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1. INTRODUCTION

Past works on reasoning about time and uncertainty overwhelmingly assume (i)
that the state of the world is represented in some uniform (usually in logic) way
selected by the designer of the reasoning mechanism, and (ii) that all data in the
state can be directly manipulated by the reasoning paradigm. Unfortunately, in
today’s world, these assumptions are true only in a small class of applications.
First, note that most real world systems must manipulate existing databases and
must use existing, tried and tested code. For example, a simple stock market appli-
cation that requires reasoning about time and uncertainty (when will a given stock
reach a given price?) may access a wide variety of legacy sources. These may in-
clude databases (e.g. of past stock performance, past Dow Jones data, performance
of similar stocks in the past, etc.), stock market models encoded as legacy code
that analyzes stock performance (numerous such models exist), and corporate risk
assessment programs (of which numerous models exist). In order for an agent to
recommend stock portfolios to individual or corporate investors, it needs to leverage
all these existing, proven databases and software modules. We are not aware of any
existing method for temporal probabilistic reasoning that can explicitly do this.
Second, most real world data systems only provide limited access to their data.
In other words, many corporate databases only allow third party programs to access
their database through programs that they provide. There are at least two good
reasons for this. The database may be owned by a third party who only wants their
data accessed by code that they have written (and hence trust). In addition, they
may not want all of their data to be accessible to third parties (e.g. their databases
may contain profiles of the clients which they may want to keep hidden). If the state
of the world is contained in such data sources, this means that a reasoning program
only has access to that state via third party function calls. We are not aware of
any existing method to reason about time and uncertainty that can support this.
Third, consider a simple corporate employee database. Such a database almost
always has at least ten columns (including fields like firstname, lastname (with
domain string), social security number (with domain all 9 digit integers), as well
as many other fields like streetnum, streetname, zip, projectid, salary,
hire-date, and many more. Even if we consider just these three fields and as-
sume the length of strings to be at most 10 characters long. we have a total state
space of 2610 x 26'° x 10°. This is an enormous state space for what almost all
database managers would consider a very tiny database ! Real databases (e.g. the
US military’s GCCS and MIDB databases, or Walmart’s inventory database) are
orders of magnitude larger. We are not aware of any existing method to reason
about time and uncertainty that can reason about such large state spaces. Fur-
thermore, almost every commercial database supports an SQL API (application
program interface) which means authorized users can update the database via ap-
propriate programs containing SQL updates statement - this in turn is an infinite
set of possible statements. An attempt to treat this via a tree-like search space will
encounter a difficult scalability problem because of the infinite branching of such a
tree (in addition to the enormous number of states).
In this paper, we propose the concept of heterogeneous temporal probabilistic
(HTP) software agents that address the above shortcomings of past paradigms:
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HTP agents provide a syntax within which agents that perform temporal and
probabilistic reasoning on top of legacy databases and data sources can be pro-
grammed with application specific action policies. To date, we have seen no
single uniform syntax to perform temporal-probabilistic reasoning on top of
legacy pieces of code. There are certainly applications (e.g. [Chalupsky et al.
2001]) which use Markov decision processes [Puterman 1994] to make decisions
on top of specific information sources, but no principles to do this across ar-
bitrary databases and/or legacy software applications have been articulated to
our knowledge.

HTP agents are defined directly in terms of the application program interfaces
(APP’s) that a third party piece of code and/or database provides. Note that
virtually every decent commercial software package has an API. This allows
HTP agents to support the goal of encoding decision making policies in the
presence of limited access to state information. No paradigm we are aware of
to date can do this.

The state of an HTP agent consists of whatever data is stored inside the data
structures of the code on top of which the agent is built. This state may or
may not reflect information about the state of the real world, but it is the set
of all computational objects that the program is aware of. HTP agents consist
of a set of rules that are built on top of the underlying code’s API calls in
such a way that they can automatically take actions in response to changes in
their state. Such actions can include for example, updates, alerts, modifying
requests and processing them, and virtually anything that can be executed by
a piece of code.

We provide a formal syntax and a formal semantics for this. The semantics is
defined in terms of a structure called a feasible temporal probabilistic (FTP)
status interpretation (FTPSI for short) . FTPSD’s extend the concept of a
feasible status set defined in [Eiter et al. 1999]—as feasible status sets them-
selves extend various well known semantics in logic programming, our semantics
extends those semantics as well.

An HTP agent continuously executes a decision cycle. The HTP agent ensures
that it’s state always satisfies various integrity constraints. Changes (i.e. up-
dates) to their state can occur in many ways. For instance, the receipt of a
message changes the state of their messaging data structures. Likewise, the
tick of a clock can change the state of the current time variable. When such
changes occur, the HTP agent must find a set of actions to perform that satis-
fies various requirements (described later on in the paper). These requirements
could include conditions that must hold (now), conditions that may hold with
some probability (now or in the future). The execution of the actions must not
cause any integrity constraints to be violated by the resulting state. And so
on. The agent then executes these actions (or schedules them for future execu-
tion). When state changes occur in a future state, the same computations are
performed based on the new state. Thus the agents are engaged in a contin-
uous cycle of detect state change — determine what actions to perform now
or in the future (via computation of an FTPSI) — ezecute such actions or
schedule them for future execution — detect state change . ... Supporting this
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decision cycle is a key part of our system. When an update occurs, the agent
automatically computes a “feasible temporal probabilistic status interpretation
(FTPSI)” that tells it what to do now in response to the given change as well
as what actions to take in the future (of course a later update can cause those
decisions to be revisited).

(6) As there has been no formal syntax and semantics for performing temporal-
probabilistic reasoning on top of arbitrary legacy pieces of code, there have
been no provably sound and complete algorithms for this purpose. We provide
a sound and complete algorithm for computing FTPSI’s. Past works that
provide completeness results for temporal probabilistic reasoning that we are
aware of assume that the data on top of which the reasoning is performed is
represented in some uniform fashion chosen by the designer of the reasoning
system (usually logic). It is very rare in the corporate/military world to have
the opportunity to decide how all the data should be stored. Usually legacy
data sources need to be used. Furthermore, legacy applications that provide
various kinds of reasoning capabilities need to be leveraged, not re-implemented
from scratch. Past work generally assumes that all the reasoning involved is
performed by them whereas our paradigm allows legacy reasoners (e.g. route
planners, sensing programs, etc.) to participate in the reasoning process.

The goal of this paper is therefore quite simple: provide a programming
language within which agents that must make decisions involving time
and uncertainty can be programmed by programmers in the presence
of (and leveraging) legacy databases, data structures and software pro-
grams. We provide a syntax for such HTP agents and a semantics along
with appropriate soundness and completeness results.

Throughout this paper (excluding the related work section), we use the word “rea-
soning” to describe determining how to take actions now or in the future based on
the data the agent currently has access to via zero or more legacy data sources and
based on leveraging existing software programs. HTP agents can be built on top
of any such legacy data sources of existing software applications independently of
what those software applications compute. All kinds of classical Al frameworks tra-
ditionally called reasoning such as image processing, predictions, Markov decision
processes, abduction, Al planning, operations research, decision theoretic planning,
could be represented by these legacy programs. The agent developer can encode what-
ever rules he wants his agents to follow by leveraging whichever of these resources
he has access to.

Our group has built two applications (one jointly with BBN, Lockheed Martin,
the US Navy and several other partners [Mittu and Ross 2003], the other jointly
with BBN, BAE Systems, Fantastic Data and several other partners [T. Hammel
and Rogers 2003]) to track battlefield information and take actions based on what is
seen. For example, in the first application [Mittu and Ross 2003], spatio-temporal-
probabilistic predictions are made about where an enemy submarine will be at
future points in time. This is done on the basis of sensor data as well as using third
party (legacy) code describing the reliability of the sensors as well as commercial
legacy code for performing predictions, as well as terrain databases describing the
coastline involved. Where and when to intercept the enemy submarine is a prob-
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lem involving reasoning about time and probabilities in the presence of the legacy
databases and legacy software code bases described above. This problem was solved
using the principles described in this paper. In the second application again, we
used live ground sensor data to identify enemy vehicles in a road network, predict
where they might be going based on properties of the road network, and determin-
ing how and where to intercept the enemy based on existing resources available for
interception.

Our work builds on top of the IMPACT agent platform [Subrahmanian et al.
2000]. In IMPACT, agents manage a set of data types/structures (including a
message box) through a set of application program interface (API) function calls.
The state of the agent at a given point in time is a set of objects belonging to these
data types. Each agent has a set of integrity constraints that its state must always
satisfy. When an agent’s state changes (due to external events such as receipt of
a message), the agent tries to modify its state so that the integrity constraints are
satisfied. To do this, it has a suite of actions, and an agent program that specifies
the operating principles (what is permitted, what is forbidden, what is obligatory,
etc., and under what conditions?). We emphasise that our framework is not static.
HTP agents extend the above agents so as to reason about time and uncertainty,
and make decisions based on such analyses. HTP agents continuously engage in
the following computational cycle: identify changes to state — compute FTPSI
— take actions prescribed by FTPSI — identify changes to state — .... Thus,
the computation of FTPSI’s is a continuous ongoing process intended to handle
updates and changes in agent state in a manner that is consistent with the rules of
behaviour the agent developer intended.

2. MOTIVATING EXAMPLES

In this section, we first present a detailed energy trading example to motivate our
research. We then present a (less detailed) stock trading example. Both examples
will be used throughout the paper to motivate the basic definitions introduced here.

2.1 Energy Market example

Consider an energy market (such as those to trade energy in markets such as the
US and the UK). Energy producers in such a market tend to make major decisions
based on predicted future demand. In general, uncertainty in energy (and other)
markets can be expressed via statements of the form: The probability that there will
be demand for D units of item I at price P is p. Demand curves—used extensively
in economics—are a graphical representation of a set of such statements.

Usually, short term demand in energy markets is invariant to price fluctuations.
Thus, in the context of energy markets, demand related data involves statements
of the form “The Boston energy market will need K7 Megawatts per hour of energy
between 4 and 5pm tomorrow with probability p;, Ko Megawatts per hour of energy
between 4 and 5pm with probability ps ...” and so on. Of course, many similar such
statements could be made for other time slots. Most regions are served by multiple
energy producers. Energy distributors use auction mechanisms to determine which
vendors to buy energy from in a given time slot. Things are somewhat more complex
than laid out here because of additional constraints. For example, a distributor
cannot place an order for a huge amount of energy from one company in the 10-
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11lam time slot, and leave the adjacent time slots (9-10,11-12, etc.) with an order
of zero units of energy (as such machines require a “ramp up” time and a “ramp
down” time which is often expensive).

Executives of such energy producing companies need to continuously reason in the
presence of time and uncertainty. For example, they need to determine how much
to ask for a Megawatt of energy in a given time slot in tomorrow’s auction market.
By pricing energy too high (and getting too greedy), they may get orders for lower
quantities. Likewise, by pricing energy too low, they may lose profits. Thus, they
need to make decisions based not only on their perception of how much energy
will be needed in the future (e.g. tomorrow), but also based on their perception
of what their competitors will do. Furthermore, updates are important: as new
data becomes available, old decisions may need to be discarded and replaced with
newer ones. In this paper, we show how problems such as this may be modelled
using our temporal probabilistic agent framework. We do not solve this problem,
as that is not the purpose of this paper. Rather, the ability to reason automatically
and simultaneously about time and probabilities in a setting which requires access
to heterogeneous data sources and software sources in such a setting is important
for agents. We will use a simplified version (presented in Appendix A of [Wolfram
1998]) of such a market.

Suppose there are two energy generators. Generator 1 has one unit
of capacity with constant marginal cost c¢. Likewise, generator 2 has
one unit of capacity with constant marginal cost ¢, but it also has m
(where m > 0) additional units of capacity with zero marginal cost.
Demand is assumed to be stochastic and varies between m + 1 and
m + 2 with probability ¢ and 1 — ¢, respectively (0 < ¢ < 1). In
other words, generator 2’s m units with zero marginal cost are always
used and depending on demand, either one or both of the generators’
units) with marginal costs equal to ¢ are used. We assume that the
generators simultaneously submit process p; and py for their two units
with marginal costs ¢ before the level of demand is realised. The two
units are ranked according to the submitted prices and once demand is
realised, the marginal unit sets the price for all units used in this period.
The generator offer prices are constrained to be below some price P™%*,

2.2 Stock Market Example

Consider a very simple agent that tracks stocks and executes trades automatically
for clients. A specific client may wish to trade stocks based on some simple rules.
For example, if a prediction program predicts that a given stock is going to go up
to $50 per share with a high probability (e.g. 80% or more) sometime during the
next 10-20 days and the user already owns this stock, then she may want to buy
the stock sometime in the next 9 days. However, if the user does not own this
stock (and if it is consistent with the user’s diversified investment strategy) then
the user may want a 90% (or more) probability that the stock will go up to $50
in order to buy it. Note that again, updates can occur naturally—tomorrow, the
same prediction program may say that the given stock will only go up to $ 30 per
share instead of $ 50. The decision to buy the stock in the next 9 days may need
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to be revised by the agent.

Throughout this paper, we will use this simple example to motivate the need
for taking actions automatically during the presence of temporal uncertainty. As
will become clear, our notion of temporal probabilistic agents can be easily used to
write far more sophisticated agents with more complex rules than those described
above.

