Mi and the current population Ni in room
i were announced, whereas only payoffs (2 or �1) in each room
of the current round were conveyed to players in GAME-II.
Note that the environmental complexity was increased in
GAME-II, because to win the game, players would have to
predict other players’ decisions, and, in the meantime, infer the
actual amount of virtual money in different rooms. In GAME-
III, the global information is the same as that of GAME-II,
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except that an abrupt change of amount of virtual money is
introduced during the play of the game without an announce-
ment. (On the contrary, all of the participants have already been
told that each Mi is fixed.) No further information was given to
the participants.

Results of 6 sessions of GAME-I, 4 of GAME-II, and 1 of
GAME-III are given in Tables 1–4. In Table 1, the results of
GAME-I are listed, where the time average of the player number
in room i is represented as �Ni�. As the data show, a kind of
cooperation seems to emerge in the game within 10 rounds. In
particular, ratios of �Ni� converge to the ratios of Mi, implying
that the system becomes efficient in delivering the resource even
if it was distributed in a biased way. To the players, no room is
better or worse in the long run; there is also no evidence that any
of them could systematically beat the resource allocation ‘‘mar-
ket.’’ One might naively think that the system could evolve to this
state only because the participants knew the resource distribu-
tion before the play of the games and the population in each
room during the play. However, results of GAME-II show that
this explanation could not be correct. As shown in Table 2,
although players who know neither the resource distribution nor
the current populations in different rooms seem not to be able
to adapt to the unknown environment during the first 10 or 15
rounds, eventually the relation �N1�/�N2� � M1/M2 is achieved
again in groups C and F. For instance, Table 3 shows the track
through which group F gradually found the balanced state under
the environmental complexity M1/M2 � 3. Furthermore, the
results of GAME-III support the conclusion of GAME-II, in
which the system can reach this state even with an abrupt change
of the unknown resource distribution during the play of the
game, see the results of 21 to 45 rounds played by the G group
in Table 4. It is surprising that players can ‘‘cooperate’’ even
without direct communications or information about the re-
source distribution. We can define the source of a force that
drives the players to get their quota evenly as the ‘‘invisible
hand’’ of the resource-allocation market. In the sequel, however,
we shall show that the effectiveness of this invisible hand relates
to the heterogeneous preference and the adequate decision-
making capacity of the participants of the game.

Model
To find out the mechanism behind this adaptive system of
resource distribution, 2 multiagent models are used, and their
results are compared with each other. The first model is the
traditional MG, whereas the second one is an extended MG

called a MDRAG. MG and MDRAG have a common frame-
work: There are N agents who repeatedly join a resource-
allocation market. The amounts of resource in 2 rooms are M1
and M2. Before the game starts, each agent will choose S
strategies to help him/her make a decision in each round of play.
The strategy used in MG and MDRAG is typically a choice table
that consists of 2 columns, as shown in Table 5. The left column
is for the P possible economic situations, and the right side is for
the corresponding room number, namely room 0 or room 1.
Thus, if the current situation is known, an agent should imme-
diately choose to enter the corresponding room. With a given P,
there are totally 2P different strategies. At each time step, based
on a randomly given exogenous* economic state (18), each agent
chooses between the 2 rooms with the help of the prediction of
his/her best-scored strategy. After everyone has made a decision,
agents in the same room will share the resource in it. Agents who
earn more than the global average (M1 � M2)/N become the
winners, and the room that they entered is denoted as the
winning room. To a strategy in the game, a unit of score would
be added if it had given a prediction of the winning room, no
matter whether it was actually used or not.

