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Abstract: We demonstrate a six spatial-mode, wavelength-routing network interoperable

with few-mode, coupled-multi-core, and single-mode fiber spans using a custom 57-port

wavelength-selective switch configured for joint-switching of spatial-superchannels.
OCIS codes: 060.6718, 060.1660.

1. Introduction: Need for Joint Switch Compatible with all Types of Fibers
Space-division multiplexing (SDM) uses parallel spatial paths in novel fibers to provide capacity increases over single-

mode fiber (SMF) systems. These spatial paths can be the cores in a multi-core fiber (MCF), the spatial modes in a

few-mode fiber (FMF), and even parallel strands of SMF. All these fibers are suitable for transmission and some key

results include >305-Tb/s over 19-core fiber [1], 1.01-Pb/s over 52-km of 12-core fiber [2], 177-km of FMF supporting

six spatial modes [3], and 1705 km of coupled-core MCF (CC-MCF) [4].

It is unclear which SDM fiber provides the best performance, and in the future, network operators may deploy

different SDM fibers throughout the network. Figure 1a) shows such a network with 4 nodes that uses six spatial chan-

nels. The nodes are interconnected with three different SDM fibers: six parallel SMF strands, an amplified FMF span

with six spatial modes, and an amplified CC-MCF with six-cores. To route signals through the network, wavelength

selective switches (WSSs) can be used in switching nodes to direct wavelength channels between different locations.

In an SDM network with different fibers, the WSS must be capable of interfacing and routing the different spatial

modes of each type of SDM fiber in addition to handling the multiplicity of the additional spatial channels. Previous

Fig. 1: a) Heterogenous SDM network with different six spatial-mode fiber spans. b) Joint wavelength selective switch (WSS) for simultaneously

switching all modes. The beam forming optics to optimize resolution and port count, and the polarization diversity optics are not shown. c) Photonic

lantern fiber interface for FMF and tapered fiber bundles for interfacing to the six-core span.



Th5C.5.pdf OFC Postdeadline Papers © OSA 2015

Fig. 2: a) Transmitter with six spatial channels. b) SDM receiver with offline MIMO processing. c) Experimental arrangement. Spectral insets are

measured after the first receiver amplifier. ECL: External Cavity Laser, LO: Local Oscillator.

WSS demonstrations include a 1×2 for 7-core MCF built using a commercial 1×20 SMF WSS [5], a 1×11 for three

mode FMF built from a commercial twin 1×24 [6], a 1×2 WSS with internal spatial-diversity with 3 spatial-mode

FMF inputs [7], and a 1×9 WSS with direct 3 spatial-mode FMF operation [8]. All these switches use 1 dimensional

fiber array to layout the spatial-modes and ports.

Here, we build a new type of WSS that arranges the SMF ports in a 2D array which can accommodate more spatial

channels, can interface with all six-spatial channel SDM fibers, and can also jointly switch 6 spatial modes to 8 output

ports. Using two joint WSS, we demonstrate a heterogenous network with 3 separate SDM fibers and wavelength

routing at two separate network locations. The 59-km FMF span contains two cladding-pumped FMF amplifiers [9],

and the CC-MCF span contains a multi-core (MC) cladding-pumped erbium doped fiber amplifier (MC-EDFA) at its

input [10].

2. Joint Wavelength Selective Switch for SDM: Compatibility with Parallel SMF, FMF, and CC-MCF
Spatial channels, unlike wavelength channels, are susceptible to crosstalk. Multiple-input multiple-output (MIMO)

processing can unscramble crosstalk provided that all spatial-channels are routed together as a unit from the transmitter

to the receiver. Otherwise, MIMO processing cannot undo the crosstalk which will reduces the system capacity [11].

Additionally, having a single WSS that is designed to switch modes as a unit can obtain a much greater throughput at

a cost commensurate with today’s SMF WSS. Under these constraints, it makes sense to optimize the SDM WSS and

other switching elements to jointly switch the modes rather than to individual switch modes.