3. TEMPORAL PROBABILISTIC CODE CALL'S

In examples such as the energy example above, agents need to be able to make
decisions based on the data stored in various legacy data sources. Furthermore, in
arriving at these decisions, they may use capabilities provided by various software
packages. Eiter et al. [1999]! represent a piece of software code as a pair S =def
(7s,Fs) where Ts is a finite set of types and Fs is a finite set of API functions
whose input and output types are drawn from 7g. They also introduce the concept
of a code call which is a simple syntax to access the data and functionality of such
legacy data and software sources. In this section, we introduce the concept of a
temporal probabilistic code call (TPcc) using which we may reason about sources
that provide temporally uncertain information.
We first start by recapitulating the notion of a code call.

Definition 3.1 (Code Call (cc)). Suppose S =4¢f (7s, Fs) is some software code,
f € Fs is a predefined function with n arguments, and dg,...,d, are objects or
variables such that each d; respects the type requirements of the i’th argument of
f. Then, S:f(ds,...,dpn) is a code call. A code call is ground if all the d;’s are
objects.

A code call atom is an expression of the form in(a, S:f(dy,...,dn)) where a is
either a variable or a constant and S: f(dy,...,d,) is a code call. Such a code call
atom says that a is in the set of objects returned by S: f(di,...,dy).

A code call executes an API function and returns as output a set of objects of the
appropriate output type.

For example, in the energy domain, energy : demand(A) is a code call that in-
tuitively returns the energy demand in area A. in(d, energy:demand(h)) is an
example code call atom.

Code calls are often used to formulate more complicated conditions and to express
relationships between several variables.

Definition 3.2 (Code Call Condition (ccc)). A code call condition x is defined
as follows:

(1) Every code call atom is a code call condition.
(2) If s, t are either variables or objects, then s = t is a code call condition.

(3) If s,t are either integers/real valued objects, or are variables over the inte-
gers/reals, then s < t,s > t,s > t,s < t are code call conditions.

(4) If x1, x2 are code call conditions, then x; & x2 is a code call condition.

IHenceforth, we use terminology introduced in a series of previous papers. To make the paper
self contained, all necessary definitions are given in an appendix.
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A code call condition satisfying any of the first three criteria above is an atomic
code call condition.

Instead of giving examples of code call conditions, we first generalize them to tem-
poral probabilistic code calls and provide examples of those.

Note that in our energy example, a code call of the form energy : demand(A) may
be uncertain about the answer. For example, it may say that the demand for energy
in area A in the 10am to 11am time slot tomorrow is 5 MegaWatts (with probability
20-25%), 6 MegaWatts (with probability 35-50%), and 7 (with probability 20-25%).
Similar statements may be made for other time slots as well. In this case, what is
happening is that the code call returns a set of random variables, one associated
with each time point.

Definition 3.3 (Coherent set of random variables). A random wvariable RV of
type 7 is a pair RV = (0bj, p) where Obj is a finite set of elements of type 7
and p is a probability distribution over Obj that assigns real numbers in the unit
interval [0, 1] to members of RV such that ¥,copjp(0) < 1.

A set S of random variables of type 7 is coherent iff whenever we consider two
distinct (Objq, ©1), (Obj4, p2) € S, it is the case that Obj, N Obj, = 0.

Intuitively, when a set {(Obj,,©1),-..(0bj,,,pn)} of random variables is returned
by some code call, then we interpret this as saying that some object in Obj; is in
the answer, some object in Obj, is in the answer, and so on. Note that the answers
returned by a code call depend on the agent’s state. A code call may return one
set Ans(t) of random variables at time t. This reflects the answer to the code call
based on the state of the agent at time t. If a message arrives within an infinitesimal
amount of time after t (but before t 4+ 1), the answer Ans(t + 1) returned at time
t+ 1 may not be the same as Ans(t). This is because the receipt of a message
causes the state of the agent to change (in particular the contents of its mailbox
has changed). In general, if any update is made to the state of the agent between
time t and t + 1, Ans(t 4+ 1) may be different from Ans(t).

The precise probability that an object 0 € Obj, is in the answer is given by ;(0).
The condition of coherence requires that no object occur in two sets Obj;, Obj;
above. The reason for this is that if o occurs in both Obj; and Obj,;, then to
compute the probability that o appears in the answer, we need to combine the
probabilities ;(0) and g,(0). How to combine these two probabilities depends
upon our knowledge of the dependencies between the objects in the sets Obj;, Obj;.

Ezample 3.4. Let us return to our stock market example. Consider a code call
stock: up(P) asking for an estimate of the stocks that will go over the value P
tomorrow. This code call may return two random variables.

RVl = <{IBM7HP}791>

RV2 = <{GM, FO’I"d}, p2>
This says that either the value of IBM’s stock or HP’s stock will go over the P
tomorrow and either the value of GM’s stock or Ford’s stock will go over P tomor-
row. If we assume that g; assigns 0.5 to both IBM and HP and g9 assigns 0.7 to

GM and 0.3 to Ford then, we know for example that the probability of the value of
IBM’s stock to go over P is 0.5.
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However, suppose that this code call return the following two random variables.
Rv/l = <{IBMa HP}v @1>
RV, = ({IBM, Ford}, ps).

If we assume that g assigns 0.5 to both IBM and HP and g assigns 0.7 to Ford
and 0.3 to IBM then what is the probability that the value of IBM will go over
P tomorrow? There is no simple answer to this question, without making various
types of independence assumptions (or other assumptions). This is why we have
the requirement of coherence.

We are now ready to introduce the concept of a TP code call.

Definition 3.5 (Temporal probabilistic cc (TPcc)). A temporal probabilistic code
call based on cc of type 7, denoted cc™, returns a mapping from natural numbers
to coherent sets of random variables of type 7.

Suppose we have a code call stock: over(C,P) which ordinarily returns as output,
a member of {true, false} indicating whether the company C’s stock price is P or
more. A TPcc based on this code call would return a mapping as output. This
mapping would associate with each time point t, a coherent set of random variables.
For example, at time 1 it may return only one random variable, ({true, false}, ¢,,)
saying that at time 1 there is a 50% probability of the stock being greater than or
equal to P (i.e., &, is the uniform distribution function). At time 2, it may return
the same set, but with the distribution p(true) = 0.8, p(false) = 0.2 indicating
that there is now an 80% probability of C’s stock exceeding P.

In the energy domain, a TPcc based on the code call energy: demand(A) that
originally returned a demand, returns a mapping from time points (periods) to
random variables of the form {{m+1, m+2}, p}, where p(m+1) = ¢ and p(m+2) =
1 — ¢. The actual value of ¢ may be different for different time periods.

In the rest of this paper, we often write cc to denote both ordinary code calls as
well as TPccC’s. The intended meaning should be clear from context.

It is well known that even if we know the exact probabilities of two events e, es,
it is not always easy to obtain a precise point probability for the conjunction or
disjunction of these events, though it is possible to obtain a “tightest” possible
interval for these probabilities (cf. [Boole 1854], [Fagin et al. 1990]). In general,
depending upon exactly what is known about the two events, the probabilities of
their conjunction and disjunction can be computed in many different ways. The
following definition (due to Lakshmanan et al. [1997]) proposes the notion of a
probabilistic conjunction/disjunction strategy which provides an abstract view of
how to obtain probabilities of conjunctive/disjunctive events.

Given two probability intervals [Li,U;] and [Lo,Us|, we say that [Li,U;] <
[L27U2} Zﬁ L1 S LQ and U1 S U2.

Definition 3.6 (Probabilistic conj/disj strategy). Let events ey, es be associated
with probabilistic intervals [Li, Uy] and [Lz, Us] respectively. Then a probabilistic
conjunction strategy (probabilistic disjunction strategy) is a binary operation ® (@)
which uses this information to compute the probabilistic interval [L, U] for event
“e1 AN ea” (“e1 V ep”). When the events involved are clear from context, we use
[L, U] = [Lh Ul] X [Lg, UQ] to denote (61 N ea, [L, U]) = (61, [Ll, Ul]) X (62, [LQ7 UQD
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and we use [L,U] = [L1,U;] & [La, Us] to denote (e1 V es, [L,U]) = (e1, [L1,U1]) @
(e2, [L2,Us]). Every strategy must conform to the following postulates:
Generic postulates (x € {®,D})
1. Commutativity | ([Li,U1] * [L2,Uz]) = ([L2, Uz] % [L1,Ui])
2. Associativity (([L1, Ur] * [L2, Us]) * [Ls, Us]) =
([L1, Ur] * ([L2, Uz]) * [L3, Us]))
(L1, Uh]  [L2, Us]) < ([Ln, Un] * [Ls, Us])
if [L2,Uz] < [Ls, Us]
Probabilistic Conjunction postulates
4.a. Bottomline ([L1, U1] ® [La2, Us))
< [min(L1, L2), min(Uz, Uz)]

3. Monotonicity

5.a. Identity ([Ll,Ul} (04 [1, 1]) = [Ll,Ul]
6.a. Annihilator | ([L1,U1] @ [0,0]) = [0, 0]
7.a. Ignorance ([L1,U1] ® [L2,Us]) C

[max(0, L1 + Ly — 1), min(Uz, Uz)]
Probabilistic Disjunction postulates

4.b. Bottomline ([L1,Uh] & [L2, Us2]) >

[max(L1, L2), max(U1, Uz)]

5.b. Identity ([L1,U1] ® [0,0]) = [L1, Un]
6.b. Annihilator | ([L1,U1] @ [L, 1)) = [L, 1]
7.b. Ignorance ([L1,U1] ® [L2,U3]) C

[max(L1, L2), min(1, Uy + Uz)]

A detailed explanation of why these axioms are reasonable axioms for probabilistic
reasoning is given in [Lakshmanan et al. 1997]. Another approach towards combi-
nation strategies, which concentrates especially on a clean probabilistic semantics
is given in [Eiter et al. 2001]. Another way of axiomatizing the behavior of ANDs
and ORs is via triangular norms and co-norms, respectively. The probabilistic con-
junction and disjunction strategies introduced by Lakshmanan et al. [Lakshmanan
et al. 1997] use several axioms that better capture probabilistic reasoning. These in-
clude, for instance, the Bottomline axiom and the Ignorance Axiom which enforce
key intuitions underlying probabilistic reasoning that are not enforced by trian-
gular norms and co-norms. However, axioms such as commutative, associativity,
monotonicity, identity and annihilator are similar to t-norm and co-norm axioms.

Each agent has a set of actions that the agent is capable of executing. Ac-
tions change the state of the agent. An action has five components: (1) a name
a(X1,...,Xp) where the X;’s are variables, (2) a precondition, (3) an add list, (4) a
delete list, all three of which consist of a set of code calls and temporal probabilistic
code calls, and (5) an action code which is a body of code that executes the action.
Each agent has a notion of concurrency specifying how to combine a set of actions
into a single action, and a set of action constraints that define the circumstances
under which uncertain actions may be concurrently executed. A formal model of
such agents (with no time and no uncertainty) is given in [Eiter et al. 1999]. For
simplicity, we assume (in this paper) that an action has no duration (see [Dix et al.
2001] for how to handle actions with durations).

Definition 3.7 (Status condition, Status set). If a(t) is an action, and Op €
{P,F,W,Do, O}, then Opa(f) is called an action status atom. If Ay, ... A, are
status atoms, then (4; A... A A,) is an action status condition. A status set is a
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finite set of ground action status atoms.

Pa means « is permitted. Fa means « is forbidden. Do« means « is actually
done. Oa means « is obligatory, and Wa means that the obligation to perform «
is waived.

4. SYNTAX OF HTP AGENT PROGRAMS

Our main aim in this section is to define temporal probabilistic agents. A first step is
to extend ccc’s and status conditions (Definition 3.7) to annotated versions of them
(Definition 4.5). We start with the notion of a temporal expression te which may
be used to denote time points. Time in our model is discrete because computer
clocks are discrete and because it makes computation somewhat easier. Logical
agent programming frameworks that use continuous time models are presented in,
for example, [Reiter 1998]—however, these frameworks are unable to deal with
leveraging legacy code and assume all data is stored in logic.

Definition 4.1 (Temporal interval (ti): [ter, tep]. (1) Every integer is a temporal
expression. (2) Xnow is a temporal expression. (3) If tej, tes are temporal expres-
sions, then so is (te; + tez).

If tey, teo are temporal expressions, then [tey, tey] is a temporal interval, denoted
ti. It denotes the set of all time points between te; and tes.

For example, 5, Xpow + 3 and Xnow + Xnow + 13 are all temporal expressions. We
will assume that there is an oracle that automatically assigns a value to Xpow (in
an implementation, this can be done by looking at the system clock). Hence, a
temporal expression can always be evaluated to a value.

It is easy to see that the intersection of two temporal intervals is also a temporal
interval.

Temporal intervals [teg, tep] can also be seen as constraints for a time variable t:
ter <t< tes.

For example, [Xnow + 2, Xnow + 7] is a temporal interval ti. Thus, if X0 = 3, then
[Xnow + 2, Xnow + 7] = {5,6,7,8,9,10}.

We assume the existence of a special set of variables called probabilistic variables.
Each of these variables is denoted X; and ranges over real values in the unit interval
[0,1]. We also assume the existence of some set of function symbols, each with an
associated arity—these function symbols are pre-interpreted and map [0, 1] to [0, 1]
for appropriate arities a.