On the other hand, MDRAG differs from MG in the strategy-
building procedures. In traditional MG, agents ‘‘randomly’’
choose S strategies from the strategy pool of 2p size. Here,
randomly means that each element of the right column of a
strategy table is filled in with 0 or 1 equiprobably. By using this
method, strategies of different preferences will have a binomial
distribution. Here, the preference of a strategy is defined as the
tendency or probability with which a specific room will be chosen
when the strategy is activated. For a large P, the numbers of 0
and 1 in the right column are nearly equal. Hence, globally there
would be no preference difference among agents who uniformly
pick up these strategies. In MDRAG, however, we use another
method to fill the strategy table to introduce heterogeneous
preferences to the agents. First, K(0 � K � P), denoting the
number of 0s in the right column, is randomly selected from the
P � 1 integers. In other words, strategies with different prefer-
ences (different values of K) are chosen equiprobably from the
strategy pool. Second, each element of the strategy’s right
column should be filled in by 0 with the probability K/P and by
1 with the probability (P � K)/P. It is clear that a strategy with an
all-zero right column can be picked with the probability 1/(P �
1) in MDRAG, whereas this could happen only with a proba-
bility of 1/2p in the traditional MG and could practically never be
chosen by any MG agents if NS �� 2p.

To make descriptions easier to understand, explanations of the
model parameters are provided. The ratio M1/M2 represents the

*The alternative is the use of endogenous binary history of the game results as the
economic situations. We have confirmed that there would be no change in the simulation
results.

Table 3. Track of 11 players in Group F (N � 11) converging
to M1/M2 � 3

Round N1 N2 Round N1 N2

1 5 6 11 8 3
2 9 2 12 10 1
3 4 7 13 9 2
4 6 5 14 7 4
5 6 5 15 9 2
6 7 4 16 7 4
7 7 4 17 7 4
8 8 3 18 9 2
9 10 1 19 8 3

10 10 1 20 9 2

Table 1. Results of GAME-I

Session Group Round M1 M2 M3 �N1� �N2� �N3�

1 A (N �12) 1 to 10 3 2 1 5.3 4.6 2.1
2 A (N � 12) 1 to 10 3 2 1 5.5 3.8 2.7
3 B (N � 12) 1 to 10 3 2 1 5.5 4 2.5
4 C (N � 24) 1 to 20 3 2 1 12.2 7.4 4.4
5 D (N � 10) 1 to 10 5 3 – 6.1 3.9 –
6 D (N � 10) 1 to 10 3 1 – 7.4 2.6 –

Table 2. Results of GAME-II

Session Group Round M1 M2 �N1� �N2�

1 D (N � 10) 1 to 10 2 1 6.2 3.8
2 E (N � 10) 1 to 10 1 3 3.3 6.7
3 F (N � 11) 1 to 10 3 1 7.2 3.8
3 F (N � 11) 11 to 20 3 1 8.3 2.7
4 C (N � 24) 1 to 15 7 1 17.8 6.2
4 C (N � 24) 16 to 30 7 1 21.1 2.9
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environmental complexity of the games. Note that if M1/M2 � 1,
agents need only to worry about other people’s decision. As-
suming that room 1 always contains more resources, the trivial
case will be M1/M2 � N � 1, because all of the agents can easily
find out that going to room 1 would be the right choice under this
situation. On the other hand, when the ratio is set 1 � M1/M2 �
N � 1, the larger this ratio is, the more difficult it would be for
the market to direct the system to the ideal state. Other
parameters concern the decision-making capacity, which can be
generalized into 3 elements (http://plato.stanford.edu/entries/
decision-capacity/), namely, (i) the possession of a set of values
and goals necessary for evaluating different options; (ii) the
ability to communicate and understand information; and (iii) the
ability to reason and to deliberate about one’s choices. The first
element has already been built into both the models as the
evaluation of the strategies with the minority-favorable payoff
function. The second element relates to the model parameter P.
Because the total number of possible situations depends on the
completeness of the perception of the world, we relate it to
cognition ability. Finally, more strategies could be helpful if one
needs to deliberate his/her choices of decisions, hence the
strategy number S is related to the third element of the decision-
making capacity, the ability of choice deliberation.

