
Heterogeneous Stream Processing and Crowdsourcing
for Urban Traffic Management

Alexander Artikis1, Matthias Weidlich2, Francois Schnitzler3, Ioannis Boutsis4,
Thomas Liebig5, Nico Piatkowski5, Christian Bockermann5, Katharina Morik5,

Vana Kalogeraki4, Jakub Marecek6, Avigdor Gal3, Shie Mannor3, Dermot Kinane7 and
Dimitrios Gunopulos8

1Institute of Informatics & Telecommunications, NCSR Demokritos, Athens, Greece,
2Imperial College London, United Kingdom, 3Technion - Israel Institute of Technology, Haifa, Israel,

4Department Informatics, Athens University of Economics and Business, Greece,
5Technical University Dortmund, Germany, 6IBM Research, Dublin, Ireland,

7Dublin City Council, Ireland,
8Department of Informatics and Telecommunications, University of Athens, Greece

a.artikis@iit.demokritos.gr,m.weidlich@imperial.ac.uk,francois@ee.technion.ac.il,
mpoutsis@aueb.gr, {thomas.liebig, nico.piatkowski}@tu-dortmund.de,

{christian.bockerman,katharina.morik}@cs.uni-dortmund.de, vana@aueb.gr,
jakub.marecek@ie.ibm.com, {avigal@ie, shie@ee}.technion.ac.il,

dermot.kinane@dublincity.ie, dg@di.uoa.gr

ABSTRACT

Urban traffic gathers increasing interest as cities become
bigger, crowded and “smart”. We present a system for het-
erogeneous stream processing and crowdsourcing supporting
intelligent urban traffic management. Complex events related
to traffic congestion (trends) are detected from heterogeneous
sources involving fixed sensors mounted on intersections and
mobile sensors mounted on public transport vehicles. To deal
with data veracity, a crowdsourcing component handles and
resolves sensor disagreement. Furthermore, to deal with data
sparsity, a traffic modelling component offers information in
areas with low sensor coverage. We demonstrate the system
with a real-world use-case from Dublin city, Ireland.

Categories and Subject Descriptors

H.2.4 [Information Systems]: Systems—query processing,
rule-based databases

1. INTRODUCTION
The recent development of innovative technologies related

to mobile computing combined with smart city infrastruc-
tures is generating massive, heterogeneous data and creating
the opportunities for novel applications. In traffic monitoring,
the data sources include traditional ones (sensors) as well as
novel ones such as micro-blogging applications like Twitter;
these provide a new stream of textual information that can

(c) 2014, Copyright is with the authors. Published in Proc. EDBT 2014
on OpenProceedings.org. Distribution of this paper is permitted under the
terms of the Creative Commons license CC-by-nc-nd 4.0
EDBT-2014 Athens, Greece

be utilized to capture events, or allow citizens to constantly
interact using mobile sensors.

Detecting complex events from heterogeneous data streams
is a promising vehicle to support applications for monitoring,
detection and online response [11, 20]. Consider e.g. an urban
monitoring system that identifies traffic congestions (in-the-
make) and (proactively) changes traffic light priorities and
speed limits to reduce ripple effects. Such a system may use
traffic flow and density information measured by fixed sensors
mounted in selected intersections, together with reports from
public transport vehicles (buses, trams, etc).
Our work is motivated by an existing traffic monitoring

application in Dublin City, Ireland. We present the general
framework of a system that has been designed in this context,
and the challenges that come up from a real installation and
application. The long term goal of the related INSIGHT
project1 is to enable traffic managers to detect with a high
degree of certainty unusual events throughout the network.

We report on the design of a monitoring system that takes
input from a set of traffic sensors, both static (intersection
located, traffic flow and density monitoring sensors) and mo-
bile (GPS equipped public transportation buses). We explore
the advantages of having such an infrastructure available and
address its limitations.

Some of the main challenges when dealing with large traffic
monitoring data streams are that of veracity and sparsity.
Data arriving from multiple heterogeneous sources, may be
of poor quality and in general requires pre-processing and
cleaning when used for analytics and query answering. In
particular, sensor networks introduce uncertainty into the sys-
tem due to reasons that range from inaccurate measurements
through network local failures to unexpected interference of
mediators. While the first two reasons are well recorded in
the literature, the latter is a new phenomenon that stems
from the distribution of sensor sources. Sensor data may go
through multiple mediators en route to our systems. Such

1www.insight-ict.eu/

www.thomas-liebig.eu
BibTeX
@inproceedings{Artikis/etal/2014,author = {Alexander Artikis and Matthias Weidlich and Fran\c{c}ois Schnitzler and Ioannis Boutsis and Thomas Liebig and Nico Piatkowski and Christian Bockermann and Katharina Morik and Vana Kalogeraki and Jakub Marecek and Avigdor Gal and Shie Mannor and Dimitrios Gunopulos and Dermot Kinane},title = {Heterogeneous Stream Processing and Crowdsourcing for Urban Traffic Management},booktitle = {Proc. 17th International Conference on Extending Database Technology (EDBT), Athens, Greece, March 24-28, 2014},year = {2014},pages = {712--723},publisher = {OpenProceedings.org},}

liet
Maschinengeschriebenen Text
BibTeX :

mediators apply filtering and aggregation mechanisms, most
of which are unknown to the system that receives the data.
Hence, the uncertainty that is inherent to sensor data is
multiplied by the factor of unknown aggregation and filtering
treatments. In addition, data present a sparsity problem,
since the traffic in several locations in the city is either never
monitored due to lack of sensors, or infrequently monitored
(e.g. when a bus passes by).

In [3], we outlined the principle of using variety of input
data to effectively handle veracity. Streams from multiple
sources were leveraged to generate common complex events.
A complex event processing component matched these events
against each other to identify mismatches that indicate un-
certainty regarding the event sources. Temporal regions
of uncertainty were identified from which point the system
autonomously decided on how to manage this uncertainty.

In this paper we present a holistic view of traffic monitoring;
we present approaches to address (i) the veracity of the data
problem, (ii) the variety of the data problem, and (iii) the
sparsity of the data problem. In addition, the streaming
architecture we develop is scalable, and therefore capable
of addressing the volume of the data problems that arise
as the available data sources increase. We integrate the
respective techniques in the context of a unified system for a
concrete application. To build the system, we significantly
extend our previous work by incorporating a crowdsourcing
component to facilitate further uncertainty handling and
a component for traffic modelling. The first component
queries volunteers close to the sensors that disagree and
estimates what has actually happened given the participants’
reliability. The benefits of this approach are two-fold. First,
more accurate information is directly given to end users.
Second, the event processing component of our system makes
use of the crowdsourced information to minimise the use of
unreliable sources. The traffic modelling component may also
use the crowdsourced information to resolve data sparsity.

We illustrate our approach using large, heterogeneous data
streams concerning urban traffic management in the city of
Dublin. We describe the requirements that come up including
data sources, analysis methods and technology, and visualisa-
tion. The data we use2 come from the Sydney Coordinated
Adaptive Traffic System (SCATS) sensors, i.e. fixed sensors
deployed on intersections to measure traffic flow and density,
and bus probe data stating, among others, the location of
each bus as well as traffic congestions.
The remainder of this paper is organised as follows. Sec-

tion 2 describes the architecture of our system. Then, Sec-
tions 3–6 present each of the main components. Section 7
presents our empirical evaluation, showing the method feasi-
bility. Finally, Section 8 summarises our work.

2. SYSTEM ARCHITECTURE
The general architecture of our system for urban traffic

management is given in Figure 1. In this section, we de-
scribe the input and output of the system, the individual
components that perform the data analysis, and the stream
processing connecting middleware.