Definition 4.2 (Probabilistic interval (pi): [¢1,£2]). (1) Every real number in the
unit interval [0,1] is a probabilistic item. (2) Every probabilistic variable X; is
a probabilistic item. (3) If ¢4,...,¢, are probabilistic items and f is an n-ary
probabilistic function symbol, then f(¢1,...,£,) is a probabilistic item.

If ¢4, ¢5 are probabilistic items, then [¢1, f5] is called a probabilistic interval.

For example, if X is a probabilistic variable, then % is an example of a proba-
bilistic item. [X, Z#1] is a probabilistic interval.

Definition 4.3 (Probability distribution function (pdf) é on a ti).
Suppose ti =[te;, tep] is a time interval. A probability distribution function (pdf)
w.r.t. ti is a mapping § from {t|te; <t < tes} to [0, 1] such that for all values tg
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of Xnow: Lte[te; (to),tes(t)]0(t) = 1 (here the expressions te;(tg) are the values of te;
when X, is replaced by the value tg.
We also write ([ter, tez], §) to emphasise the fact that ¢ is a pdf over [ter, tes].

Without loss of generality, we assume that all intervals (ti,d) are such that § is
nonzero in the whole interval (otherwise we can write it as a finite union of intervals
in the required form).

The above ingredients form the basic building blocks of our temporal probabilistic
agents. We are now ready to start putting these building blocks together in a
step-by-step effort to define HTP agent programs. We start with the notion of a
TP-annotation.

Definition 4.4 (TP-annotation [®, ([t1,t2],d),[¢1,€2]]). A TP-annotation is a
triple [®, ([t1,t2],0), [¢1,¢2]] where ® is a probabilistic conjunction strategy,
([t1,t2],0) is a temporal interval with a pdf § over it, and [¢1,¢5] is a probabilistic
interval. A TP-annotation is ground if /1, {5 are ground.

For example, [®;g, ([Xnow + 2, Xnow + 7], 0u), [X, %]] is a TP-annotation where ®;,4
represents the “ignorance” conjunction strategy and J,, represents the uniform dis-
tribution. This annotation is not ground due to the presence of the variable X.
However, [®ig, {[Xnow + 2, Xnow + 7], 0x), [0.3, 0.5]] is considered to be ground.

We are now ready to define a temporal probabilistic extension of a code call
condition. We also define an extension of the notion of a status condition to the
temporal probabilistic case.

Definition 4.5 (TP-ccc, TP-asc). If x is a (ground) code call condition (ccc),
(A1 Ao A Ay) is a (ground) action status condition, and [®, ([t1, t2],0), [¢1, ¢2]] is
a (ground) annotation, then x : [®, ([t1, t2],d), [¢1, £2]] is a (ground) TP CODE CALL
CONDITION (TP-ccc), and (41 A ... A Ap) : [®, ([t1,t2],0), [¢1,£2]] is a (ground)
TP ACTION STATUS CONDITION (TP-Asc).

The following is an example TP code call condition:

in(c,d: f(a,b)) : [@ig, ([Xnow + 2, Xnow + 7, 0u), X, &]}

2
This condition says that there is a probability in the probabilistic interval [X, %]
that at some time point between Xnow + 2 and Xow + 7, the code call d: f(a,b) will
return c¢ in its output. Furthermore, for any specific time point in this time interval,
the specific probability that ¢ will be returned is uniformly distributed. Similarly,

X+1
)

is an TP action status condition. It says that there is a probability in the interval
X, %] that at some time point in the temporal interval [Xnow + 2, Xnow + 7], the
agent will both buy IBM stock and sell Lucent stock. Furthermore, the probability
of both events occurring is computed from their individual probabilities by using
the conjunction strategy of ignorance. In the energy domain the TP code call
condition

(Do buy(ibm) A Do sell(lucent)) : [®ig, {[Xnow + 2, Xnow + 7], 0u), [X,

in(m + 1, energy : demand(bal)) : [®ig, {[Xnow: Xnow + 2], 0, [0.4,0.7]]
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Heterogeneous Temporal Probabilistic Agents . 13

says that there is a probability of 40% to 70% that the demand in Baltimore will
be m + 1 units sometime between Xow and Xpow +2. Similarly,

Do Bid(c + 5,bal) : [®ig, {[Xnow: Xnow + 1], 84), [0.6,0.8]]

says that there is a probability between 0.6 and 0.8 that today or tomorrow the
generator will bid the price ¢ + 5 for Baltimore.

We are now ready to define temporal probabilistic rules. As in IMPACT [Sub-
rahmanian et al. 2000], the head of a rule is a status atom. The body of a rule is a
conjunction of TP-AsC’s and TP-cccC’s.

Definition 4.6 (TP-rule). A (ground) temporal probabilistic (TP) rule is an ex-
pression of the form

SAy < tpeeey A ... A tpece, N ascy A... N\ ascy,

where SAg is a (ground) TP-AsSC containing only one status atom in it,
tpeeey, . . . tpeee,, are (ground) TP-ccc’s and ascy,...,asc, are (ground) TP-
ASC’s.

A temporal probabilistic (TP) rule is strict if any annotation that appears in the
rule and is associated with a status atom is of the form [®, (ti,d), [1, 1]]. We often
write (A1 A .. A Ay) @ [®, (ti,0)] instead of (A1 A ... A A,) 1 [®, (ter, tes], ), [¢, u]
when at least one of the A;’s is a status atom.

TP rules are used to determine what all actions an agent is permitted to do, obliged
to do, forbidden from doing, etc. at a given time. Strict rules allow rule bodies to
contain uncertainty about what is true in an agent state (and when)- however, the
agent’s decisions are not allowed to be uncertain. This is the case when the agent
apply deterministic polices in which an agent is either going to do something (or is
obliged /permitted/forbidden to do something) with certainty. If a designer of an
agent would like his agent to act in a non-deterministic way, then he can implement
a code call that “flips a coin” and use the result of the decide what actions to take
(an example is given in Section 5.1). In the rest of the paper we will consider only
strict rules and thus will shorten the relevant annotation to [®, (ti,8)] as explained
above.

Definition 4.7 (TP Agent Program (TPP)). A temporal probabilistic agent pro-
gram (denoted by TPP) is a finite set of strict TP rules.

Ezample 4.8 (Stock example: TPP). The following two rules encode the simple
stock example described earlier.

Do buy(X) : [®i97 <[XnOWv Xnow t+ 5]7 5u>] —
in(X, stock : myportfolio()))
in("yes", stock: over(X, 50))

Qig, <
(

[XnOW7 Xnow]a 6u>} /\
®iga X

i
: [ [ now + 10, Xpow + 20]7 (5u>7 [0.87 1]]
Do buy(X) : [®ig, {[Xnows Xnow + 3], 0u)] «
(in("no", stock : myportfolio()) A
in("ok", stock: diversify(X))): [®igs ([Xnows Xnow|, O0u)] A
in("yes", stock: over(X,50)) : [®ig, ([Xnow + 10, Xnow + 20], 0x,), [0.9,1]]
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The first rule says that if stock X is in my current portfolio and it is expected (with
80% probability or more) to go over $50 per share sometime between day 10 and
20 from now, then buy this stock in the next 5 days. The second rule says that if
the stock is not in my current portfolio and acquiring it is consistent with the goal
to maintain a diversified portfolio, then we should buy the stock in the next 3 days
as long as there is an over 90% probability of its going up to $50 per share.
Updates. 1t is important to note that neither of these rules, by themselves, say
what is true in the current agent state. The current state might say that stock X
is in fact in my current portfolio and the current prediction says that it will go up
to over $50 in 10 to 20 days from now. Thus, the agent may conclude now that
it should execute a “buy” order on this stock in the next 5 days. But it may not
execute the buy order just yet. On the next day, an update occurs to the stock
database which may lead to the estimation that the stock will only rise to $40. This
will invalidate the inference that the stock must be bought in the next five days (of
course, in the event the stock was already bought on the preceding day, this might
trigger some other actions not shown above).

Ezample 4.9 (Energy example: TPP). The following rule encodes a simple rule
for a generator in the energy example.

PBid(Pmax, bal) : [®ig, <[Xn0W7 Xnow + 5}7 6u>] —
in(m+ 2, energy : demand(bal)): [®ig, {[Xnow; Xnow + 5], ), [0.9, 1]]

The rule says that the generator is permitted to bid the highest price between
Xnow and Xnow +5, if there is a probability between 0.9 and 1 that the demand in
Baltimore at some time between X,onw and Xpow +5 will be m + 2.

FBid(X,bal) : [®ig, ([Xnow, Xnow); Ou)] — X > P™mo”

This rule says that the generator is forbidden to bid a price that is higher than
P now.

Updates. Let us say that on day d, the energy demand estimator says that there is
a 99% probability that the demand for energy in Baltimore tomorrow (day d + 1)
is m + 2. In this case, on day d, the agent is permitted to bid the highest price on
the energy. However, suppose the agent does not actually place the bid on day d.
Now, on day d + 1, the energy demand estimator, as a consequence of updates to
market data, may estimate that there is only an 80% probability that the demand
for energy in Baltimore some time between day d+1 and d+6 is m+2. On day d+1
therefore, the agent can no longer infer that it is permitted to bid the maximum
amount on the energy. So it cannot place such a bid on day d + 1. Example 5.20
later in the paper will show how this kind of update is handled by our semantics.

Incorporating Third Party Updating Mechanisms. Both the above examples explain,
intuitively, how updates are handled in our framework. We only handle updates
to data rather than updates to the agent’s rules themselves. We believe the vast
majority of updates will be updates in state, rather than in rules and hence we
do not focus on updates to the rules themselves. Remember that an update to an
agent state occurs every time the agent receives a message, as well as at any time
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one of the data structures associated with the agent changes.

Note that if beliefs of an agent are represented in an agent, they must be repre-
sented as data stored in some data structure the agent has. In this case, these beliefs
can be updated using any classical mechanism for updating beliefs (e.g. Friedman
and Halpern [1997], Jeffrey’s revision rule, etc.). For example, suppose updatebel is
a function (with two arguments—a set of beliefs to be updated and a set of updates)
that implements some belief updating strategy, and suppose BEL is a set of beliefs
stored in some data structure of the agent and suppose U is a set of updates to the
agent’s state. Then the desired belief updating mechanism can be easily encoded
in an agent via a rule similar to:

Do updatebel(BEL,U) «— in(X, agent: getcurrbeliefs()) &
in(U, agent : getcurrupdates()).

A major strength of our approach is that we do NOT force all programmers to some
prefized set of actions. They can add whatever actions they want to the agent. In
the situation above, they could make updatebel() be any classical mechanism to
update beliefs.

Incorporating Third Party Planners. Suppose an agent developer wants to invoke
a third party method for decision making using a Markov Decision Process (under
some conditions). In this case, this MDP code can be invoked directly within our
framework. As in the case of updating mechanisms discussed above, we can simply
add a rule of the form

Do mdp({arguments)) «— (condition).

5. SEMANTICS OF HTP AGENTS

Though the reader may be tempted to infer that the rules given above are read in
terms of usual logical inference, it will soon be clear that things are somewhat more
complex.

5.1 Agent Decision Cycle

The primary contribution of this section is the concept of a feasible temporal prob-
abilistic status interpretation (FTPSI for short). Informally speaking, an FTPSI
is a semantical structure that specifies what the agent is permitted to do, forbidden
from doing, obliged to do, and actually plans to do at any time instance i. Thus,
any given FTPSI says what the agent will do at time 1, 2, 3, etc. Note however
that even though 7 may be an FTPSI at time t, if some updates occur, Z may
no longer be an FTPSI at time t+ 1. At any given point t in time, the agent
must find an FTPSI and take the actions (now) that the FTPSI says it should
take. As time passes, the agent continues to take the prescribed actions until an
externally caused state change (update) occurs. At this point, the agent computes
a new FTPSI and acts according to that. This cycle is repeated forever by the
agent. The agent’s decision cycle may be summed up as follows:

HTP Agent Decision Cycle
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(1) t=0;
(2) FTPSI; = compute initial FTPSI w.r.t. original state;

(3) while true do
(a) execute all actions to be executed by FTPSI;(t);
(b) t+ +;
(c) if an externally triggered state change occurred between time t-1 and t
then compute a new FTPSI;;
(d) else FTPSI, = FTPSIL;_y;

(4) end

In the above decision cycle an externally triggered action is one that the agent did
not execute. Examples of externally triggered actions include receipt of messages,
clock ticks, updates to a database by some third party and so on.

Note that our HTP agent syntax does not explicitly allow for stochastic actions.
However, such actions can be easily programmed within our framework. For ex-
ample, suppose the agent developer has written some set S of rules for his or her
agent. One way to introduce stochastic actions is as follows. Introduce a new
piece of code called stochastic with two functions: one function takes an action «
and a list of ground arguments for it as input, and returns a unique codename for
that action. The other function takes a codename as input and randomly assigns
0 or 1 to it. Then, for each action «, the agent developer can automatically add
the following two rules to S. A special action called cache() stores action codes in
a cache called tempcache.