Results
Results of the economic experiments are compared with the
simulation results of the traditional MG and MDRAG in Fig. 1.
For each parameter set, we performed the simulation 200 times.
In each of these simulations, the code was run over 400 time
steps. The first half of the time evolution is for the equilibration
of the system, whereas the remaining half is for doing the
statistics. With a certain set of parameters (S � 8 and P � 16),
MDRAG’s results perfectly agree with the experimental data
under higher environmental complexity. In other words, agents
in both experiments and MDRAG can be directed by the market
to cooperate with each other so that an efficient allocation of the
biasedly distributed resource can be realized even without giving
the agents full information or instructions. On the other hand,
the traditional MG fails to reproduce the experimental results
unless the distribution of resource is biased very weakly up to
M1/M2 � 3. Note that MDRAG differs from MG solely in the
introduction of heterogeneous preferences in the strategies;

hence, one may infer that the heterogeneity of agents’ prefer-
ences is a significant factor to have the invisible hands be
effective. This argument is further supported by numerical
experiments in the 3-room cases (with parameters P � 24, N �
120, and S � 10). Again, here MDRAG is superior to MG in
bringing out the directing power of the market. Shown in Table
6, the ratio of �N1�:�N2�:�N3� converges to M1:M2:M3 only in the
equilibrium states of MDRAG.

Fig. 1 also shows that the decision-making capacity, in par-
ticular, the deliberation of choices (the parameter S), would be
another factor having an influence on the effectiveness of the
invisible hand. Typically, as the environmental complexity (M1/
M2) increases, both MG and MDRAG will deviate from the
experimental results. Nevertheless, the problem of MG is much
more severe. As shown in the figure, even MG with extremely
large S (S � 48, a situation that is inconsistent with the real
system and will drastically increase the computational cost) can
just work at a very low level of environmental complexity. At the
same time, the result of MDRAG provides a perfect fit with the
experimental data when S is large enough, but not too large for
a given P value (the reason will be explained in the following
discussion of Fig. 3). In a word, MG does not provide a good fit
even for large S, whereas MDRAG can fit the data with a less
demanding condition in terms of computational cost.

Discussion
Through a large number of numerical simulations, we have found
the dependence of equilibrium states of the system on the model
parameters, together with a number of phase transitions in the
models. To explore this in more detail, 3 parameters are defined

Fig. 1. � N1�/�N2� as functions of M1/M2, P � 16 in MG and MDRAG, and N �
24 for all of the simulations and the experiment. Simulations are run 200 times,
each over 400 time steps (first half for equilibration, the remaining half for
statistics). The line with slope � 1 indicates the efficient states: �N1�/�N2� �
M1/M2.

Table 4. Results of GAME-III

Session Group Round M1 M2 �N1� �N2�

1 G (N � 10) 1 to 5 3 1 5.4 4.6
1 G (N � 10) 6 to 10 3 1 8.2 1.8
1 G (N � 10) 11 to 15 3 1 7 3
1 G (N � 10) 16 to 20 3 1 7 3
1 G (N � 10) 21 to 25 1 3 7.8 2.2
1 G (N � 10) 26 to 30 1 3 4.2 5.8
1 G (N � 10) 31 to 35 1 3 2.8 7.2
1 G (N � 10) 36 to 40 1 3 2.6 7.4
1 G (N � 10) 41 to 45 1 3 2.4 7.6

Table 5. A typical strategy table

Economic situations Choices

1 0
2 1
3 1
� � � � � �

P-1 0
P 1

Table 6. Performances of MDRAG and MG in 3-room cases

Resource MDRAG MG

M1 M2 M3 �N1� �N2� �N3� �N1� �N2� �N3�

1 1 1 39.9 40.3 39.8 39.2 41.5 39.3
1 2 3 19.7 40.1 60.2 25.1 40.7 54.2
1 4 7 9.6 40 70.4 24.8 40.4 54.8
1 2 9 9.8 19.6 90.6 29.3 33.8 56.9
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that describe system behaviors in 3 aspects, namely, efficiency,
stability, and predictability. First the efficiency of resource
allocation can be described as e �  �N1�/�N2� � M1/M2 /(M1/M2).
Note that 0 � e � 1 and a smaller e means a higher efficiency
in the allocation of the resource. The stability of a system can be
described by �2/N' (1/2N)¥i�1

2 �(Ni � Ñi)2�, which denotes the
population fluctuation away from the optimal state.† Here, Ñi �
MiN/¥Mi, and �A� is the average of time series At. The predict-
ability is related to H' (1/2NP)¥��1

P
¥i�1

2 �Ni � Ñi ��2, in which
�A �� is the conditional average of At, given that �t � �, one of
the P possible economic situations. If �2/N 	 H, it means that
agents may take different actions at different times for the same
economic situation (namely, the market behavior is unpredict-
able). For clarity, we describe the predictability of system by
defining J � 1 � HN/�2. It is obvious that 0 � J � 1 and a smaller
J means a higher predictability.