Input: Two types of sensor are considered as event sources.
Buses transmit information about their position and conges-
tion and vehicle detectors of a SCATS system are installed at
intersections and report on traffic flow and density. The raw

2www.dublinked.ie

Figure 1: Overview of the system architecture.

input from these sensors is not directly processed though.
Instead, mediators are involved that filter and aggregate
the raw data. A lack of control over these pre-processing
steps that are interwoven with the communication infrastruc-
ture, therefore, induces uncertainty for the low-level events
that are actually processed by the system. This aspect is
highlighted by the notion of a simple, derived event (SDE),
which is the result of applying a computational derivation
process to some other event, such as an event coming from
a sensor [21]. A stream of such time-stamped SDEs is the
primary input of our system.
Additionally, the system may solicit input from citizens

using a connected crowdsourcing component. The output of
crowdsourcing is fed to the computing components of the
system, to improve the accuracy of the results.

Output: The system helps an operator manage the traffic
situation, by integrating available traffic information from the
different sources, which can then be used to issue alerts when
issues that may impact traffic are identified. An important
requirement is to have a simple, intuitive interactive map to
present all traffic information and alerts.

Stream Processing Component: The backbone of our
solution is a stream processing component, which couples
the output from the sensors with further data analysis com-
ponents. Stream processing is realized with the Streams
framework [4]. It provides a language for the description of
data flow graphs, which are then compiled into a computation
graph for a stream processing engine.

Data Analysis Components: The system uses compo-
nents for traffic modelling, complex event processing and
crowdsourcing. Collectively, these components implement
the monitoring logic of the system. The crowdsourcing com-
ponent has two independent parts: the query modelling part
whose objective is to select the humans that will be answering
a question, and a query execution engine which deploys and
executes the question.

Using Streams, SDEs are forwarded to a traffic modelling
component that deals with data sparsity, i.e. makes conges-
tion estimates in areas with low or non-existent sensor cover-
age. SDEs are also forwarded to a complex event processing
engine that identifies complex events (CE) of interest. A CE
is a collection of events that satisfies a certain specification
comprising temporal and, possibly, atemporal constraints
on its deriving events, either SDEs or other CEs. Identified

CEs may then be directly forwarded to end users (city opera-
tors) in order to gain insights on the current traffic situation.
However, the aforementioned uncertainty stemming from
the pre-processing of sensor readings may lead to situations
that cannot be clearly identified. Instead, CEs that relate
to inconsistencies in the event sources are detected. These
CEs are then forwarded to the crowdsourcing component,
which aims at reducing the uncertainty by human input. For
a source disagreement event emitted by the complex event
processing component, the crowdsourcing component selects
one or more humans that act as system participants. By
answering a specific question, they allow for resolving source
disagreements. These results are used in two ways. On the
one hand, they are fed into the complex event processing
component and the traffic modelling component, thereby
supporting adaptability of these components. On the other
hand, CEs are labelled with the details obtained from the
participants and forwarded to city operators, allowing for
deeper insights on the traffic situation.

3. STREAM PROCESSING
The Streams framework [4] that is the backbone of our

system provides a XML-based language for the description of
data flow graphs that work on sequences of data items which
are represented by sets of key-value pairs, i.e. event attributes
and their values. The actual processing logic, i.e. the nodes
of the data flow graph, is realised by processes that comprise
a sequence of processors. Processes take a stream or a queue
as input and processors, in turn, apply a function to the
data items in a stream. All these concepts are implemented
in Java, so that adding customized processors is realised by
implementing the respective interfaces of the Streams API.
In addition, Streams allows for the specification of services,
i.e. sets of functions that are accessible throughout the stream
processing application.
Using these concepts, our stream processing component

includes the following parts:
• Input handling processes: all SDEs emitted by buses
form one stream, while the SDE emitted by vehicle
detectors of a SCATS system are referenced by four
streams, one per region of Dublin city.
• Event processing processes: the definitions of complex
events (CE)s are wrapped by specific processors that
realise an embedding of the complex event processing
component in the Streams environment.
• Crowdsourcing processes: the selection of participants

from which feedback should be sought, the generation
of the actual queries, and the processing of responses
are also implemented by specific processors.
• Traffic modelling processes: the procedure for mak-
ing congestion estimates at locations with low sensor
coverage is wrapped as a Streams service.

For complex event processing, our solution relies on the
Event Calculus for Run-Time reasoning (RTEC)3 [2], a
Prolog-based engine, which is detailed below. We integrated
RTEC by a dedicated processor in Streams that would for-
ward the received SDEs to an RTEC instance using a bidi-
rectional Java-Prolog-Interface. Then, the actual event pro-
cessing is triggered asynchronously and the derived CEs are
emitted to a queue in the Streams framework.
Crowdsourcing essentially involves two steps, the genera-

3http://users.iit.demokritos.gr/~a.artikis/EC.html

tion of the queries and the processing of participant responses.
In our solution, each of these steps is implemented by a ded-
icated processor. That is, upon the reception of a respective
event (source disagreement) indicating that feedback should
be sought, a first processor takes events as input and queries
actual participants via an interface. Responses to these
queries, in turn, represent an event stream. The responses
are merged by a second processor to come up with an approx-
imation of the probabilities for the different possible answers.
This second processor also estimates participant reliability.

4. COMPLEX EVENT PROCESSING
Our CE recognition component is based on the Event

Calculus for Run-Time reasoning (RTEC) [2]. The Event
Calculus [15] is a logic programming language for represent-
ing and reasoning about events and their effects. The benefits
of a logic programming approach to CE recognition are well-
documented: such an approach has a formal, declarative
semantics, and direct routes to machine learning for con-
structing and refining CE definitions in an automated way.
The use of the Event Calculus has additional advantages:
the process of CE definition development is considerably
facilitated, as the Event Calculus includes built-in rules for
complex temporal representation and reasoning, including
the formalisation of inertia. With the use of the Event Cal-
culus, one may develop intuitive, succinct CE definitions,
facilitating the interaction between CE definition developer
and domain expert, and allowing for code maintenance.

To make the paper self-contained, we summarise the essen-
tials of the CE recognition model based on [2, 3]. We adopt
the common logic programming convention that variables
start with upper-case letters and are universally quantified,
while predicates and constants start with lower-case letters.

4.1 Representation
In RTEC, event types are represented as n-ary predi-

cates event(Attribute1,. . . ,AttributeN), such that the pa-
rameters define the attribute values of an event instance
event(value1,. . . ,valueN). An example from the Dublin traf-
fic management scenario is the type of SDE emitted by buses,
move(Bus,Line,Operator ,Delay), which states that Bus is
running in Line with a Delay, and operated by Operator .
Thus, a specific event instance is an instantiation of this
predicate, e.g. move(33009, r10, o7, 400).
Time is assumed to be linear and discrete, represented

by integer time-points. The occurrence of an event E at
time T is modelled by the predicate happensAt(E, T). The
effects of events are expressed by means of fluents, i.e. prop-
erties that may have different values at different points in
time. The term F =V denotes that fluent F has value V .
holdsAt(F =V, T) represents that fluent F has value V at
a particular time-point T . Interval-based semantics are ob-
tained with the predicate holdsFor(F =V, I), where I is a list
of maximal intervals for which fluent F has value V continu-
ously. holdsAt and holdsFor are defined in such a way that, for
any fluent F , holdsAt(F =V, T) iff time-point T belongs to
one of the maximal intervals of I for which holdsFor(F =V, I).
Table 1 presents the main RTEC predicates.

Fluents are simple or statically determined. For a simple
fluent F , F =V holds at time-point T if F =V has been
initiated by an event at some time-point earlier than T (using
predicate initiatedAt), and has not been terminated in the
meantime (using predicate terminatedAt), which implements

Table 1: Main predicates of RTEC.