Do cache(Code) — Pa(X) A
in(Code, agent: stochastic_encode(a, X)).
Do «a(X) < in(Code, agent: tempcache()) A
in(1, agent: stochastic_toss(Code)).

—

The first rule stochastically generates a codename for a given action atom a/(X)
(which is possible to execute) and causes the codename to be cached. The second
rule executes the action a()? ) if the code for that action is in the cache and if the
result of a coin toss for that code returns a one instead of a zero.

Note that many variations of this kind of stochastic action are possible.

The main aim of this section is to formally define what constitutes an FTPSI.

5.2 Satisfaction of TP ccc's and TP asc’s

Definition 5.1 (Possible answer situations). Consider an agent state O, a code
call cc, a set T of time points, and an object o whose type is the same as c¢’s output
type. The possible answer situations of cc w.r.t. T and o, denoted pas(cc,o0,T) is
the set

{(t, 0bj,p) |t € Tand (Obj,p) € cc'"(t) and o € Obj}.

In other words, the possible answer situations w.r.t. T and o are all random variables
that contain o, indexed by all time points in T. It is easy to see that when T is a
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singleton, because of the coherence requirement on TPcC’s, pas(cc, o0, T) is either
the empty set or a singleton.

Ezample 5.2 (Energy example: possible answer situations).
Consider the temporal probabilistic code call energy: demand(bal). Suppose it
returns:

—{{m+1, m+2}, po} for the time point thow where po(m+1) = 0.25 and po(m+2) =
0.75.

—{{m+1, m+2},p;1} for time point tnew +1 where p; (m+1) = 0.35 and p; (m+2) =
0.65

—{{m + 2},p2} for the time point tpey +2 where pa(m + 2) = 1.

In this case:

pas(energy : demand(bal), m + 1, {tnow, tnow + 1, thow + 2}) =
{(tnow, {m + 1,m + 2}, po), (tnow + 1, {m +1,m + 2},p1)}

Definition 5.3 (Answer time probabilities). Consider an agent state O, a code
call cc, a time point t, and an object o whose type is the same as cc’s output type.
The probability that o is in the answer of cc at time t, denoted prob(o, cc,t), is
given by:

o) if pas(cc,o0,{t}) = {(t, Oby,
prob(o, cc,t) = { g)( ) otII:ervs(/ise. = )}

Intuitively, prob(o, cc,t) specifies the probability that object o is in the re-
sult of code call cc at time t. Considering the cc of Example 5.2, prob(m +
1,energy : demand(bal), toow) = 0.25.

We have now formally defined what it means for an object o to be contained in
a temporal probabilistic code call. Note that in the basic case (no time, no proba-
bility), this is simple membership relation. However in the temporal probabilistic
case, things are far more complex because we have to (1) check whether there is a
random variable containing o in the answer to the TPcc, and (2) determine the
probability of o w.r.t. such a random variable.

The above definition specifies the probability that an object o is in the answer
to a code call at time t. However, in order to give a semantics for HTP agent
programs, we must specify what it means for a TP-CCC to be satisfied in an agent
state. Clearly, we can only define a probability of satisfaction of a TP-ccc by
an agent state. However, as TP-ccC’s involve conjunctions, we need to consider
probabilistic conjunction strategies in such a definition. This is because the prob-
ability with which a conjunction of code call atoms is satisfied is dependent upon
the dependencies, if any, between the events represented by them.

Definition 5.4 (Satisfaction of TP-cccC’s at fized time t: prob(x, O,t)). The prob-
ability with which a state O satisfies a code call condition y at time t under conjunc-
tion strategy ®, denoted prob(x, O,t) is given by ®jn(o, cc)exProb(o, cc, t), where @
is the conjunction strategy associated with .

Recall that the state of an agent can change frequently. When such changes (or
updates) occur, TP-ccC’s that were satisfied prior to the change may no longer be
satisfied after the change (and vice versa).
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Ezample 5.5 (Energy: (Satisfaction of TP-CcCC’s at fized time).
Consider an agent whose state is O. Suppose energy : demand(bal) returns {{m +
1,m—+2},po} for the time point thow where po(m+1) = 0.25 and po(m+2) = 0.75.

Consider energy : demand(ann). Suppose it returns {{m + 1, m + 2}, go} for the
time period tpew Where go(m + 1) = 0.85 and go(m + 2) = 0.15.

Consider x = in(m + 2, energy : demand(bal)) & in(m + 2, energy : demand(ann))
where the conjunction strategy used is that of independence (®;n4). Then,
prob(x, O, taow) = 0.75 % 0.15.

When we consider a ground TP code call of the form in(o, cc) : [®, (ti, d), [¢, '],
we may need to consider multiple time points. For example, suppose t = ¢; and
t =t both lie in the interval ti. The probability that o is in the answer returned
by cc is the probability that o is in the answer returned by cc at time t; (event
e1) or at time ty (event es). However, we have no information about dependencies
between these two events. Are they independent? Is there some kind of correlation
between these events? Are we completely ignorant about the relationship between
these two events? In general, we are attempting to evaluate the probability of a
disjunction of two events, given information about the probability of the individual
events involved. To do this, we assume that every agent has an arbitrary but fixed
probabilistic disjunction strategy @ that it uses.

We now define two notions of satisfaction of TP-cccC’s by an agent state. We use
O E tpece where tpeee is a TP-ccc to denote that tpece is true, while O =" tpece
is used to denote the fact that it is true now or in the past.

Definition 5.6 (Satisfaction of TPccc’s). Suppose O is an agent state and @
is a fixed probabilistic disjunction strategy. Our definition of satisfaction is by
induction on the structure of the TP-ccc.

(1) O satisfies a ground TP-ccc x : [®,(ti,d),[4,¢]], denoted O E x
[, (ti, 6), [¢, €]} iff £ < @{prob(x, O, 1) |t € ti} <1,

(2) O satisfies a ground TP-ccc x : [®, (ti,d), [¢, £']] with respect to thow and the
past, denoted O """ x : [®, (ti,d), [¢, ¢']] if £ < @{prob(x,O,t) |t € ti,t <
trow} < 1,

(3) O satisfies a conjunction tpcce; A tpeeey of TP-ccC’s iff O = tpeee; and
O = tpcees.

(4) O satisfies (Va)F iff O |= Flx/c] where c is a constant of the same type as z
and F[z/c] denotes the replacement of all free? occurrences of z in F by c.

The definition of the last two cases for """ is identical to that of |=.

Ezample 5.7 (Energy: Satisfaction of TPccc’s).
Consider the agent state O of Example 5.5. Suppose energy : demand(bal) returns:
—{{m +1,m+2},po} for time tnow where po(m + 1) = 0.25 and po(m +2) = 0.75
—{{m+1,m+2},p,} for time tow+1 where p; (m+1) = 0.35 and p; (m+2) = 0.65.

2We do not formally define free occurrences here but refer the reader to the standard definition
which may be readily adapted to our case.
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In this case
O E in(m + 1, energy : demand(bal)) : [Bind, (Xnows Xnow + 1], ), [0.4,0.7]].
This is because:

7[XHOW7 Xnow + 1] = {Xnow> Xnow + 1};
—prob(m + 1, energy : demand(bal), tpow) = 0.25;
—prob(m + 1, energy : demand(bal), thow + 1) = 0.35;

—Applying @;,q to these events we obtain: 0.25+0.35—0.25%0.35 = 0.5125 which
is between 0.4 and 0.7.

However,
O " in(m + 1, energy : demand(bal)) : [Bind, {[Xnow, Xnow + 1], ), [0.4,0.7]].
Here, we need to consider only tnow and we see that
prob(m + 1, energy : demand(bal), tpow) = 0.25
which is less than 0.4.

5.3 HTP status interpretations

We now define the formal semantics of HTP agents. The formal semantics is
given via a concept of a feasible TP status interpretation. These are mathematical
structures which we will define in this section. Intuitively, a feasible TP status
interpretation specifies, for each time point, a set of status atoms which are true
at that time point. Of course, not any such set will suffice—rather the set must
satisfy various “feasibility” requirements. The goal of this section is to provide such
a definition of a feasible TP status interpretation.

We start by noting that in the preceding section, we have already provided a
semantics for TP-ccc’s. In order to give a formal semantics for HTP agents,
we need to define a semantics for TP-AsC’s as well. The notion of a TP-status
interpretation given below is used to define a semantics for TP-ASC’s.

Definition 5.8 (TP-status interpretation (TPSI)).
A TP-status interpretation (TPSI for short) is a mapping p that maps natural
numbers to status sets.

Thus, given any time point t, p(t) is a status set. Intuitively, if p(3) =
{Oa,Do «, Pa, Ff}, then this means that according to the TP-status interpre-
tation p, at time instant 3, « is obligatory/done/permitted, while [ is forbidden.
Similarly, if p(4) = {Pa} then according to the temporal status set, at time 4, « is
permitted.

We now define what it means for a TP status interpretation to satisfy a TP
action status condition.

Definition 5.9 (Satisfaction of TP-ASC’s). Suppose p is a TP-status interpreta-
tion. To define the meaning of a TP-AsC, we proceed by induction on the structure
of a TP-AsC and distinguish between a status atom and a conjunction of status
atoms.
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—The probability with which p satisfies a status atom Opa at time t is

1 if Opa € p(t
prob(Opa, p, t) = { 0 otherwisef)( )

—The probability with which p satisfies a status condition o0 = (A1, A... A A4,)
which contains only status atoms w.r.t. a given conjunction strategy ® and at a
given time t, denoted probg (o, p,t) is given by:

prOb(Ala P t) & prOb(AQa P,t) ®-® prOb(An7 p; t)'

—Suppose (A1 A...A A,) : [®,(ti,d)] is a status condition.

p satisfies (A1 A...A A,):[®,(ti,0)] at time t w.rt. @
iff
@{probg (A1 A... A Ay, pt) [teti} =1

—Suppose x : [®, (ti,d),[(,']] is a TP-ccc.p satisfies x : [®, (ti, ), [¢,¢]] iff O
satisfies x : [®, (ti, ), [£, £]].

Note that for status atoms, a TPSI either satisfies it (probability 1) or not (prob-
ability 0). For status conditions however, other probabilities can arise as well. The
reason for this is that status atoms are either true or not.

Definition 5.10. Suppose SAg < tpccey A ... A tpeee, N ascy A ... N asc, is a
ground TP-rule, p is a TP-status interpretation and O is the current agent state.
p satisfies the above ground rule in state O iff either:

(1) O does not satisty tpeeey A ... A tpeee, with respect to now and the past, or
(2) p does not satisfy asc; A...A asc, or

(3) p satisfies SA,.

p satisfies a rule r in state O iff it satisfies all ground instances of r in O. p satisfies
a TP program 7PP iff for each temporal probabilistic agent rule r € TPP, p
satisfies r in O.

Ezample 5.11. (Energy: TP-status interpretation) Consider the following
very simple table describing a TP-status interpretation p of a generator agent.3

3For simplicity of the examples, we do not consider the precondition and the add and delete lists
of the actions in the energy example.
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i [ p(i)
0 {FBid(P™  bal), P Produce(m, bal),
O Produce(m, bal), Do Produce(m, bal)}
1 { PProduce(m + 1, bal), PBid(c+ 5, bal),
Do Produce(m + 1, bal), Do Bid(c+ 5, bal) }
2 { Do Produce(m + 1, bal) P Produce(m + 1, bal) }
3 {OProduce(m + 1, bal), Do Produce(m + 1, bal),

P Produce(m + 1, bal), P Bid(c+ 7, bal),
P Bid(P™* bal) }

1 {FBid(P™= + 1, bal),

P Produce(m + 1, bal),

Do Produce(m, ann) P Produce(m, ann) }
4<i<9 || {FBid(P™" + 1,bal),}

i>9 0

Suppose we also consider a simple description of the state O of the generator
agent. As in the preceding examples, energy: demand(A) returns a mapping from
time points (periods) to random variables of the form {{m + 1,m + 2},p}, where
p(m+1) = ¢ and p(m+2) = 1 —¢. The actual values are specified in the following
table:

Time bal ann
p(m+1) | p(m+2) | gm+1) | ¢(m+2)

0 0.30 0.70 0.60 0.40

1 0.40 0.60 0.60 0.40

3 0.25 0.75 0.85 0.15

4 0.35 0.65 0.90 0.10

Suppose tpow = 3 and the agent uses ®;,q as its fixed probabilistic disjunction
strategy. p satisfies the following rules in O:

PBid(P™*,bal) : [®ig, ([Xnows Xnow + 1], 04)] <
in(m+ 2, energy : demand(bal)): [®ig, {[Xnows Xnow + 5], ), [0.9, 1]]

p satisfies the rule because it satisfies P Bid (P"™*,bal) : [®ig, {[Xnows Xnow + 1], 0u)].

OBid(c +5,bal) : [®ig, ([Xnow, Xnow + 1], )] <
PBid(c + 5,bal): [®ig, {[Xnow> Xnow)s Ou)]

p satisfies the rule because it does not satisfy P Bid(c + 5,bal) : [®ig, {[Xnow: Xnow], 0u)]-

p does not satisfy the following rule:

OBid(Pmaxabal) : [®ig; <[Xnowa Xnow + l]a 6u>] —
in(m + 2, energy : demand(bal)): [®ig, {[Xnows Xnow + 1], ), [0.9, 1]]
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p does not satisfy the rule because O satisfies
in(m + 2, energy : demand(bal)) : [Qig, (Xnow, Xnow + 1], du), [0.9,1]]
but does not satisfy
OBid(P™,bal) : [®ig, {[Xnow, Xnow + 1], du)].