The variation of system behavior along with the change of
environmental complexity M1/M2 is shown in Fig. 2. As shown in
Fig. 2 A, the system changes from an efficient state into an
inefficient state at some critical value (M1/M2)c � S. For other
values of P, the system behavior stays the same as long as P is
larger than M1/M2. In Fig. 2B, around the same critical value of
M1/M2, �2/N changes from a decreasing function to an increasing
function, giving the smallest f luctuation in the population dis-
tribution at the critical point. Meanwhile, the order parameter J
also falls into zero at (M1/M2)c, suggesting that a phase transition,
named the ‘‘M1/M2 phase transition,’’ occurs at this critical point.
To be more illustrative, when the environmental complexity is
much smaller than the critical value, the system could reside in
an efficient, unpredictable, but relatively unstable state. Getting
closer to the phase transition point, the stability of system will be
improved until the most stable state is reached. Then, after
crossing the critical point, the decision-making capability of the
whole system has been exhausted, and it will fall into an
inefficient, predictable, and unstable state. At the vicinity of the
critical point, as if participants of the game worried about being
eliminated from the competition, the market inspires all of its

guiding potential and leads the system to the ideal state for the
resource allocation, a state that is both efficient and stable and
where no unfair arbitrage chance can exist.

It is important to know that MDRAG and MG have totally
different phase structures, which could be analyzed by compar-
ing the S � P contours of the descriptive parameters for the 2
models, see Fig. 3. From the analysis, we could also know how
the decision-making capacity influence the overall performance
of the resource allocation system, in case the environmental
complexity is fixed (M1/M2 � 4). Features of the contour maps
(Fig. 3) are summarized as the following (different M1/M2s do
not change the conclusions):

(i) Compared with the traditional MG as a whole, MDRAG
has a much wider range of parameters for the availability of the
efficient, stable, and unpredictable states. In particular, there is
almost no eligible region in Fig. 3A if we take the criterion of
efficiency as e � 0.08. Also, the predictable region (J � 0.02) in
Fig. 3F is much smaller than that of the MG’s results in Fig. 3C.
These facts indicate that MDRAG has a much better perfor-
mance than MG as a resource-allocating system.

(ii) Patterns of the contour maps suggest that MG and
MDRAG have totally different dependency on parameters. Fig.
3 A–C indicates that P and S are not independent in the
traditional MG model, which confirms the previous findings
(19). On the other hand, in MDRAG, there is always a region
where the system behavior is almost controlled by the parameter
S. In Fig. 3D, for large enough P, the system can reach the
efficient state if S exceeds a critical value Sp, where Sp will
converge to the limit value M1/M2 with increasing P. For S � Sp,
the system can never reach the efficient state no matter how P
changes. For a very large P and S � M1/M2, it can be proved that
the probability for agents to enter the richer room is S/(S � 1),
so that the system stays in the inefficient states (�N1�/�N2� �
M1/M2).

(iii) Observing Fig. 3D and F, one may find both an ‘‘S phase
transition’’ and a ‘‘P phase transition.’’ As mentioned above,
for large enough P, the increase of S can abruptly bring the
system from the inefficient/predictable phase to the efficient/
unpredictable phase, and it is named S phase transition. On the
other hand, in the narrow region where S � M1/M2, the
increase of P can also produce of a drastic change from the
unpredictable phase to the predictable phase, and it is named
P phase transition. The existence of the S phase transition can
be explained by the fact that the number of available choices
in decision making is a key factor for agents to find the right
choice from strategies with an adequate heterogeneity of
preferences. But for S �� P, it will also cause a slight decrease
of the efficiency because of the conf licts of the different
predictions from the equally good strategies with the same
preference. This explains why MDRAG, S � 48 performs
worse than MDRAG, S � 8, when P � 16 in Fig. 1. The P phase
transition ref lects that for some incompetent ability of choice
deliberation, a critical value of the cognition ability can
enhance the decision-making capacity to match the environ-
mental complexity.