Predicate Meaning

happensAt(E, T) Event E occurs at time T

holdsAt(F =V, T) The value of fluent F is V at time T

holdsFor(F =V, I) I is the list of the maximal intervals
for which F =V holds continuously

initiatedAt(F =V, T) At time T a period of time for which
F =V is initiated

terminatedAt(F =V, T) At time T a period of time for which
F =V is terminated

relative I is the list of maximal intervals
complement produced by the relative complement
all (I ′,L, I) of the list of maximal intervals I ′

with respect to every list of maximal
intervals of list L

union all(L, I) I is the list of maximal intervals
produced by the union of the lists of
maximal intervals of list L

intersect all(L, I) I is the list of maximal intervals
produced by the intersection of
the lists of maximal intervals of list L

the law of inertia. Statically determined fluents are defined
using interval manipulation constructs, such as union all,
intersect all and relative complement all (cf., Table 1).

The input SDE streams are represented by logical facts that
define event instances, with the use of the
happensAt predicate, or the values of fluents, with the use of
the holdsAt predicate. Taking up the earlier example, facts
of the following structure model the bus data stream:

happensAt(move(Bus,Line,Operator ,Delay), T)
holdsAt(gps(Bus,Lon,Lat ,Direction,Congestion)= true,T)

(1)

gps(Bus,Lon,Lat ,Direction,Congestion) states the location
(Lon,Lat) of the Bus, as well as its direction (0 or 1) on
the Line. Further, the gps fluent provides information about
congestion (0 or 1) in the given location.
CEs, in turn, are modelled as logical rules defining event

instances, with the use of happensAt, the effects of events,
with the use of initiatedAt and terminatedAt, or the values
of the fluents, with the use of holdsFor. For illustration,
consider an instantaneous CE that expresses a sharp increase
in the delay of a bus:

happensAt(delayIncrease(Bus,Lon ′,Lat ′,Lon,Lat), T)←
happensAt(move(Bus, , ,Delay ′), T ′),
holdsAt(gps(Bus,Lon ′,Lat ′, ,)= true, T ′),
happensAt(move(Bus, , ,Delay), T),
holdsAt(gps(Bus,Lon,Lat , ,)= true, T),
Delay−Delay ′ > d ,
0 < T−T ′ < t

‘ ’ is a ‘free’ Prolog variable that is not bound in a rule.
A delayIncrease(Bus,Lon ′,Lat ′,Lon,Lat) CE is recognised
when the delay value of a Bus increases by more than d
seconds in two SDEs emitted in less than t seconds. A CE
of this type may indicate a congestion in-the-make between
(Lon ′,Lat ′) and (Lon,Lat). This indication may be rein-
forced by instances of this CE type concerning other buses
operating in the same area.

time

Q136 Q138Q137

Working Memory

Q139

Figure 2: Event recognition in RTEC.

4.2 Reasoning
CE recognition is performed as follows. RTEC computes

and stores the maximal intervals of fluents and the time-
points in which events occur at specified query times
Q1, Q2, At each query time Qi, only the SDEs that
fall within a specified interval—the ‘working memory’ (WM)
or ‘window’—are taken into consideration: all SDEs that
took place before or on Qi−WM are discarded. This way, the
cost of CE recognition depends only on the size of WM and
not on the complete SDE history. As a consequence, ‘win-
dowing’ will potentially change the answer to some queries.
Some of the stored sub-computations may have to be checked
and possibly recomputed. Much of the detail of the RTEC
algorithms is concerned with this requirement.
The size of WM, and the temporal distance between two

consecutive query times — the ‘step’ (Qi−Qi−1) — are
tuning parameters that can be either chosen by the end user
or optimized for performance. In the common case that
SDEs arrive at RTEC with delays, it is preferable to make
WM longer than the step. This way, it becomes possible
to compute, at Qi, the effects of SDEs that took place in
(Qi−WM, Qi−1], but arrived after Qi−1. This is illustrated in
Figure 2. The figure displays the occurrences of SDEs as dots
and a Boolean fluent as line segments. For event recognition
at Q138, only the events marked in black are considered,
whereas the greyed out events are neglected. Assume that
all events marked in bold arrived only after Q137. Then, we
observe that two SDEs were delayed i.e. they occurred before
Q137, but arrived only after Q137. In our setting, the window
is larger than the step. Hence, these events are not lost but
considered as part of the recognition step at Q138.
Note that increasing the WM size decreases recognition

efficiency. This issue is illustrated in Section 7 where we
evaluate empirically RTEC.

4.3 Event Recognition for
Urban Traffic Management

The input to RTEC consists of SDEs that come from two
heterogeneous data streams with different time granularity.
First, buses transmit information about their position and
congestions every 20-30 sec. The structures of the bus SDE is
given by formalisation (1). Second, static sensors mounted on
various junctions—SCATS sensors—transmit every 6 minutes
information about traffic flow and density:

happensAt(traffic(Int ,A,S ,D ,F), T)

This instantaneous SDE expresses density D and traffic flow
F measured by SCATS sensor S mounted on a lane with
approach A into the intersection Int .
In collaboration with domain experts, several CEs have

been defined over the input streams. These CEs relate to,
among others, traffic congestion (in-the-make), and traffic
flow and density trends for proactive decision-making. Traffic
congestion is reported by SCATS sensors as well as buses.

The former is captured as follows:

initiatedAt(scatsCongestion(Int ,A,S)= true, T)←
happensAt(traffic(Int ,A,S ,D ,F), T),
D ≥ upper Density threshold ,
F ≤ lower Flow threshold

terminatedAt(scatsCongestion(Int ,A,S)= true, T)←
happensAt(traffic(Int ,A,S ,D ,F), T),
D < upper Density threshold

terminatedAt(scatsCongestion(Int ,A,S)= true, T)←
happensAt(traffic(Int ,A,S ,D ,F), T),
F > lower Flow threshold

(2)

Here, scatsCongestion is a CE expressing congestion in a
SCATS sensor and scatsCongestion(Int ,A,S)= true is initi-
ated when the density reported by SCATS sensor S, which
is mounted on approach A of intersection Int , is above some
threshold and traffic flow is below some other threshold
(see the fundamental diagram of traffic flow4). Otherwise,
scatsCongestion(Int ,A,S)= true is terminated. The maxi-
mal intervals for which scatsCongestion(Int ,A,S)= true

holds continuously are computed by rule-set (2) and the
domain-independent holdsFor predicate.
Given the above formalisation, we may define congestion

with respect to a SCATS intersection, i.e. an intersection
with at least one SCATS sensor. For example, we may define
that a SCATS intersection is congested if at least n (n > 1) of
its sensors are congested, or we may have a more structured
intersection congestion definition that depends on approach
congestion which in turn would depend on sensor congestion.
Congestion is also reported by buses—this is very useful

as there are numerous areas in the city that do not have
SCATS sensors. Consider the following formalisation:

initiatedAt(busCongestion(Lon,Lat)= true, T)←
happensAt(move(Bus, , ,), T),
holdsAt(gps(Bus,LonB ,LatB , , 1), T),
close(LonB ,LatB ,Lon,Lat)

terminatedAt(busCongestion(Lon,Lat)= true,T)←
happensAt(move(Bus, , ,), T),
holdsAt(gps(Bus,LonB ,LatB , , 0), T),
close(LonB ,LatB ,Lon,Lat)

(3)

(Lon,Lat) are the coordinates of some area of interest, while
(LonB ,LatB) are the current coordinates of a Bus. The
gps fluent, like the move event, is given by the dataset.
close is an atemporal predicate computing the distance be-
tween two points and comparing them against a thresh-
old. busCongestion(Lon,Lat) starts being true when a bus
moves close to the location (Lon,Lat) for which we are in-
terested in detecting congestions, and (the bus) reports a
congestion (represented by 1 in the gps fluent). Moreover,
busCongestion(Lon,Lat) stops being true when a (possibly
different) bus moves close to (Lon,Lat) and reports no con-
gestion (represented by 0 in gps).