An agent may record the actions it took (or was obliged to take, forbidden from
taking etc.) in the past. This leads to the notion of an action history.

Definition 5.12 (Action History acthist). An action history acthist for an agent
is a partial function from {0, 1, ..., tnow} to status sets.

Intuitively, an action history specifies what the agent has done in the past. As
action histories are partial (rather than total) functions, the agent developer has
the flexibility to choose to store none, some or all status atoms associated with the
agent’s past.

Ezample 5.13. (Energy: Action History)

[ i [[ acthist(i)

0 [ {FBid(P™™, bal),

P Produce(m, bal),

O Produce(m, bal), Do Produce(m, bal)}

1 || P Produce(m + 1, bal),PBid(c + 5, bal),

Do Produce(m + 1, bal), Do Bid(c + 5, bal), }

210

An action history and a TP-status interpretation both make statements about
action status atoms. Therefore they need to be compatible.

Definition 5.14 (History-Compatible TPSI). Suppose the current time is tpow
and acthist(-) denotes the action history of an agent, and suppose p is a TPSI. p is
said to be action history-compatible at time tpey iff for all t < tpow, if acthist(t) is
defined, then p(t) = acthist(t).

In other words, for a TPSI to be compatible with an action history, it must be
consistent with the past history of actions taken by the agent. The action history
of example 5.13 and the TP-status interpretation of example 5.11 are compatible.

5.4 Feasible Temporal Probabilistic Interpretations

Let us consider an agent a that uses a TP-interpretation p to determine what
actions it should take, and when it should take these actions. Not all such inter-
pretations make sense. For example we must impose conditions that ensure an
action is not both permitted and forbidden at the same time (deontic conditions as
formalised in Definitions 5.17, 5.16). Furthermore, such an interpretation p must
be closed under the rules of the TP program. The main results of this section
are Definition 5.19, which states the conditions we need, and Theorem 5.21, which
determines the complexity of verifying them for a given TP-interpretation.

An important requirement about feasibility is that actions scheduled for the
future need to be executable. For example, it does not make sense for an agent to
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decide to execute the action Do sell(ibm, 100) (i.e. sell 100 shares of IBM) 5 days
from now if the agent does not have 100 shares to sell at that time. In order for
conditions such as this to be incorporated into our definition of feasibility, we need
to have a concept of expected future states. This notion is defined below.

Definition 5.15 (Ezpected States at time t: EO(t)). Suppose the current time is
thow, O is the agent state and p is a TP-status interpretation. The agent’s expected
states are defined as follows: £O(tpow) = O,

—For all time points t > tpow, £O(t) is the result of concurrently executing
{a|Doa € p(t — 1)} in state EO(t — 1).

As described earlier in Section 5.1 on the agent decision cycle, at any given point i in
time, the agent has a “current” feasible temporal probabilistic status interpretation
pi- The expected future states of the agent at times t > ¢ are defined in terms of
the current FTPSI p;. The state EO(i+1) at time i+ 1 is obtained by concurrently
executing all actions of the form Do« € p(i) in the state of the agent at time 4.
The state £EO(i 4 2) is obtained by concurrently executing all actions of the form
Doa € p(i + 1) in the state of the agent at time ¢ + 1, i.e. in the state EO(i + 1),
and so on. Thus, at any given time point i, the set of possible future states of the
agent is fized. There is no nondeterminism.

In contrast, in many existing mechanisms like Markov Decision Processes (MDP),
the system reasons about all possible things that could happen in the future
[Boutilier et al. 1999]. This is impractical to do in many applications. For ex-
ample, let us return to the case of a stock database agent. In the real world, this
agent is likely to support a code call called stock: sql() which ships any SQL query
or update to the underlying DBMS. Virtually any such update could arise. As a
consequence, if we used a state space based approach (as a Markov decision process
might do), there would be an infinite branching factor for each node in the tree as
the set of potential events that could occur is infinite.

This clearly explains the difference between MDP’s and our framework. We do
not attempt to reason about all possible things that could happen in the world in
future. Rather we reason about what changes we plan to bring about in the world
in the future. This may be shaped by our predictions about what the future might
bring. For instance, the predictive component of the stock example predicts that
the stock price for a given stock will exceed $50 in 10-20 days with probability
higher than 0.8. It may also predict that it will only reach $40 in 10-20 days with
probability 0.2. Our decision on whether to buy the given stock may depend on
both prediction. Likewise, the predictive component of our energy example predicts
what the demand for energy in Baltimore might be in the future, and our decision
on what to bid is based on that prediction.

The definition of TP deontic consistency below requires, for example, that at all
times t, we cannot have deontic conflicts. Furthermore, for time points t > t,ow, if
an action is permitted at that time, then the precondition of that action must be
true in the state expected at that time. A similar condition holds for the past. This
is the gist of the following definition.

Definition 5.16 (TP Deontic Consistency). Suppose O is the agent state. A
TP-status interpretation p is said to be TP deontically consistent at time tnow iff
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it satisfies the following conditions for all time points t (in the following, Pre(«)
stands for the preconditions of the action «):

(1) Oa € p(t) = Wa ¢ p(t);

(2) Pa e p(t) — Fa ¢ p(t);

(3) if t < tnow, Pa € p(t), then prob(Pre(a),0,t) =1,

(4) if t > tpow, Pa € p(t), then prob(Pre(a),£O0(t),t) = 1.

The first two conditions express the underlying meaning of the deontic atoms: at
any given point in time, and for any action, if the agent is obliged to perform the
action, then it means that the obligation to perform the action has not been waived.
Conditions (3) and (4) formalise the intuition that a permitted action should have
a precondition that is true (with probability 1). While (3) talks about current
or past time points, condition (4) refers to future time points (and thus has to
use the notion of expected states). Thus, if p(4) = {Pa,Fa}, then p cannot be
TP-deontically consistent.

The reader would have noticed that conditions (3) and (4) in the preceding
definition only apply to actions which are permitted. Surely, the same conditions
should also apply to actions that are to be done or obligatory (i.e. when Do« or
O are true at time 7). We define below, the notion of TP-deontic closure which
accomplishes this. Given a set S of status atoms, let D-C1(S) be the smallest
superset S’ of S such that Oa € S’ — Pa € S§'. Likewise, let A-CI1(S) be
the smallest superset S* of S such that (i) Oa € S* — Doa € S* and (ii)
Doa € §* — Pa € S*. We say that set S is deontically closed iff S = D-CI1(S)
and action closed iff S = A-CI(S).

The following definition explains what it means for a TP-status interpretation
to be closed under the deontic modalities.

Definition 5.17 (TP Deontic/Action Closure). p is said to be TP deontically
closed at time tnow iff for all time points t: D-Cl(p(t)) = p(t). p is said to be TP
action closed at time toow 4ff for all time points t: A-Cl(p(t)) = p(t).

It is easy to see that the TP-interpretation p of example 5.11 is both TP-
deontically consistent and deontically and action closed.

For a temporal probabilistic status set to be feasible, it must satisfy the additional
requirement of TP-state consistency. We assume that an agent has a set of integrity
constraints ZC of the form: 1 = x where ¥ is a code call condition, and x is an
atomic code call. These constraints are evaluated in the state. They say that an
agent must never transition to a state that violates any of these constraints.*

Definition 5.18 (TP State Consistency). p is said to be TP-state consistent at
time thon iff for each integrity constraint ¥ = x in ZC for all t < to for every
legal assignment of objects from O to the variables of ¥ and x either prob(y, O,1) #
1 or prob(x,O,t) = 1.

A feasible TPSI is like a model of a classical logic theory.
4[Eiter et al. 1999] also allows agents to have a set, possibly empty, of action constraints. Tt

has been shown [Subrahmanian et al. 2000] that action constraints can be expressed as integrity
constraints, and hence, we do not consider them in this paper.
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Definition 5.19 (Feasible TPSI (FTPSI)). Suppose the current time is tpow,
TPP is a TP program, O is an agent state, acthist is an action history and ZC
is a set of integrity constraints. A TP-status interpretation p satisfying p(i) # 0
for only finitely many ¢ is said to be feasible with respect to the above parameters,
denoted by FTPSI, iff

1) p satisfies all rules in TP7P,

2) pis TP deontically consistent at time tnow,

4

(1)
(2)
(3) pis TP deontically and action closed at time tpow,
(4) p is TP-state consistent at time tnow,

()

5) p is action history compatible at time thow.

Recall again that we would like the agent’s decision cycle to always ensure that a
valid state (one where the integrity constraints are satisfied) is reached by in accor-
dance with the agent’s program. The key idea behind FTPSI’s is that whenever
a state change occurs (e.g., when the agent receives a message, or when the clock
ticks, or when an update is made), the agent computes a new feasible TPSI p and
concurrently executes all actions « such that Do« € p(tnow). p also specifies what
actions are to be executed at time tpow + 1, tnow + 2,... and so on. However if
an update occurs between time tno, and tpow + 1, then the agent computes a new
FTPSI p’ and the actions it takes at time t,on + 1 will be those that are specified
by p'(tnow + 1). Thus, updates are evaluated and handled on an ongoing basis via
the computation of new FTPSI’s that specify what actions must be taken when
an update occurs. We note that an agent may have zero, one, or many FTPSI’s in
a given state. Later (Section 7), we give a mechanism to choose between multiple
FTPSI’s using an objective function.

We demonstrate the updates using the following example.

Ezxample 5.20. Suppose the generator’s TP program, 7 PP, contains the follow-
ing rule:

Do Produce(m, ann)[®ig, ([Xnow, Xnow + 1], 0u)] —
in(m+ 1, energy : demand(ann)) : [®;g, {[Xnow: Xnow + 1], d4), [0.95,1]]

Suppose that originally the agent’s state is as specified in example 5.11, tpon = 3
and the agent uses ®;,q as its fixed probabilistic disjunction strategy. Suppose that
in order to satisfy the rule above, Do Produce(m, ann) € FTPSI3(4), as specified
in the TP-status interpretation of example 5.11.

Suppose that an external update of the agent state occurred (e.g., new data
about weather condition arrived) and the actual values of {{m + 1, m + 2}, p}, and
{{m + 1,m + 2}, ¢}, are as specified in the following table (the new and modified
values are emphasised):
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Time bal ann
pm+1) | p(m+2) | gim+1) | g(m+2)

0 0.30 0.70 0.60 0.40
1 0.40 0.60 0.60 0.40
3 0.25 0.75 0.85 0.15
4 0.35 0.65 0.85 0.15
5 0.35 0.65 0.60 0.10

After the update, when tnow = 4 the agent will compute FTPSI4. In the new
state,

in(m+ 1, energy : demand(ann)) : [Q4g, {Xnow, Xnow + 1], Iu), [0.95,1]]
is not satisfied. Thus, Do Produce(m, ann) may not belong to FTPSI4(4).

The result below states that the complexity of checking feasibility of a given TPSI
is polynomial; however, determining whether a feasible TPSI exists is an NP-
complete problem. We assume that the input TPSI p being considered is finite in
the sense that (i) the set {t| p(t)} is finite and (ii) for each t, p(t)} is finite.

THEOREM 5.21 (COMPLEXITY). Suppose the current time is tpow, T PP is a
TP program, O is an agent state, acthist is an action history and ZC is a set of
integrity constraints.

(1) The problem of checking whether a given finite TPSI p is feasible or not, can
be done in polynomial time.

(2) The problem of checking whether a feasible finite TPSI p exists, is NP-
complete.

PROOF. These complexity results rely on several assumptions about the underly-
ing software code and the active domains of objects considered. These assumptions,
as well as the effect of having no integrity constraints, are discussed in [Subrah-
manian et al. 2000; Eiter et al. 2000] and we refer the interested reader to these
papers.

Checking feasibility of a given TPSI p reduces to checking all the conditions
in Definition 5.19. Obviously, action history compatibility, deontic consistency,
deontic and action closedness, as well as TP state consistency can all be checked
in linear time. So it remains to check closedness under the rules. But this is also
a linear check, since we fix the underlying temporal probabilistic agent program.
Therefore, due to our assumptions about the underlying software code, we get at
most polynomial complexity overall.

By what we have just shown, the existence problem is certainly in NP (we can
guess a candidate and then verify it in polynomial time). NP completeness follows
immediately from the respective result for ordinary (non TP) programs as first
proved in [Eiter et al. 2000]. [

6. FTPSI COMPUTATION

The preceding section defines a formal semantics based on the concept of a feasible
TP-status interpretation. We now show how FTPSI’s can be constructed for finite
strict TPP’s.
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The method and techniques we are applying here extend those used in [Dix et al.
2001]. In particular, we have greatly modified the fixpoint operator of [Dix et al.
2001] so as to handle the combination of time and probabilities. As a consequence,
though many of the results in this section are similar in statement as those in [Dix
et al. 2001], the proofs are completely different.

In the following, we will consider sets of status atoms of the form Op(a) : [t,t']
and refer to them as temporally constrained status atoms. We also write Op(«) : ti
if the special form of ti is not important. The fixpoint operator to be defined below
is operating on such sets.