Figure 1b) describes the operation principle of a joint WSS for six parallel spatial channels. The spatial channels on

the SDM input fibers are first demultiplexed into SMFs that are coupled to freespace Gaussian beams. Demultiplexing

the modes into identical Gaussian beams insures that each mode has same spectral transmission and same loss in

the WSS. Figure 1c) shows two SDM demultiplexers to interface with the WSS and SDM fibers: a six-mode mode-

selective photonic lantern (PL) [12] to excite the modes of the FMF with 2-dB insertion loss and two tapered fiber

bundles (TFB) to couple signals and multi-mode pump light into the CC-MCF and the MC-EDFA. The WSS fiber

ports modes are arranged into a 2D pattern (19×3), with all 6 modes from a SDM fiber arranged across two rows and

the SDM fibers accommodated vertically. A diffraction grating angularly disperses the different wavelengths and a

focusing lens converges the beams to a common spot on the liquid crystal on silicon (LCoS) steering element which

applies blazed saw-tooth holograms in the vertical direction to simultaneously steer all beams to different ports. Signals

input into the central column return on the central column, whereas signals on the left and right columns switch places.

All signals from each row converge to the same spot on the LCoS and thus have the exact same passband shape and

switching characteristic.

We built two of the flexgrid WSSs with 57 ports (19 rows × 3 columns), 0.5 dB spectral resolution of 78 GHz for

100-GHz spaced channels, and 5-8 dB insertion loss. Higher resolution could be obtained by illuminating more lines

on the diffraction grating. Figure 3a) shows a 100-GHz interleaver passbands across the entire C-Band (5-THz) for all
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Fig. 3: Interleaver passbands for a group of six spatial channels a) across entire C-Band and b) a single 100-GHz channel. c) IL statistics for all

ports across the C-band. BER performance for the wavelengths dropped at d) node B and e) node C and the f) through channels at node D.

six modes. Figure 3b) shows a single passband, which shows only 1-2 dB insertion loss variation among the six spatial

channels. Figure 3c) shows the insertion loss statistics for 18 rows (54 ports) across the entire C-band. Degradation of

some of the ports are due to pointing errors of the prototype fiber array and are not inherent to the design of the switch.

3. Networking Experiment
Figure 2b) overviews the networking testbed from node A to node D of the hypothetical network in Fig. 1a). Figure 2a)

shows the SDM transmitter which produces 40, 100-GHz spaced WDM channels, each with 30-GBd Quadrature

Phase Shift Keyed (QPSK) modulation. Two I/Q modulators separately modulate the even and odd wavelengths and

a polarization delay multiplexer, and fiber delays decorrelate the polarization modes and six spatial modes (12 total

spatial and polarization channels). Figure 2b) describes the SDM receiver that uses six polarization diversified coherent

receivers which share a common local oscillator (LO). Each coherent receiver contains a polarization diversified optical

hybrid, 4 balanced photodetectors and 4 40-GS/s analog-to-digital converters (LeCroy Labmaster 9zi). To measure

each wavelength channel, each received spatial mode is amplified, the wavelength is selected using the wavelength

blocker array, and then amplified again before sending into the signal ports of the optical hybrids. A 12×12 frequency-

domain MIMO equalizer is used to unscramble the 12 launched spatial and polarization channels. For noise-loading

ASE is injected at the transmitter.

Node A and B are connected with parallel strands of 15-km SMF. At node B, 6 wavelength channels (25%) are

dropped into six SMFs, and the remaining 34 are sent through to the amplified FMF span. Figure 2d) shows the

Bit-Error-Rate (BER) curves for the dropped SMFs. The through channels are sent through the FMF span which has

two cladding pumped FMFs to recover for the joint WSS, and the FMF losses. At node C, 7 additional wavelengths

are dropped again into six SMFs. The BER performance of the dropped channels show approximately 3.5-dB power

penalty at a BER of 1×10−3 compared to the dropped SMF channels. The remaining 27 wavelengths are coupled into

an amplified CC-MCF span using a TFB. Figure 3f) shows the BER represented as Q-factor at the output of the span

which includes transmission through two WSS, 3 SDM amplifiers, a 15-km parallel SMF span, a 59-km six mode FMF

span, and a 31-km six-core CC-MCF span. All BERs were above the soft forward error correction limit of 2×10−2.

In conclusion, we have demonstrated a heterogenous SDM network with spatial multiplicity of six, using 3 types of

SDM fiber spans and a large port count joint-switching WSS supporting six-spatial modes.
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