The two data sources, buses and SCATS sensors, do not al-
ways agree on congestion. Disagreement of the event sources
is captured with the following formalisation:

holdsFor(sourceDisagreement(LonInt ,LatInt)= true, I)←
holdsFor(busCongestion(LonInt ,LatInt)= true, I1),
holdsFor(scatsIntCongestion(LonInt ,LatInt)= true, I2),
relative complement all(I1, [I2], I)

4http://en.wikipedia.org/wiki/Fundamental_diagram_
of_traffic_flow

scatsIntCongestion(LonInt ,LatInt) is a CE expressing conges-
tion in the SCATS intersection located at (LonInt ,LatInt).
relative complement all is an interval manipulation construct
of RTEC (see Table 1). In relative complement all(I ′, L, I),
I is the list of maximal intervals produced by the relative
complement of the list of maximal intervals I ′ with respect
to every list of maximal intervals of list L. The maximal
intervals for which sourceDisagreement(LonInt ,LatInt)= true

are computed only for the locations of SCATS intersections.
A disagreement between the two data sources is said to take
place as long as some buses report a congestion in the location
(LonInt ,LatInt) of a SCATS intersection, and according to the
SCATS sensors of that intersection there is no congestion.
The detection of sourceDisagreement CE indicates verac-

ity in the data sources. There are several ways to deal with
this issue. Probabilistic event recognition techniques may
be employed in order to deal with this type of uncertainty.
Consider, for example, probabilistic graphical models [28],
Markov Logic Networks [9, 26], probabilistic logic program-
ming [25], and fuzzy set and possibility theory [19]. Although
there is considerable work on optimising probabilistic rea-
soning techniques, the imposed overhead in the presence of
large data streams, such as those of Dublin, does not allow
for real-time event recognition [1].
In [3], we used variety of input data to handle veracity.

The events detected on the bus data stream were matched
against the events detected on the SCATS stream to iden-
tify mismatches that indicate uncertainty regarding the data
sources. Temporal regions of uncertainty were identified from
which the system autonomously decided to adapt its sources
in order to deal with uncertainty, without compromising effi-
ciency. More precisely, we assumed that SCATS sensors are
more trustworthy than buses and used these sensors to eval-
uate the information offered by buses. A bus was considered
unreliable when it disagreed with a SCATS sensor on con-
gestion, and remained unreliable as long as it did not agree
during its operation with some other SCATS sensor. The
congestion information offered by unreliable buses, whether
close to a SCATS sensor or not, was discarded.

In this paper, instead, we rely on crowdsourcing techniques
to resolve unreliability in data sources. These techniques
are presented in the following section. The benefits of this
approach are two-fold. First, more accurate information is
directly given to city operators in the case of source disagree-
ment. Second, RTEC takes advantage of the crowdsourced
information to minimise the use of unreliable sources. The
rules below illustrate how this is achieved:

happensAt(disagree(Bus,LonInt ,LatInt , positive), T)←
happensAt(move(Bus, , ,), T),
holdsAt(gps(Bus,LonB ,LatB , , 1), T),
close(LonB ,LatB ,LonInt ,LatInt),
not holdsAt(scatsIntCongestion(LonInt ,LatInt)= true, T)

happensAt(disagree(Bus,LonInt ,LatInt ,negative), T)←
happensAt(move(Bus, , ,), T),
holdsAt(gps(Bus,LonB ,LatB , , 0), T),
close(LonB ,LatB ,LonInt ,LatInt),
holdsAt(scatsIntCongestion(LonInt ,LatInt)= true, T)

happensAt(agree(Bus), T)←
happensAt(move(Bus, , ,), T),
holdsAt(gps(Bus,LonB ,LatB , , 1), T),
close(LonB ,LatB ,LonInt ,LatInt),
holdsAt(scatsIntCongestion(LonInt ,LatInt)= true, T)

happensAt(agree(Bus), T)←
happensAt(move(Bus, , ,), T),
holdsAt(gps(Bus,LonB ,LatB , , 0), T),
close(LonB ,LatB ,LonInt ,LatInt),
not holdsAt(scatsIntCongestion(LonInt ,LatInt)= true, T)

According to the first two rules above, an event
disagree(Bus,LonInt ,LatInt ,Val) takes place when Bus moves
close to the location (LonInt ,LatInt) of a SCATS intersection
and disagrees on congestion with the SCATS sensors of that
intersection. Val is positive if the Bus states that there is
a congestion and negative otherwise. Similarly, according
to the last two rules above, an event agree(Bus) takes place
when Bus moves close to the location (LonInt ,LatInt) of a
SCATS intersection and agrees on congestion with the sensors
of that intersection.
A bus is considered unreliable/noisy when it disagrees

on congestion with the SCATS sensors of an intersection
and the information offered by the SCATS sensors is correct
according to the crowdsourced information:

initiatedAt(noisy(Bus)= true, T)←
happensAt(disagree(Bus,LonInt ,LatInt ,BusVal), T),
happensAt(crowd(LonInt ,LatInt ,CrowdVal), T ′),
BusVal 6= CrowdVal ,
0 < T ′−T < threshold

terminatedAt(noisy(Bus)= true, T)←
happensAt(agree(Bus), T)

terminatedAt(noisy(Bus)= true, T)←
happensAt(disagree(Bus,LonInt ,LatInt ,Val), T),
happensAt(crowd(LonInt ,LatInt ,Val), T ′),
0 < T ′−T < threshold

(4)

crowd(LonInt ,LatInt ,Val) is an event produced by the crowd-
sourcing component (details are given in Section 5). It states
whether there was a congestion at the SCATS intersection lo-
cated at (LonInt ,LatInt) according to the human crowd. Val
is positive if there was a congestion and negative otherwise.
noisy(Bus)= true is initiated when a Bus disagrees on con-
gestion both with the SCATS sensors of some intersection
and the crowdsourced information. The last condition of the
initiating rule requires that the crowdsourced information is
used for evaluating the reliability of a bus only if it arrives
within a specified period from the time of the source dis-
agreement. noisy(Bus)= true is terminated when the Bus
agrees with the SCATS sensors of some other intersection, or
when it disagrees with SCATS sensors but the crowdsourced
information proves the Bus correct.

An alternative definition of noisy(Bus) is the following:

initiatedAt(noisy(Bus)= true, T)←
happensAt(disagree(Bus, , ,), T)

terminatedAt(noisy(Bus)= true, T)←
happensAt(agree(Bus), T)

terminatedAt(noisy(Bus)= true, T ′)←
happensAt(disagree(Bus,LonInt ,LatInt ,Val), T),
happensAt(crowd(LonInt ,LatInt ,Val), T ′),
0 < T ′−T < threshold

(5)

According to the above rules, noisy(Bus)= true is initiated
when a Bus disagrees on congestion with the SCATS sen-
sors of some intersection, even when there is no crowd-
sourced information to identify the accurate data source.
In other words, in the absence of information to the contrary,
the SCATS sensors are considered more trustworthy than

buses. noisy(Bus)= true is terminated, however, when there
is crowdsourced information that proves the Bus correct. As
before, noisy(Bus)= true is also terminated when there is
source agreement.
Using noisy(Bus), the busCongestion definition that re-

ports congestion from bus data is adapted as follows:

initiatedAt(busCongestion(Lon,Lat)= true, T)←
happensAt(move(Bus, , ,), T),
holdsAt(gps(Bus,LonB ,LatB , , 1), T),
not holdsAt(noisy(Bus)= true),
close(LonB ,LatB ,Lon,Lat)

terminatedAt(busCongestion(Lon,Lat)= true, T)←
happensAt(move(Bus, , ,), T),
holdsAt(gps(Bus,LonB ,LatB , , 0), T),
not holdsAt(noisy(Bus)= true),
close(LonB ,LatB ,Lon,Lat)

(3′)

According to this new formalisation, the congestion informa-
tion offered by a bus, whether close to a SCATS intersection
or not, is discarded as long as the bus is considered unreliable,
i.e. as long as the disagreements with SCATS sensors are re-
solved in favour of those sensors (when noisy(Bus) is defined
by rule-set (4)) or remain unresolved (when noisy(Bus) is
defined by rule-set (5)).