Definition 6.1 (Temporally constrained status sets tc¢-7S). A temporally con-
strained status set tc-7S consists of status atoms of the form Op(a) : ti. We
also call status atoms of the form Op(«) : [t], where t is an integer, singleton TP
status atoms.

It is straightforward to construct a TP-status interpretation p from a set of
singleton TP status atoms tc-7 S:

Op(a) € p(t) iff Op(a) : [t] € tc-T S.

In this case, p and tc-7 S are compatible.

However, if tc-7 S is a temporally constrained TP status set, there are several
TP-status interpretations that can be constructed based on it. A formal notion of
compatibility is defined as follows.

Definition 6.2 (TPSI Compatible with tc-TS). A TP-status interpretation p is
compatible with tc-T S iff for every Opa : ti in tc-7 S, there is a solution i € ti
such that Op o € p(4).

We denote the set of all TP-status interpretations that are compatible with tc-7° S
by Comp-tc-7S.

There may be an infinite number of TP-status interpretations that are compatible
with a given tc-7 S. For example, the TP-status interpretation of Example 5.11 is
compatible with

{ FBid(P™, bal)|0, 6],
Do Produce(m + 1, bal)]0, 3],
FBid(P™™ + 1, bal)[4, ],

}

In addition, there could be infinitely many temporally constrained TP status atom
sets that are compatible with a given p. We denote the subset of the singleton
status atoms of tc-7 S by Singl(tc-75).

Furthermore, we will say that tc-7 S has a given property, e.g., it is feasible, iff
at least one of its compatible TPSI’s is feasible. Thus, given a program, 7 PP,
an agent state, O, and an action history acthist, our goal is to construct a feasible
tc-7S. We will use tc-7 S and its corresponding p synonymously.

In Subsection 6.1 we introduce our main technical machinery for constructing
feasible tc-7'S: a fixpoint operator which possesses a least fixpoint. All feasible
tc-TS are compatible with this fixpoint (Theorem 6.8) and thus we have reduced
our problem to finding all compatible sets. This requires further technical notions
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which are introduced in Subsection 6.2 and finally lead to Algorithm 6.9 which is
shown to be sound and complete (Theorem 6.16).

6.1 The Fixed point operator

In this section, we consider the problem of constructing a feasible tc-7'S based on
a TP program, 7PP, an agent state, O, and an action history acthist.

A cursory examination of the definition of a feasible tc-7'S (Definition 5.19)
reveals that most of the conditions are simple checks that can be easily incorporated
in the construction process. The main exception to this happy state of affairs is the
first condition—that of closure under the rules in the TP program. This is because
when a rule causes atoms to be added to p(7), for some i > tpow, it may cause other
rules to fire, which in turn may cause other atoms to be added to p(7), for some
i > thow. This in turn may cause additional rules to fire, and so on.

We therefore take advantage of well-known methods from logic program-
ming [Lloyd 1987], and we construct a suitable monotone fixpoint operator and
relate its least fixpoint D7p T¢ with feasible TP-status interpretations.

The iterative construction of this fixpoint is nothing but a mathematical descrip-
tion of the well known “loop” construct in programming languages. These methods
allow us to mathematically model the transitive closure of forward chaining rules in
an elegant way. For readers not familiar with this approach, we add some explana-
tions. The fixpoint operator of Definition 6.3 below, when applied to a set tc-7 S,
gives us the result of simultaneously applying all the rules in our TP program
once. Thus, to get the transitive closure, we have to iterate this operator. We are
therefore interested in its least fixpoint, if it exists: this fixpoint would then con-
stitute the transitive closure of all the rules. The existence of this fixpoint follows
immediately, using the famous theorem of Knaster/Tarski [Tarski 1955], because
the operator itself will turn out to be monotone.

Thus, we first define a fixpoint operator. The definition uses the notion of modal-
ities implying modalities defined as follows: O implies both Do and P, Do implies
P and all modalities imply themselves.

We emphasize the fact that we are only considering strict programs (so all prob-
abilities in action status conditions are equal to 1). However, arbitrary probability
intervals can occur in TP-cccC’s.

We also emphasize (as noted after Definition 4.3) that we assume that all intervals
(ti, 6) are such that J is nonzero in the whole interval (we can always write it as a
finite union of intervals in the required form).

Definition 6.3 (Operator Drp). Let TPP be a TP program, O a state and
tc-7S a set of temporally constrained TP status atoms. Then we define
D7p(tc-7 S) to be the following set of temporally constrained TP status atoms:
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{Op’a: [ti']| Opa: [®, (ti,8)] < tpccer A...A tpece,
/\Ql : [®a <ti1751>} Ao A Om : [®’ <tim75m>]
is a ground instance of a rule in 7PP and
(I) for all 1 <i<mn: O E"" tpcee; and
(II) for all 1 <4 < m
If 0i = Op;a;
then there exists Opjay, : [ti}] in tc-7'S s. t.:
(1) Op; implies Op;,
(2) ti; C ti; and
If 0; = Opilail VANPRIAN Opikaik
then there exist t; € ti;
and for 1 < j < k: Op;o% :[ti] in te-T S
s. t. Op;j implies Opij'.and
(IIT) ti’ = [ti At > tnow] and Op implies Op’. }

As the above definition is quite complex, we provide a simple example below to
show how it works.

Ezample 6.4 (Energy example: Operator Drp). Suppose the generator’s TP
program, 7 PP, contains the following rules:

7"1.'. DO BZd(C + 57 bal) [®ig, <[Xnow, Xnow + 3]’ 5u>] —
in(m + 2, energy : demand(bal)) : [®ig, ([Xnows Xnow + 1], 04, [0.9,1]]

r2:. OProduce(m, bal)[®ig, ([Xnow; Xnow + 2], 6,)]
PBZCZ(C + 5, bal)[@m, <[Xnowa Xnow + 5], 5u>}

Suppose thow = 3 and the agent’s state is as specified in example 5.11 and there
are no integrity constraints.

Drp(@) ={ PBid(c+ 5,bal)[3,6],
Do Bid(c + 5, bal)[3, 6]}

In order to find a fixed point we need to iterate the operator. This is traditionally
done by first starting out with the TP-interpretation that assigns the empty set to
each time point, and then iteratively firing rules and adding to these sets. However,
we do not start the operator by assigning () to all time points t. This is because
part of the TP-status interpretation we want to construct is already determined by
acthist. Therefore we define tc-7 Sgiart to be the set of singleton TP status atoms
that corresponds to acthist. In some situations we will add to tc-7 Sspart status
atoms that may belong to the feasible TP-status interpretation. We now define the
iterations of Dzp.

Definition 6.5 (Iterations of Drp). Let TPP be a strict TP program, and O
be an agent state. The iterations of Drp are defined as follows:

D’TP TO = tC'TSstart'
Drp 1V = Drp(Drp 1Y)
Drp 1¥ = UDTP 1.

J
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When tc-7 Sgiart is not clear from the context, we will use the notation Dyp ¢
(te-T Sstart) to explicitly specify it.

Ezample 6.6 (Energy example: Iterations of Drp. We continue with example 6.4
and assume that tc-7 Sgiare = 0.
—D7rp 1%= 0 since tc-T Sgare = 0.
—Drp TW=Dzrp(Drp 1°) = Drp (). This was computed in Example 6.4:
Drp 1M ={ PBid(c+ 5, bal)[3, 6],
Do Bid(c+ 5, bal)[3,6]}
—Applying the rules again we get:

Drp 1® = Drp 1M U
{ OProduce(m, bal)[3, 5],
Do Produce(m, bal)[3, 5]
P Produce(m, bal)[3, 5], }

i

—For all j > 2, Drp 1W=Dsp 1.
—D7p 1“=Dgp 1

The following result tells us that Dyp is monotone and continuous w.r.t. subset
inclusion and hence, by the Tarski-Knaster theorem, is guaranteed to have a least
fixpoint which equals Dzp T¢.

THEOREM 6.7 (LEAST FIXPOINT OF D7p). Drp is a monotone and continu-
ous operator. Hence, Drp 1% is its least fixpoint.

PRrOOF. We first show monotonicity:
tc-7S1 Ctc-7 Sy = Drp (tC—TSl) CD7rp (tC—TS2).
Suppose Opa : ti € Drp(tc-7S1). Then there is a rule in 7PP having a ground

instance of the form

Opa:ti « tpcecer AN... N\ tpcee, Aoy itip Ao A O tig,

such that for all 1 < ¢ < m, there exist Op;j @, : tig; in tc-7 Sy such that conditions
(I)-(III) hold and ti has the required form. But in this case, as tc-7 51 C tc-7 Sa,
all the Opéjaij : ti;; are also in tc-7S; and hence, the conditions for Opa : ti €
Drp (tC-TSQ) hold.

We now consider continuity. Let t¢-7.57 Ctc-7S5, C--- Ctc-7 S, Ctc-7 5,41 C
.-+ be an ascending chain of temporally constrained temporal status sets. Then:

Drp(|JteTSi) = JDrp(te-TS)).
From monotonicity of D7p, it is immediate that
Drp(|JteTSi) 2 | JDrp(te-TS)).

Hence, we only need to show that Dzp(lJ,tc-7S;) € |, D7p(tc-T'S;). Suppose
Op'a:ti € Drp(lU,tc-7S;). Then there is a rule in 7PP having a ground instance
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of the form
Opa:ti « tpeceer AN... N\ tpcee, Aoy itip Ao A O tig,

such that for all 1 < ¢ < m, there exist Opgjaij : tig; in U, te-7'S; such that
conditions (I)-(IIT) hold and ti has the required form. As m is finite, there must
exist an integer r such that the above conditions are satisfied by tc-7°S,. In this
case, we have Opéjaij :ti;; € Drp(tc-T'S,) and we are done.

The statement is now an immediate consequence of the Tarski-Knaster theo-
rem [Lloyd 1987] that states that if f is a continuous function on a complete lattice,
then f 1% is the least fixpoint of f. Here, Dyp is a continuous function, and the
set of all TP status sets is a complete lattice under set inclusion. O

We are now ready to show that D7p 1“ has the properties of TP deontic and
action closure, and also that all feasible temporal probabilistic status sets must be
compatible with Dzp 7¢. These properties will later help us in computing feasible
temporal probabilistic status sets.

THEOREM 6.8. Let TPP be a strict temporal probabilistic agent program, and
O a state.

(1) There is a TPSI p compatible with Drp 1% which is TP deontically closed and
temporally action closed.

(2) If p is a feasible TPSI, then it is compatible with Drp 1¢.

ProOOF. (1) Let Xo be the set of all ti status atoms of the form O« : ti in
D7p 1¢. Let Xp be the set of all ti status atoms of the form P« : ti in Dzp T¢.
Each atom Oq : ti in Xo must be in D7p 17 for some integer j, but then, as
O implies P, the same rule used to place O« : ti in D7p 17 must also have
been used to insert Pa : ti into D7p 1/ which means Pa : ti € Xp. One may
now construct a ti status set p’ as follows: for each O« : ti € Drp ¢, insert
Oa, Pa into p'(j) where j is the smallest integer which is contained in ti. For
all other modalities Op # O, if Opa : ti in Dzp 1%, insert Ope into p’(j) where
j is the smallest integer which is in ti. It is easy to see that p’ is compatible
with Dzp 1% and p’ is temporally deontically consistent.

(2) Similar to the proof of the previous item.

(3) Suppose p is a feasible temporal status set which is not compatible with Drp 1¢.
We will attempt to derive a contradiction. We call a ti status atom Opa : ti a
rogue atom iff Opa ¢ p(i) for all i’s that are in ti. Let Rogues be the set of
all rogue atoms associated with p(7), and let

j =min{r | Opa : ti € Drp 1" and Opa : ti € Rogues}.

We proceed by induction on j.

j=0:. In the base case, we obtain an absurdity immediately as Dzp T 0 = (}
and hence cannot contain any rogue atoms.

j=s+1:. As no rogues occur in Drp 7%, we know that p is compatible with
D7p 7%.As Opa € D7p 5%, there must exist a rule in 7P7P having a ground
instance of the form shown in Definition 6.3 and satisfying the conditions stated
there. Clearly, each interval ti status atom in the body of this rule is satisfied
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by p, i.e. for each ti status atom Op,a; : ti; in the body of this rule, rho(t;)
contains Op,«; where t; € ti;. As p is feasible, by the “closure under program
rules” condition in the definition of feasibility, it must satisfy the head of this
rule, but to do this, it must satisfy the constraint attached to the rule head,
which coincides with ti. This contradicts our assumption.

O

6.2 Feasible Temporal Probabilistic Interpretation Algorithm

Given the above theorem, it may seem that a TPSI that is compatible with Dzp ¢
is a good candidate for constructing a feasible TP-status interpretation. Thus, in
order to find a feasible TP-status interpretation, we could:

(1) first compute the least fixpoint of Drp and then

(2) select from amongst the compatible TP-status interpretations, those that sat-
isfy the other requirements for feasibility.

We follow this intuition in Algorithm 6.9 below. This algorithm uses a subroutine
called ComputeTPI described later in Definition 6.11. Whenever an agent’s state
changes, this algorithm will be executed to find a new feasible TP-status interpre-
tation. The agent then concurrently executes all actions a such that Do « is in the
computed feasible temporal probabilistic status interpretation at time tpq, using
the notion of concurrency described in [Subrahmanian et al. 2000] (these details
are omitted as they are not relevant for the purposes of this paper).