(iv) It is also noteworthy that the parameter � � 2P/N, which
is the main control parameter in the MG model (8, 9), no longer
controls on the behavior of the MDRAG system. Varying N
while keeping M1/M2 as a constant, the basic feature, especially
the critical position of the contour maps, will remain unchanged.

In aspects of the competition for resources, the feed of global
information, and the inductive optimization of strategies, both
MG and MDRAG may be regarded as eligible models for the
economic experiments. However, MG fails to reproduce the
experimental results in most cases. By simply accommodating a
broader preference distribution of the strategies, MDRAG fits
the experimental results without any coordinating capability of
the agents. This enables us to comment on the possible mech-

†Large fluctuations in populations can cause a higher dissipation in the system. Hence, an
efficient and stable state means an optimal state with a low waste in the resource
allocation.

A

B

Fig. 2. The ‘‘M1/M2 phase transition’’ in MDRAG, for N � 100, P � 64, and S �
8. Simulations are run 300 times, each over 400 time steps (first half for
equilibration, the remaining half for statistics). The dashed line denotes
M1/M2 � 8. (A) e as a function of M1/M2. (B) �2/N and J versus M1/M2,
respectively.
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anism of the invisible hand, and conditions under which the
complex adaptive systems will spontaneously converge to the
efficient states. The most important thing for the invisible hand
to work is that different players of the economic games should
have different preferences, just like the agents in the MDRAG
games who have heterogeneous preferences in their strategies.
Next, the players should also have an adequate capacity of
decision making that matches the complexity of the environ-
ment. From the M1/M2 phase transition in the MDRAG simu-
lations, we could infer that there would be a failure in achieving
the balanced efficient state if the game of the experiment were
designed in too complicated a way, e.g., too many rooms or a
too-biased distribution of the virtual money. Nevertheless, for
the MDRAG model itself, because the model parameters can be
tuned freely, we believe that the market directing power can
always be brought out completely in this paradigm as long as
there is enough computational power. To put it another way,
when the experiment happens to be set at the critical range of
players’ decision-making capacity, just like a finely tuned
MDRAG where parameters are set to be critical values of the
phase transitions mentioned above, an idealized state of the
resource allocating system can be realized, namely, the system is
efficient, stable, and unpredictable; see the overlapped regions
for small e, small �2/N, and finite J in Fig. 3 D–F.

Finally, although these intriguing conclusions are supported by
the results of MDRAG simulations, there are still some impor-
tant effects in the real world not included in the model, such as
the difference in the decision-making capacities among the
agents and the agents’ responses to changes of the environment.
One challenging task is to consider a suitable relation between
agents’ behavior and the distribution of resources (M1/M2),
which may have an influence on the dynamic behavior of the
whole system.

Appendix: Leaflet to the Economic Experiment

Y A group of persons are taking part in this experiment. The
game situation is the same for each participant. In the
experiments, any kinds of communication are not allowed.

Y At the beginning of the game, all of you will be told the kind
of game (GAME-I, GAME-II, or GAME-III) as well as the
total number of the players (N), rooms (2 or 3), and play
rounds.

Y In each round of the game, you have to choose and enter 1 of
the rooms. The amount of virtual money in each room is
different but fixed, represented by Mi (i � 1, 2, . . .).

Y You will be told each Mi (only in GAME-I).
Y In each round, you can choose a room to share the virtual

money in it and get your quota, Mi/Ni, if you select room i.
Here, Ni denotes the total number of players in room i.

Y You may make a new room choice in every round.
Y Your payoff per round: After the statistics of each round are

done, you will receive a payoff that depends on the relation
between your quota and the global average:

payoff per round � � 2 points, if Mi/Ni � � Mi/N
� 1 point, otherwise.

Y Your information per round:

– The current round number.
– Ni of each room in the preceding round (only in

GAME-I, announced by the game organizer).
– Payoff (2 or �1) of each room in the preceding round

(announced by the game organizer).
– Your rooms chosen and payoffs got in the preceding

game rounds (recorded by yourself).
– Your cumulated payoffs (calculated by yourself).

Y The initial capital of each participant is 0 point. The exchange
rate is 1 RMB per (positive) point.
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