Given the crowdsourced information, we can also evaluate
the reliability of SCATS sensors. The formalisation is similar
and omitted to save space.

5. CROWDSOURCING
In this section we present the mechanisms we introduce

to ameliorate the veracity problem of the data. Our main
advance is the development of a novel crowdsourcing mecha-
nism whose goal is to supplement the data sources through
querying human volunteers, also called “participants”, about
the true state of the system. To minimise the impact on
the participants, the crowdsourcing component is invoked by
the complex event processing engine (RTEC) when a signifi-
cant disagreement in the data sources is detected. Crowd-
sourcing relies on labels produced by imperfect experts—the
participants—rather than on an oracle (e.g. a city employee).
Crowdsourcing has enjoyed a recent rise in popularity due to
the development of dedicated online tools, such as Amazon
Mechanical Turk5, and has been used for many complex tasks
such as labelling galaxies [16], real-time worker selection [5]
and solving various biological problems [13].
The main appeal of crowdsourcing is the reduced cost of

label acquisition. Typically, the lower quality of the labels
is compensated by acquiring several labels for each data
item and combining them to produce a more accurate label.
E.g. it has been known that the error of the average answer
is usually smaller than the average error of each individual
answer [12]. Developing increasingly better strategies to
aggregate individual answers is an open research area. Many
approaches try to model how reliable each participant is,
and use participant reliability to improve the aggregation
of answers. To this end, the Expectation-Maximization
(EM) algorithm [23], Bayesian uncertainty scores [24] and
sequential Bayesian estimation [10] have been used.
We present a crowdsourcing component that queries par-

ticipants close to the location of a source disagreement event
whenever requested by the CE processing component. The

5www.mturk.com

output of the crowdsourcing component is used for the res-
olution of the disagreement and sent to the end user/city
operator, the CE processing component and the traffic mod-
elling component.

In what follows, we describe our crowdsourcing model and
briefly review the process of reliability estimation with the
classical Expectation-Maximization (EM) algorithm [8, 22].
This algorithm needs to operate in batch mode, which is not
acceptable for our large, streaming problem. Consequently,
we then discuss an online version of the EM algorithm that
supports online crowdsourcing task processing.

5.1 Crowdsourced Model
We model a source disagreement event as an unobserved

categorical variable Xt, where t ∈ N is an index. Each
variable Xt has a true value xt ∈ Val(Xt), where Val(Xt) is
the set of possible realizations or labels of Xt. Moreover,
Xt ⊥ Xt′ ∀t 6= t′, where ⊥ denotes probabilistic indepen-
dence. We assume that we have access to a prior distribution
P (Xt) over the possible values of the variable for every t.
This distribution can either be provided by the CE processing
component, or be the uniform distribution. E.g. if only 1
out of 4 buses at a given location indicates a congestion, the
prior distribution could assign a lower prior probability to
the congestion than if 3 out of 4 buses reported a congestion.

We denote by yi,t the answer given by participant i if he is
queried about Xt, and Yi,t the associated variable. Moreover,
we assume each participant i has a constant but unknown
probability pi to answer with a wrong label xt when he is
queried about an event Xt. When a participant does not give
the true answer, he chooses another one at random. We also
assume that Val(Yi,t)=Val(Xt), i.e. a participant queried
about Xt is presented with all possible answers and none
other. More formally,

P (Yi,t =xt|Xt =xt)= 1− pi ∀i, t (6)

P (Yi,t =x|Xt =xt)=
pi

|Val(Xt)| − 1

∀i , t , x ∈ Val(Xt)\{xt}
(7)

We also assume that Yi,t ⊥ Yi′,t′ except if t= t′ and i= i′.
For each source disagreement event, we observe a set
{Yi,t}i∈ut

of answers, where ut is the subset of participants
queried based on the location. Our goal is to obtain the best
prediction of X̂t.

Modifying the assumption on the parameterization of the
conditional distribution of the answers or on the indepen-
dence of the answers of different participants about the same
event would not require big modifications to our approach.
On the other hand, if other independence relationships no
longer hold, the EM algorithm presented below may need
to be altered significantly. E.g. consider two sensor disagree-
ments Xt and Xt′ caused by the same bus during the same
working memory. In our crowdsourcing model, we assume
these two events to be independent. A more complex model
could exploit a relationships between these events. This
would require processing them together in the EM algorithm.

5.2 Estimation
If the parameters Θ ≡ {pi}i (the probability that each

participant lies when queried) are known, inferring a pos-
terior distribution P (Xt|{Yi,t}i∈ut

) is straightforward using
Bayes rule. However, estimating these parameters is dif-
ficult. E.g. the maximum likelihood estimate Θ̂ of these

parameters based on a crowdsourced data set of T unob-
served events X1:T ≡ {X1, ...,XT } and associated answers
A1:T ≡ {yi,t}i∈ut,t∈1:T is the solution of the equation below:

Θ̂=max
Θ

P (A1:T |Θ) (8)

=max
Θ

Ex1:T
P (x1:T ,A1:T |Θ) (9)

Solving this equation is not analytically possible, because of
the expectation on the hidden variables.
The Expectation-Maximization (EM) algorithm [8, 22] is

a well-known method to solve this problem. It computes a
sequence of parameters Θk that converges to a maximum.
The algorithm alternates between computing an expectation
of the likelihood, based on the observations and the current
estimate of the value of the parameters, and maximizing this
expectation to update the parameters:

Qk(Θ)=Ex1:T |Θk,A1:T
logP (x1:T ,A1:T |Θ) (10)

Θk+1 =argmax
Θ

Qk(Θ) (11)

This algorithm operates in batch mode, which is problem-
atic for stream processing. We could periodically evaluate
the parameters Θ based on the full crowdsourced data set
collected so far, but this would create scaling issues as this
data set keeps growing. We could limit the number of events
we work with to a manageable number, but such a strat-
egy may induce the loss of all the answers provided by a
participant. Indeed, we are only observing the answers of a
(probably small) subset of participants for each event. Hence,
if we operate on a subset of events, there’s a risk we may
discard all the answers of a participant.

Therefore, we use instead an online EM algorithm [6]. This
algorithm can operate on one source disagreement event at
the time, and both the event and the associated answers can
be forgotten once this event has been processed. Discard-
ing this information means that we cannot come back later
and provide a more educated guess about the true value of
the event. This is however only a minor drawback in our
application. These events have a finite and short duration,
so obtaining the true label is only relevant for a short time
that depends on the working memory of the CE processing
component. Moreover, and as opposed to many crowdsourc-
ing applications, we can no longer ask questions about an
event when it is over.

The online EM algorithm uses a stochastic approximation
step to update the function Q(Θ) with a new event Xt rather
than recomputing everything. Equation (10) of the EM
algorithm therefore becomes:

Q̂t(Θ) = (1− γt)Q̂t−1(Θ) + γtExt|Θk,At
logP (xt,At|Θ)

(12)

where the sequence γ1, γ2, ... is such that
limT→∞

∑T

t=1 γt = ∞ and limT→∞

∑T

t=1 γ
2
t < ∞. As in

the classical EM algorithm, Θ is then estimated by maximiz-
ing Q̂t(Θ).