The FTPSS algorithm terminates as soon as a feasible TP-interpretation is
found. It maintains a set, Seen, of compatible TP interpretations seen thus far—
if the algorithm is “still running” this means that none of the compatible TP
interpretations examined thus far is feasible, and hence, we need to continue trying
to find a new compatible TP interpretation that is feasible. More precisely, the
algorithm works by:

(1) Iteratively modifying a set tc-TS. This is a set of temporally constrained TP
atoms. Initially, it is determined by acthist and set to

tc-T Sstart := U {Opal]i] | Opa € acthist(?)},
{7 s.t. acthist(z) is defined}

in accordance with Theorem 6.8.

(2) Checking for feasibility. Once the ComputeTPI procedure has generated a
new candidate (to be described below), this set is checked for feasibility. If it is
feasible, a solution has been found. If not, this set is added to the set Seen and the
procedure goes on.

Algorithm 6.9 (Feasible Temporal Probabilistic Status Set Computation,).
FTPSS(7PP,acthist,O)
(* Input: (1) a strict TPP, *)

(% (2) the history acthist, and *)

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.



Heterogeneous Temporal Probabilistic Agents . 33

(% (3) the state O *)
(* Output: (1) a feasible temporal probabilistic status set, if one exists *)
(* (2) “No” otherwise *)

1) tC'TSnew = DTP Tw (tC'TSstart)-
2) done := false;
) Seen := {;
) while —done do
(a) TPSI := ComputeTPI(tc-7 Syey,7 PP, O,Seen);
(b) if TPSI = “No” then return “No”.
(¢) if FeasTPI(Singl(TPSI)) then done := true else Seen := Seen U
{TPSI}:

(5) return Singl(TPSI).

3

(
(
(
(4

Before turning to the ComputeTPI procedure, we describe the feasibility check
in more detail.

LEMMA 6.10 (FEASIBILITY CHECK FeasTPI). Given a finite set of singleton
TP status atoms tc-T S that is closed under the program rules of T PP, it is possible
to check whether it is feasible. We will therefore assume that there is a FeasTPI
algorithm that checks whether tc-T S is

(1) TP deontically consistent at time tpow,
(2) TP deontically and action closed at time tpow,

(3) TP state consistent at time tpow-
It returns true if all these requirements are met—otherwise it returns false.

PrROOF. It is possible to develop such an algorithm since we require TPSI’s to
be finite. Thus, we only need to check these conditions for finitely many time
points t. Note that we do not have to check for history compatibility (as required
in Definition A.7) nor for closure under the rules of 7PP: these conditions are
guaranteed by the ComputeTPI procedure (to be explained below). O

Before stating our main procedure ComputeTPI in full detail, we first describe
the required input-output behaviour to ensure that Algorithm 6.9 is correct and
complete.

Definition 6.11 (Input and Output of Compute TPI).
The ComputeTPI function takes as input (1) a set tc-7 S of temporally con-
strained TP status atoms, (2) a strict temporal probabilistic program 7 PP, (3) a
state O and (4) a set Seen of TP-status interpretations which are closed under the
rules of 7PP.

It either returns a TP status interpretation closed under the rules of 7P7P,
compatible with tc-7 S, and different from the sets in Seen, if such a set exists, or
“No” (if no such TP status set exists).
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Thus, we are confronted with the problem of implementing ComputeTPI. In
order to do so, we need to construct a TP status set TPSI which is compatible
with tc-7 S and which is closed under the rules of 7P7P.

The reader may wonder why we cannot simply take the least fixpoint Dyp T¢
(tc-7 Sstart) for this purpose. Unfortunately, we cannot do so because Drp ¢
(te-T Sstart) is in general not solution-closed (as defined below).

Definition 6.12 (Solution Closed). A set F of temporally constrained TP status
atoms is said to be solution-closed iff

for all Opa : ti € F: there is i € ti and Opa : [i] € F

For example, Do a4 [ti;] and Do as[tiz] may both be such that no status atom of
the form Do a4 [t1] and Do asts] are present in tc-7 S, Where ty,to are contained
in tiy, tio respectively. tiq,tio may have lots of solutions but we can pick a hitting
set of their set of solutions and add those temporally constrained TP status atoms
to tc-T Spew to remove the “reasons” for solution closure to fail. This process may
in turn cause new status atoms to be derivable (i.e. tc-7 S, may not be closed
under program rules after the addition of these atoms) and hence the process must
be repeated.

Definition 6.13 (TP Hitting Set). Suppose tc-7S is a set of temporally con-
strained TP status atoms. A TP hitting set, H, for tc-7 S is a minimal set of
singleton ground TP status atoms of the form Opa« : [i] such that:

For every Opa : ti € tc-7 S, there is an TP atom of the form Op« : [i]
in H such that i € ti, and if 7 < thow, then Op v € acthist(3).

We use chs(tc-7 S) to denote the set of all TP hitting sets for tc-7 S.

We will use a subroutine called find_member_chs(tc-7 S) which finds a member
of chs(tc-7'S) that is not a subset of tc-7'S. If no such element exists, it returns
“No”. We do not specify the implementation of this algorithm as it can be easily
implemented (using standard hitting set algorithms [Cormen et al. 1989]).

Unfortunately, blindly adding elements of a hitting set to the current candidate
set may destroy the closure under the rules condition: this is because there may be
more TP atoms available and thus more rules could fire and entail still more new TP
atoms. This problem can be taken care of by adding these atoms to the program
and getting a new program 7 PPpe, (see (2)(d)(ii)(A) in Algorithm 6.14). We
then apply our operator Drp to TPPpey (see (2)(d)(#)(B) in Algorithm 6.14).
Note that new atoms which violate the solution-closed requirement may still be
generated. We repeat this process until either

(1) all TP atoms have a solution in the current H* (see (2)(d)(ii)(C) in Algo-
rithm 6.14), or
(2) we reach a fixpoint H*. This fixpoint yields a better candidate tc-7 Syeq, and

we have to re-iterate the whole process, by first computing a hitting set of
tc-7 Spew and then computing the iterations of our operator Dyp.

Algorithm 6.14 Compute TPI(tc-T S, TPP,O, Seen).
ComputeTPI(tc-7 S, TPP, O, Seen)
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(x Input: (1) a set of temporally constrained TP status atoms tc-7 .S *)
(% (2) a strict 7PP, (3) the state O and *)
(% (4) a set Seen of TP status sets, *)
(¥ Output: (1) a compatible TP status set not in Seen which is *)
(% closed under the rules of 7PP (if one exists) *)
(% (2) “No” otherwise x)

(1) done := false; found := false; Loc_Seen := Seen;
te-7 Spew := tc-TS; H* := (), done_inner := false;
(2) while ~done A = found do
(a) if done_inner then
i. H = find_-member_chs(tc-T S, Loc_Seen);
ii. if H = “No” then done:= true;
iii. done_inner:= false

(b) else
i. H = find_member_chs(tc-T Syew, Loc_Seen);
ii. if H = “No” then done_inner= true;

(¢) Loc_Seen := Loc_Seen U {H};
(d) if H # “No” then
i. H* = H; changed =true;
ii. while -~ found A changed do
A. TPPpew =TPP U H*; oldH* = H*;
B. H* =Drpp,..;
C. if H* ¢ Loc_Seen A H* is solution closed
then found = true
else changed = (oldH* # H*);
iii. Loc_Seen := Loc_Seen U {H*}; tc-7 Spew := H*

(3) if found then return H* else return “No”.

The following lemma states that the above implementation of Algorithm 6.14
satisfies the output conditions of Definition 6.11.

LEMMA 6.15. Suppose the find_member_chs(tc-T Spew, Loc_Seen) algorithm is
correctly implemented. Then:

(1) If algorithm ComputeTPI returns a temporal status set H*, then H* satisfies
the output conditions of Definition 6.11.

(2) If algorithm ComputeTPI returns “No”, then there is no temporal status set
satisfying the output conditions of Definition 6.11.

PROOF. There are two while loops in the algorithm above. The outer loop (step 2
of the algorithm), considers the possible hitting sets of the original tc-7S. The
variable “done” is false as long as not all the hitting sets were considered.

For each hitting set of the original tc-7.S, the inner while loop (2(d)ii of the
algorithm), tries to find a solution-closed superset H* of the hitting set. This is
done using Drp after adding the hitting set to 7PP and assigning it to 7 PPrew
(2(d)#B). Tt iteratively adds the result of applying Drp to TPP (2(d)#iA). When
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H* cannot be enlarged any more and still a solution wasn’t found, a hitting set
of H* (which is assigned to tc-7 Spew (2(d)i44)) is found (2(b)i) and the process
continues until success or until it is clear that the chosen H can’t be extended any
more. [l

THEOREM 6.16 (ALGORITHM 6.9 1S CORRECT AND COMPLETE).
Algorithm 6.9 generates a feasible TP status set (if one exists).

PRrROOF. Suppose Algorithm 6.9 returns tc-7°S. In this case, tc-7 S is compatible
via step (4)(a), and feasible via step (4)(c).

Conversely, suppose Algorithm 6.9 returns “No”. In this case, we know that
ComputeTPI returned “No” which means that it was unable to find a TP status
set compatible with D7p T¢. But this means that all TP status set compatible
with Dzp T« are in Seen which means none of them is feasible. O

7. OPTIMAL FEASIBLE TEMPORAL PROBABILISTIC STATUS SETS

As the reader has undoubtedly noticed by now, in a given state, an agent can
have zero, one, or many FTPSI’s. The agent is required to choose one and act
according to the status atoms in that FTPSI. Thus far, we have proceeded under
the assumption that the agent will arbitrarily choose one. In this section, we suggest
that the agent choose one based on an objective function.

Definition 7.1 (Objective function (objf)). Suppose a is a given agent. An ob-
jective function objf for a is a mapping that takes as input, a state (for agent a)
and an FTPSI, and returns as output, a non-negative real number.

Intuitively, we will think of an objective function as assigning a cost to the choice
of a given FTPSI. This cost has two components—the actions in FTPSI and the
undesirability of the state that results if we choose to act in accordance with the
FTPSI in question.

Definition 7.2 (Optimal FTPSI). Suppose a is a given agent and objf is an ob-
jective function for a. Given any FTPSI S w.r.t. agent a and state O, we use
result(S, O) to denote the new state that results by executing all the Do actions
in S(tnow) w.r.t. the current state O.

An FTPSI S is optimal w.r.t. a given agent state O and objf iff there is
no other FTPSI S for agent a in state O such that objf(result(S’, 0),S") <
objf(result(S, 0), 5).

Intuitively, as we are thinking of minimising the cost associated with the choice
of an FTPSS over other possible FTPSS’s, the above definition requires us to
minimise objf.

The following algorithm modifies the FTPSS algorithm so as to compute an
optimal feasible temporal probabilistic status interpretation w.r.t. a given agent
and a given objective function.

Algorithm 7.3 (Optimal Feasible Temporal Probabilistic Status Int. Computation).
OptFTPSS(7 PP,acthist,O,objf)
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(* Input: (1) a strict 7PP, *)
(% (2) the history acthist, *)
(% (3) the state O, and *)
(% (4) objective function objf *)
(* Output: (1) an optimal FTPSI if one exists «)
(% (2) “No” otherwise *)

(1) t-T Spew = Drp 1% (tc-T Sstart)-
(2) done := false;
(3) Seen :=0;
(4) bestSol = NIL; bestCost = oc;
(5) while —~done do
(a) TPSI := ComputeTPI(tc-7 Sy,e,7 PP, O,Seen);
(b) if TPSI = “No” then done := true;
(c) else
i.  Seen := Seen U {TPSI};
ii. if FeasTPI(Singl(TPSI)) then
A. if objf(result(O, TPSI)) < objf(result(O, bestSol)) then
—bestSol := TPSI
—bestCost := objf(result(O, TPSI)

return Singl(TPSI).

THEOREM 7.4 (CORRECTNESS OF OptFTPSS). Suppose an agent a has a
temporal probabilistic agent program TP, action history acthist and current state
O. Suppose objf is an objective function Then:

(1) If a has at least one FTPSI, then algorithm OptFTPSS(TP, acthist, O, objf)
will find an optimal FTPSI wrt. objf.

(2) If OptFTPSS(TP, acthist, O, objf) returns “No” then the agent has no FTPSI
in the current state.

PROOF. (1) Suppose a has at least one FTPSI. Every FTPSI will be eventually
generated by Step 5(a) via the ComputeTPI invocation. When a feasible FTPSI
is found, step 5(c)(i)(A) checks if the value of the objective function on this FTPSI
is less than that of the current best solution. If so, it updates both the bestCost
variable and the bestSol value. Otherwise this FTPSI is not as good as the current
best solution. Hence, when the algorithm terminates in Step 5(b), all FTPSI’s
have been examined and the bestSol variable has the best FTPSI.