In urban traffic management, we do not receive an answer
from every participant for each source disagreement event.
Therefore, we use a different stochastic approximation for
every participant. In other words, we update each partic-
ipant using a specific γti , where ti is the number of times
this participant has been queried so far. Applying this to
the model described in Section 5.1, results in Algorithm
1. Every function Qk(Θ) is a sum and each term corre-

Algorithm 1 Crowdsourcing

Require: {p1, p2, ...} and {γ1, γ2, ...}
1: ti =1 ∀i
2: for all P (Xt),At, Lont, Latt, T received do

3: for all x ∈ Val(Xt) do {compute sufficient statistics}
4: α̂(x)=P (Xt =x)

∏

i∈ut
P (Yi,y = yi,t|Xi,t =x)

5: end for

6: for all x ∈ V al(x) do

7: α(x)=
α̂(yi,t)

∑

x∈V al(Xt)
α̂(x)

8: end for

9: V al=(“Traffic congestion” == argmaxx α(x))
10: send happensAt(crowd(Lont, Latt, V al), T)
11: for all i ∈ ut do {update parameters}

12: pi =(1− γti)pi + γti

(

1−
α(yi,t)

∑

x∈V al(Xt)
α(x)

)

13: ti = ti + 1
14: end for

15: end for

sponds to one source disagreement event. The parameters
maximizing Qk(Θ) will also be a sum where each term corre-
sponds to one event and depends on the posterior probability
α(x) ≡ P (Xt =x|At, {p1, p2, ...}) of the event. Algorithm
1 first computes these terms (lines 3 to 8), and then per-
forms the stochastic approximation update of the parameter
estimates (lines 11 to 14).
At line 10, the posterior distribution on the labels of the

event is used to generate a message to the CE processing
component, the traffic modelling component and/or the city
operators. More precisely, we inform the interested parties
whether the most likely label is a congestion or not.

5.3 Query Execution Engine
Having defined the query model, the next step is to employ

a crowdsourcing query execution engine to communicate the
queries to the participants while dealing with the challenges of
the mobile setting: real-time performance and reliability. The
functions we pursue are: (i) the provision of a communication
backbone without effort from the user to reach him, and (ii)
adaptive mechanisms that achieve real-time and reliable
communication.
To maximize parallelism, the crowdsourcing component

employs the MapReduce programming model [7, 14] to com-
municate the queries to the selected participants and enable
them to do local processing. MapReduce is a computational
paradigm that allows processing parallelizable tasks across
distributed nodes. The model requires that the computa-
tional process is decomposed into two steps, namely map
and reduce, where the following functions are used:

map(key; value)→ [(key2; value2)]

reduce(key2; [value2])→ [finalvalue]

Each map function processes a key/value pair and produces
an intermediate key/value pair. The input of the map func-
tion has the form (key , value) and the output is another pair
(key2 , value2). Each map function can be executed in paral-
lel on different nodes. Each reduce function is used to merge
all the individual pairs with the same key to produce the final
output. Hence, it computes the final output by processing
the list of values with the same intermediate key2 .

Figure 3: Crowdsourcing application.

In our system, the crowdsourcing query execution engine
communicates the queries to workers—the participants—to
answer specific questions about an event (map task), and
aggregate the results (reduce task). The worker node receives
the assigned task, processes the task and returns the answer,
denoted as intermediate result, through the map function.
After the crowdsourcing component collects all the answers
of the subproblems (intermediate results), it combines them
to form the output, which is the answer to the original query.
This is achieved using the reduce function that is executed
for all the intermediate results with the same key.

Each participant i ∈ U registers with the query execution
engine using a mobile device. The connection to the system
requires the participant to: (1) connect to the Google Cloud
Messaging (GCM) service to retrieve Push Notifications,
and (2) connect to the Crowdsourcing Server using his id
and identify himself as being a Map Worker. Then the
participant can leave the application run on the background,
where he can subscribe and retrieve tasks only when needed
(see Figure 3). Note that the GCM service enables us to
track the participant even if he changes his connection type
(e.g. from WiFi to 3G), or when he remains behind a Network
Address Translation-based routing device.

The query execution engine retrieves queries from the
crowdsourcing component in the form of
queryq ={Questionq , [answer1 , . . . , answern]}, along with a
list of Worker ids. In order to disseminate a queryq, the
crowdsourcing component: (1) retrieves the registered on-
line participants from the Crowdsourcing server, (2) selects
the list of workers Lq to be queried based on the selected
policy (e.g. location, reliability, etc), and (3) sends Lq and
the queryq to the Crowdsourcing Server and waits for the
answers.

In case we have real-time response requirements for queryq,
i.e. in the form of a time interval deadlineq, we should ensure
that the time it takes to compute the query and communicate
it to each selected participant should not exceed the deadlineq
requirement, i.e.:

commiq + compiq < deadlineq, ∀i ∈ Lq

Both the computation and the communication times can be
estimated from historical data. The expected computation

time compiq of each individual participant i to process a
task q can be computed from the past executed tasks, and
the communication time commiq can be estimated from
the communication time of the tasks executed previously in
the participant’s current location, since it depends on the
network connection in that area—e.g. 2G or 3G.

The Crowdsourcing server disseminates the queryq to the
selected workers Lq by sending them a Push Notification
that appears on their screen and notifies them by a vibration
and a ringtone sound. Each worker can open the Map task
by touching the notification, for which action the participant
device connects with the Crowdsourcing server and retrieves
the queryq. For instance, in traffic monitoring, the Map task
is displayed on the participant’s screen and he can select
the answer (see Figure 3). After the Crowdsourcing Server
has received answers from all Map workers or the reply time
interval has expired, the Server selects a number of Reduce
workers based on the selected policy. The Reduce workers
retrieve the intermediate data, which are the answers of
the Map workers, and aggregate them. Finally, the aggre-
gated data are returned to the Crowdsourcing component.
Although in the presented traffic monitoring example the
computation is simple, we employ the MapReduce infrastruc-
ture to be able to additionally assign more complex queries.
For instance, we could employ the sensors of the smartphones
to extract data, such as their current speed or local humidity,
as a Map task, and aggregate the intermediate data based
on their density at the Reduce phase.

6. TRAFFIC MODELLING
In this section, we describe our approach to solve the data

sparsity problem in our setting. Since data come from fixed
installations (SCATS data) and specific routes (bus GPS-
coded data), there are large parts of the city that are not
covered. However, from a city monitoring view, it is impor-
tant to offer the operator a current picture on the entire
city area. We present a modelling technique that generalises
the current observations to produce estimates for locations
without sensors. A major requirement for such a technique
is to be scalable to city-sized areas, and key to the scalability
of our approach is focusing on modelling the usual, average
case. The model is currently using SCATS data, and is
trained using past data. The technique is designed to be
general enough that any additional sources that can provide
congestion information at specific locations can be incorpo-
rated in the training, including, specifically, the results of
the crowdsourcing component.

The traffic network contains prior knowledge on movement
through the city of Dublin. We model the edge oriented
quantities within a Gaussian Process regression framework,
similar to the approach in [18]. In the traffic graph G each
junction corresponds to one vertex. To each vertex vi in the
graph, we introduce a latent variable fi which represents
the true traffic flow at vi. The observed traffic flow values
are conditioned on the latent function values with Gaussian
noise ǫi

yi = fi + ǫi, ǫi ∼ N (0, σ2) (13)

We assume that the random vector of all latent function
values follows a Gaussian Process (GP), and in turn, any
finite set of function values f = fi : i = 1, . . . ,M has a mul-
tivariate Gaussian distribution with mean and covariances
computed by the mean and covariance functions of the GP.

The multivariate Gaussian prior distribution of the function
values f is written as

P (f |X) = N (0, K̂) (14)

where K̂ is the so-called kernel and denotes the M ×M
covariance matrix; zero mean is assumed without loss of
generality.
For traffic flow values at unmeasured locations u, the

predictive distribution can be computed as follows. Based
on the property of GP, the vector of observed traffic flows (v
at locations u) and unobserved traffic flows (fu at locations
u) follows a Gaussian distribution

[

y

fu

]

∼ N

(

0,

[

K̂u,u + σ2I K̂u,u

K̂u,u K̂u,u

])

(15)

where K̂u,u is the corresponding entries of K̂ between the

unobserved vertices u and observed ones u. K̂u,u, K̂u,u, and

K̂u,u are defined equivalently. I is an identity matrix of size
|u|.

Finally the conditional distribution of the unobserved traf-
fic flows are still Gaussian with the mean m and the covari-
ance matrix Σ:

m = K̂u,u(K̂u,u + σ2I)−1
y

Σ = K̂u,u − K̂u,u(K̂u,u + σ2I)−1 K̂u,u

Since the latent variables f are linked together in an graph
G, the covariances are closely related to the network structure:
the variables are highly correlated if they are adjacent in
G, and vice versa. Therefore we can employ graph kernels
[27] to denote the covariance functions k̂(xi, xj) among the

locations xi and xj , and thus the covariance matrix K̂.
The work in [18, 17] describes methods to incorporate

knowledge on preferred routes in the kernel matrix. Lacking
this information, we opt for the commonly used regularized
Laplacian kernel function

K̂ =
[

β(L+ I/α2)
]−1

(16)

where α and β are hyperparameters. L denotes the combina-
torial Laplacian, which is computed as L = D − A, where A
denotes the adjacency matrix of the graph G. D is a diagonal
matrix with entries di,i =

∑

j
Ai,j .

7. EMPIRICAL EVALUATION
In this section we present the experimental evaluation of

the main components of our system—complex event process-
ing, crowdsourcing and traffic modelling. We used real data
streams coming from the buses and SCATS sensors of Dublin
city. The streams were collected between 1-31 January 2013
and comprise 13GB of data. The bus dataset includes 942
buses. Each operating bus emits SDEs every 20-30 seconds—
on average, the bus dataset has a new SDE every 2 seconds.
The SCATS dataset includes 966 sensors. SCATS sensors
transmit information every six minutes. Both datasets are
publicly available2.

7.1 Complex Event Processing
We recognise CEs concerning traffic flow and density

trends, traffic congestions and congestions in-the-make. Ad-
ditionally, we compute the maximal intervals for which there
is source disagreement, for resolution by means of crowdsourc-
ing, and the intervals for which buses and SCATS sensors

0

1

2

3

4

5

6

7

8

9

10

10 min =

12,5K SDE

30 min =

40,5K SDE

50 min =

67K SDE

70 min =

94,5K SDE

90 min =

124K SDE

110 min =

152K SDE

T
im

e
 (

se
c)

Working Memory

Static Event Recognition Self-Adaptive Event Recognition

Figure 4: Event recognition performance.

are considered unreliable. The experiments were run on a
computer with Intel i7 950@3.07GHz processors and 12GB
RAM, running Ubuntu Linux 12.04 and YAP Prolog 6.2.2.
We present two sets of experiments. In the first, we per-

formed ‘static’ recognition, that is, CE recognition that al-
ways takes into consideration all event sources. Then, we per-
formed ‘self-adaptive event recognition’ where noisy sources
are detected at run-time and the system discards them until
they resume offering reliable information. CE recognition
for traffic management, as defined here, is straightforward to
distribute. E.g. in Dublin SCATS sensors are placed into the
intersections of four geographical areas: central city, north
city, west city and south city. We distributed CE recognition
accordingly. We used four processors of the computer on
which we performed the experiments—each processor com-
puted CEs concerning the SCATS sensors of one of the four
areas of Dublin as well as CE concerning the buses that
go through that area. Figure 4 displays the average CE
recognition times in CPU seconds. The working memory
ranges from 10 min, including on average 12,500 SDEs, to
110 minutes, including 152,000 SDEs.

Figure 4 shows that self-adaptive CE recognition has a
minimal overhead compared to static recognition. The over-
head is due to computing and storing the maximal intervals
of additional CEs, capturing the intervals for which some
sources are considered unreliable. Figure 4 also shows that
RTEC performs real-time CE recognition both in the static
and the self-adaptive setting.

7.2 Crowdsourcing
Estimation. The crowdsourcing component was simu-

lated to evaluate the performance of the online Expectation-
Maximisation (EM) algorithm. We simulated 10 participants
modelled as described in Section 5. We parameterized these
participants using

{pi}
10
i=1 ={0.05, 0.15, 0.2, 0.25, 0.25, 0.38, 0.4, 0.5, 0.75, 0.9}

as their respective error probabilities. There are 4 possible
answers. The first 7 participants are more likely to answer
truthfully. The 8th participant has the same probability
to give the true answer as one of the wrong ones. The
9th participant selects one of the 4 answers according to a
uniform distribution. The last one is trying to mislead the
system and is more likely to give a wrong answer than the
9th participant.

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

Number of queries to participant i

E
st
im

a
ti
o
n
o
f
p
i

1

2

3

4

5

6

7

8

9

10

0 200 400 600 800 1000
-1

-0.5

0

0.5

1

R
e
la
ti
v
e
e
st
im

a
ti
o
n
e
rr
o
r
o
f
p
i

1

2

3

4

5

6

7

8

9

10

Number of queries to participant i

Figure 5: The estimation of the quality of each participant.

We used γt = t/(t + 1) for the stochastic approximation
parameters. We initialize each pi to 0.25, so we bias the initial
parameters towards trustful participants. Using an unbiased
initial estimate (pi =0.75) would prevent the parameters to
be updated if the prior probability distributions P (Xt) over
the event labels were also uniform. All participants were
queried about each sensor disagreement signalled by the CE
processing component. Figure 5 illustrates the estimation
of the quality of each participant (the probability that he
provides a wrong answer when queried). The values of the
estimation are displayed for each participant at the top and
the relative estimation error at the bottom. Both estimations
are functions of the number of calls to the crowdsourcing
component.

A first observation is that the estimated values converge to
the true value of the corresponding parameters. After process-
ing approximately 100 calls, the ordering of the participant by
quality is more or less correct, except for participants whose
error probabilities are close (participants 2-3 and partici-
pants 6-7). Correctly estimating the quality of participants
leads to a better assessment of the sensor disagreement, but
it is also important for rewarding a participant. Indeed, a
participant’s quality may be a factor in the computation of
the reward he receives for his contribution.
Most of the time (94% in this experiment) the posterior

probability distribution is very peaked: the probability of one
of the 4 explanations is greater than 0.99. Rarely, the answers
provided by the participants are not sufficient to remove
the uncertainty. E.g. the following posterior distribution
[∼ 0.49,∼ 0.41,∼ 0.09, < 0.01] does not provide a clear

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

2G 3G WiFi

L
a
te

n
c
y
 (

m
s
)

Trigger Task
Send Push Notification

Communication Time

Figure 6: Crowdsourcing Query Execution Engine Latency.

explanation for the source disagreement. In general, however,
crowdsourcing is able to resolve an overwhelming number of
source disagreements.

Query Execution Engine. Figure 6 shows the latency
of the individual steps of the crowdsourcing query execution
engine using different connection types. The presented times
are averages over 10 executions of crowdsourcing tasks for
each connection type. We do not present the latency of
the human responses, i.e. the latency to open the task and
select an answer. We have observed that these times are
typically a lot higher than the other steps. Figure 6 shows the
latency to trigger a task, including the selection of the workers
and the task assignment in the query execution engine, is
minimal in all cases, since there is no communication with
the participant devices, and ranges from 38 to 55 ms. On
the other hand, the time needed to send a Push Notification
from the participant device takes 467 ms on a 2G connection,
while the 3G and WiFi connections only need 169 ms and 184
ms respectively. Note that a Push Notification requires from
the query execution engine to send the notification to the
Google Cloud Messaging server, and then this server forwards
the notification to the device. Finally, Figure 6 shows the
communication time that involves the communication to
retrieve the task, once the task is selected, and send the
answer back to the query execution engine. The 2G network
experiences larger latency of 423 ms while the 3G network
takes 171 ms and the WiFi connection 182 ms. Hence,
although the end-to-end latency depends on the available
network, even in case that only the 2G network is available
the end-to-end latency would need less than a second to
select a worker and communicate with him.

7.3 Traffic Modelling
For the traffic modelling experiments, the traffic network

is generated using OpenStreetMap6—see Figure 7. In the
pre-processing step, the network is restricted to a bounding
window of the size of the city. Next, every street is split at
every junction in order to retrieve street segments. Thus,
we obtain a graph that represents the street network—see
Figure 8. The SCATS locations, depicted as black dots in
Figure 8, are mapped to their nearest neighbours within this
street network. The sensor readings are aggregated within
fixed time intervals. The hyperparametres are chosen in ad-
vance using grid search within the interval [0, . . . , 10] . Using
the pre-processed measurements, the Gaussian Process esti-
mate is computed for the unobserved locations as described
in Section 6. This step is repeated continuously. The results

6www.openstreetmap.org

are plotted on a visual display—see Figure 9—and shaded
according to their value. High values obtain a red colour
while low values obtain green colour.

Figure 7: Map of Dublin, Ireland (from OpenStreetMap).

Figure 8: Street network and SCATS locations (black dots)
in Dublin.

Figure 9: Traffic Flow estimates obtained by Gaussian Pro-
cess Regression. Green dots correspond to low traffic whereas
red dots indicate congested locations.

8. SUMMARY
We presented a system for heterogeneous stream process-

ing and crowdsourcing supporting intelligent urban traffic
management. Complex events related to traffic congestions
(in-the-make) are detected from heterogeneous sources in-
volving fixed sensors mounted on intersections and mobile
sensors mounted on public transport vehicles. To deal with

the inherent data veracity, a crowdsourcing component han-
dles and resolves source disagreement. Furthermore, to deal
with data sparsity, a traffic modelling component makes con-
gestion estimates in areas with low or non-existent sensor
coverage. Our empirical evaluation on data streams from
Dublin city showed the feasibility of the proposed system.

9. ACKNOWLEDGMENTS
This work is funded by the EU FP7 INSIGHT project

(318225), the ERC IDEAS NGHCS project, and the Deutsche
Forschungsgemeinschaft within the CRC SFB 876 “Provid-
ing Information by Resource-Constrained Data Analysis”,
projects A1 and C1.

10. REFERENCES
[1] A. Artikis, O. Etzion, Z. Feldman, and F. Fournier.

Event processing under uncertainty. In DEBS, pages
32–43. ACM, 2012.

[2] A. Artikis, M. Sergot, and G. Paliouras. Run-time
composite event recognition. In DEBS, pages 69–80.
ACM, 2012.

[3] A. Artikis, M. Weidlich, A. Gal, V. Kalogeraki, and
D. Gunopulos. Self-adaptive event recognition for
intelligent transport management. In Big Data. IEEE,
2013.

[4] C. Bockermann and H. Blom. The streams framework.
Technical Report 5, TU Dortmund University, 12 2012.

[5] I. Boutsis and V. Kalogeraki. Crowdsourcing under
real-time constraints. In IPDPS, pages 753–764, 2013.

[6] O. Cappé and E. Moulines. On-line
expectation–maximization algorithm for latent data
models. Journal of the Royal Statistical Society: Series
B (Statistical Methodology), 71(3):593–613, 2009.

[7] J. Dean and S. Ghemawat. Mapreduce: Simplified data
processing on large clusters. In OSDI, 2004.

[8] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society.
Series B (Methodological), 39:1–38, 1977.

[9] P. Domingos and D. Lowd. Markov Logic: An Interface
Layer for Artificial Intelligence. Morgan & Claypool
Publishers, 2009.

[10] P. Donmez, J. G. Carbonell, and J. G. Schneider. A
probabilistic framework to learn from multiple
annotators with time-varying accuracy. In SDM, 2010.

[11] O. Etzion and P. Niblett. Event Processing in Action.
Manning Publications Company, 2010.

[12] F. Galton. Vox populi. Nature, 75:450–451, 1907.

[13] B. M. Good and A. I. Su. Crowdsourcing for
bioinformatics. Bioinformatics, 2013.

[14] T. Kakantousis, I. Boutsis, V. Kalogeraki,
D. Gunopulos, G. Gasparis, and A. Dou. Misco: A
system for data analysis applications on networks of
smartphones using mapreduce. In MDM12, 2012.

[15] R. Kowalski and M. Sergot. A logic-based calculus of
events. New Generation Computing, 4(1):67–96, 1986.

[16] K. Land, A. Slosar, C. Lintott, D. Andreescu,
S. Bamford, P. Murray, R. Nichol, M. J. Raddick,
K. Schawinski, A. Szalay, D. Thomas, and
J. Vandenberg. Galaxy Zoo: the large-scale spin
statistics of spiral galaxies in the Sloan Digital Sky

Survey. Monthly Notices of the Royal Astronomical
Society, 388:1686–1692, Aug. 2008.

[17] T. Liebig, Z. Xu, and M. May. Incorporating mobility
patterns in pedestrian quantity estimation and sensor
placement. In Citizen in Sensor Networks, volume
LNCS 7685, pages 67–80. Springer, 2013.

[18] T. Liebig, Z. Xu, M. May, and S. Wrobel. Pedestrian
quantity estimation with trajectory patterns. In
Machine Learning and Knowledge Discovery in
Databases, volume LNCS 7524, pages 629–643.
Springer, 2012.

[19] H. Liu and H.-A. Jacobsen. Modeling uncertainties in
publish/subscribe systems. In ICDE, 2004.

[20] D. Luckham. The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise
Systems. Addison-Wesley, 2002.

[21] D. Luckham and R. Schulte. Event processing glossary
— version 1.1. Event Processing Technical Society, July
2008. http://www.ep-ts.com/.

[22] G. McLachlan and T. Krishnan. The EM algorithm and
extensions, volume 382. John Wiley and Sons, 2008.

[23] V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez,
C. Florin, L. Bogoni, and L. Moy. Learning from
crowds. The Journal of Machine Learning Research,
99:1297–1322, 2010.

[24] V. S. Sheng, F. Provost, and P. G. Ipeirotis. Get
another label? improving data quality and data mining
using multiple, noisy labelers. In KDD. ACM, 2008.

[25] A. Skarlatidis, A. Artikis, J. Filippou, and G. Paliouras.
A probabilistic logic programming event calculus.
Theory and Practice of Logic Programming, 2013.

[26] A. Skarlatidis, G. Paliouras, G. Vouros, and A. Artikis.
Probabilistic event calculus based on markov logic
networks. In RuleML America, pages 155–170, 2011.

[27] A. Smola and R. Kondor. Kernels and regularization on
graphs. In Proc. Conf. on Learning Theory and Kernel
Machines, pages 144–158, 2003.

[28] S. Wasserkrug, A. Gal, O. Etzion, and Y. Turchin.
Efficient processing of uncertain events in rule-based
systems. IEEE Trans. Knowl. Data Eng., 2011.