(2) Immediate from the above. If “NIL” is returned, this means that all FTPSI’s
compatible with Dzp 1% (tc-7 Sstart) were examined and none was found to be
feasible. [

8. RELATED WORK

The work reported in this paper focuses on decision making in the presence of
uncertainty in time. Over the years, there has been extensive work on uncertainty
management and temporal reasoning. To put our work in the correct context, we
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list below various issues associated with time and uncertainty that were considered
in previous research. To demonstrate the main issue of each category, we discuss
shortly a few of the works that belong to it. Several of the works mentioned below
consider more than one issue. We categorise a paper according to the main issue it
considered. The main issue of our paper is the development of agent mechanisms to
determine how to take actions now or in the future, and thus it belongs to the last
category in the list. However, in each category we will mention how we addressed
the category’s issue in the context of building our mechanism for agent decision
making.

Reasoning about the interactions between time and uncertainty.

For example, Lehmann and Shelah [1982] developed a probabilistic temporal logic.
Dubois et al. [1991] have studied the integration of uncertainty and time — they
extend the well-known possibilistic logic theory [Dubois and Prade 1994; Dubois
et al. 1991; Dubois and Prade 1989] to a “timed possibilistic logic”.

Halpern and Tuttle [1992] study the semantics of reasoning about distributed
systems when uncertainty is present. They develop a logic where a process has
knowledge about the probability of events which facilitates decision-making by the
process.

Kifer and Subrahmanian [1992] show how uncertainty (including point, as well
as interval based fuzzy logics) and time can be integrated via their annotated log-
ics. In particular, they establish that various forms of temporal reasoning due to
Shoham [Shoham 1988] can be captured in their framework.

The basic blocks provided to our agent to reason on time and probability is the
temporal probabilistic code calls. The advantage of using this technique is the
ability to build agents on top of legacy code.

Reasoning about the interactions between time and beliefs.

For example, Fagin et al. [1995; Fagin et al. [1990] proposed modal logics of time
and beliefs that can be used to model the behaviour of different types of distributed
systems, e.g., systems that have perfect recall about the past, and those that have
bounded recall.

Thomas et al. [1991] have developed a framework for integrating beliefs, time,
commitment, desires and multiple agents.

Gmytrasiewicz and Durfee [1992] have developed a logic of knowledge and belief
to model multiagent coordination. Their framework permits an agent to reason
not only about the world and its own actions, but also to simulate and model the
behaviour of other agents in the environment. In a separate paper [Gmytrasiewicz
et al. 1991], they show how one agent can reason with a probabilistic view of the
behaviour of other agents so as to achieve coordination.

Friedman and Halpern [1997] introduced a semantic based framework to model
belief change. This framework combines temporal and epistemic modalities with
a notion of plausibility, allowing to examine the changes of beliefs over time.
They show belief revision and belief update fit into their framework [Friedman
and Halpern 1999].

In this paper we do not model the beliefs of an agent, but rather provides the
agent with a mechanism to use probabilistic estimations of the legacy code the
agent is built on top off. Updates are made to the data, which in turn yields new
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estimations.

Reasoning about time, action and change.

For example, E. Sandewall [1994] developed techniques based on the concept of
fluents for reasoning about actions and change. In his framework, existing and new
logics can be described, compared and analyzed.

Karlsson and his colleagues that were inspired and motivated by Sandewall’s
work developed a class of narrative-based temporal action logics (TAL) [Doherty
et al. 1998].

Dean and Kanazawa have studied the integration of probability and time with
a view to developing efficient planning techniques [Dean and Kanazawa 1988;
Kanazawa 1991]. Their main interest is in how probabilities of facts and events
change over time. Similarly, Haddawy [1991; Haddawy et al. [1995] develops a logic
for reasoning about actions, probabilities, and time and use it as a basis foe efficient
planning.

Hanks and McDermott [1994] presented a system that uses probabilistic model to
reason about the effects of agent’s proposed actions. The system is able to answer
questions of the form “is the probability that ¢ will hold in the world at time t is
greater than r?”

Baral et al. [2002] presented a language to reason about actions in a probabilistic
setting. The main feature of their model is its use of static and dynamic causal
laws, and use of unknown (or background) variables — whose values are determined
by factors beyond their model.

We adopted IMPACT’s approach to model actions in which their is no uncer-
tainty with respect to how an action will change the agent’s state. It is specified by
the add and delete lists and the action’s code. However, we extended the add and
the delete lists of an action to include temporal probabilistic code calls. We do not
consider planning in this paper, but rather focuses on the agents programming and
agents’ decision making. However, our framework could be used to develop agents
that can do planning as is demonstrated in [Dix et al. 2003].

Analyzing and modelling uncertain temporal data.
This research includes techniques such as Kalman filtering that addresses the ques-
tion of how does one update a “best” estimate for the state of a system as new,
but still inaccurate, data arrived [Scientific 2003]. It also includes techniques for
modelling the evolution of a system from data such as time series analysis and
forecasting techniques [Arsham 2003].

We do not consider the problem of data analysis, but allow agents to be built on
top of any software modules that perform such analysis.

Building action policies across time in the presence of uncertainty.

The main goal of our paper has been to develop a framework that provides an
agent with mechanisms to determine how to take actions now or in the future. The
decision is based on the uncertain data the agent currently has access to via zero or
more legacy data sources and based on leveraging existing software programs. The
decision of what to do may change as the data changes based on external events.
Thus, in the rest of this section we will compare our work with other works that
belong to this category.
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The work on MetaTem [Barringer et al. 1990] and its successor, Concurrent
MetaTem [Fisher 1994] are closely related to our work as they developed a logical
framework to provide agents with temporal rules to decide on what to do. No
probabilities are processed in their work—when probabilities are ignored, the rela-
tionship of their work to our framework has been cleanly described in [Dix et al.
2001].

The Independent Choice Logic (ICL) of Poole [Poole 1997] is another very inter-
esting approach. ICL is a semantic framework that allows for independent choices
and a logic program that gives the consequence of choices. Various techniques such
as influence diagrams and structured Markov decision processes can be embedded
in ICL. However, the goal of ICL, as explicitly stated by Poole, is to be used as
a specification for agents that act in a world and make observations of that world
and as a modelling tool for dynamic environments with uncertainty. It does not
discuss the computation issues related to building agents nor provides tools to be
used by agents acting in uncertain environments.

MDRP’s can be applied for the construction of optimal or approximately optimal
policies under uncertainty. In order to model a problem using MDP’s there is a
need to define: (i) a state space; (ii) a set of possible actions (iii) a state transaction
(iii) in case of POMDPs—observations (iv) a reward function.

Boutilier et al. [1999] describe a number of ways in which intensional represen-
tations can be exploited to solve MDP’s effectively without enumeration all of the
state space (e.g., the structured policy iteration algorithm [Boutilier et al. 1995],
or explicitly specifying all the transaction and reward functions. However, even
when using these methods, the modelling process is highly time consuming. Using
our approach a system designer does not need to model the agent state. In our
framework, the state of an agent consists of whatever data is stored inside the data
structures of the code on top of which the agent is built. Prediction about the
future could be done using any available software packages. Instead of specifying a
transaction function, in our framework the designer provides the agent with tem-
poral probabilistic rules. If necessary, the designer can provide the agent with an
objective function that it will use when choosing between several possible set of
actions that are supported by the rules.

Boutilier et al. [2000] propose the DTGolog model for robot programming on
top of MDP’s. DTGolog allows the agents designer to partially specify a control
program in a high-level, logical language. This designer’s program directs the search
of the MDP module. The joint goal of our paper and that of the Boutilier et al. is
to provide agent’s designer with a suitably high-level language to program its agent
while allowing the agent some latitude in choosing its actions in real time. However,
while their agent can be built only on top of MDP’s, we provide a framework to
build agents on top of any legacy code.

Finally, Dix et al. [2000] developed an extension of IMPACT to make decisions
in the presence of uncertainty alone, and Dix et al. [2001] extend agent programs
to handle purely temporal reasoning. This paper extends the above papers in the
following significant ways.

(1) There is a great difference between the syntax of both [Dix et al. 2000] and
[Dix et al. 2001] and this paper. The notion of a TP-annotation provided in
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this paper is new, as are the definitions of TP-ccc’s and TP-AscC’s. This in

turn causes the syntax of TP agent programs to be very different from those
in both [Dix et al. 2000; Dix et al. 2001].

(2) As a consequence, the semantics of HTP agents uses structures that are very
different from those in either of the above two papers.

(3) Our use of a fixpoint operator to characterise the semantics of TP agents is
derived from a long body of work in logic programming. The fact that a fixpoint
operator is used in this paper provides a superficial similarity to the papers [Dix
et al. 2001; Dix et al. 2000]. However, as the syntax and semantical structures
s of HTP agents are different from the frameworks in [Dix et al. 2000; Dix
et al. 2001], it follows that our fixpoint operator is also very different. As
a consequence, the proofs of our main theorems are very different from [Dix
et al. 2001; Dix et al. 2000], although the statements in the main theorems and
lemmas resemble those in classical logic programming.

(4) We have also introduced in this paper, the notion of optimal feasible temporal
probabilistic status sets, a notion that is not dealt with in [Dix et al. 2001; Dix
et al. 2000].
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A. CORE THEORY OF IMPACT

In IMPACT, each agent a is built on top of a body of software code (built in
any programming language) that supports a well-defined application programmer
interface (either part of the code itself, or developed to augment the code). Hence,
associated with each agent a is a body of software code defined as follows.

Definition A.1 (Software Code). We may characterise the code on top of which
an agent is built as a triple S = (7, Fa,Cq) where

(1) T4 is the set of all data types managed by S,

(2) Fq is a set of predefined functions which makes access to the data objects
managed by the agent available to external processes, and

(3) Cq is a set of type composition operations. A type composition operator is a

partial n-ary function ¢ which takes types 71, ..., 7, as input, and yields a type
¢(71,...,7s) as output. As c is a partial function, ¢ may only be defined for
certain arguments 71,...,7,, i.e., ¢ is not necessarily applicable on arbitrary
types.

When a is clear from context, we will often drop the subscript a. Intuitively,
T, is the set of all data types managed by a. F, is the set of all function calls
supported by the application programmer interface (API) of the agent’s legacy
code. C, is the set of ways of creating new data types from existing data types.
This characterisation of a piece of software code is widely used (cf. the Object Data
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Management Group’s ODMG standard [Cattell, R. G. G., et al. 1997] and the
CORBA framework [Siegal 1996]). Each agent also has a message box having a
well-defined set of associated code calls that can be invoked by external programs.

Definition A.2 (State of an Agent). The state of an agent a at any given point
t in time, denoted O (¢), consists of the set of all instantiated data objects of types
contained in 7.

An agent’s state may change because it took an action, or because it received a
message. Throughout this paper we will assume that except for appending messages
to an agent a’s mailbox, another agent b cannot directly change a’s state. However,
it might do so indirectly by shipping the other agent a message requesting a change.

Queries and /or conditions may be evaluated w.r.t. an agent state using the notion
of a code call atom and a code call condition defined in Section 3 (Definitions 3.1
and 3.2). An integrity constraint is an implication whose consequent is a code
call atom, and whose antecedent is a code call condition. Appendix A contains a
detailed definition.

Each agent has an action-base describing various actions that the agent is capable
of executing. Actions change the state of the agent and perhaps the state of other
agents’ msgboxes. An action has five components: (i) a name «(Xq,...,X,) where
n > 0and Xy, ...,X, are variables, (ii) a precondition which is a code call condition,
(iii) an add list which is a set of code call atoms, (iv) a delete list which is a
set of code call atoms, and (v) an action method (in the strict sense of object—
oriented programming) which is a possibly imperative body of code that implements
the action. An instance of an action is obtained by applying a substitution to
components (i)—(iv) of an action which causes all these components to become
ground (i.e., variable free). As usual, an action instance can be executed when the
appropriate instance of the precondition is true in the current agent state, and the
new state that results is just like the current state except that the ground atoms in
the add list instance become true, while the ground atoms in the delete list instance
become false. For more detailed definitions, the reader is referred to [Eiter et al.
1999).

Each agent has an associated “notion of concurrency” conc, which takes a set of
actions and an agent state as input, and produces as output, a single action that
reflects the combination of all the input actions. Eiter et al. [1999] provide examples
of three different notions of concurrency. We will sometimes abuse notation and
write conc(S, Q) to denote the new state obtained by concurrently executing the
actions in S in state O.

Fach agent has an associated set of action constraints that define the circum-
stances under which certain actions may be concurrently executed. As at any given
point t in time, many sets of actions may be concurrently executable, each agent has
an Agent Program that determines what actions the agent can take, what actions
the agent cannot take, and what actions the agent must take. Agent programs are
defined in terms of status atoms defined below.

Definition A.3 (Agent Program). An agent program P is a finite set of rules of
the form

A xy&Li&... &L,

ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.



Heterogeneous Temporal Probabilistic Agents . 45

where y is a code call condition and L4, ..., L, are status literals.

Various semantics of agent programs are well described in [Eiter et al. 1999] as well
as in [Subrahmanian et al. 2000]. They are not needed in the sequel, as all newly
introduced semantics will be discussed at length. But understanding the framework
of ordinary agent programs obviously helps to get a better picture of the extension
described in this paper.

Definition A.4 (Deontic and Action Consistency). A status set S is called de-
ontically consistent, iff it satisfies the following rules for any ground action a:

—If O € S, then Wa ¢ S

—If Pa€ S, then Fa ¢ S

—If Pa € S, then Og = 3* Pre(a), where 3* Pre(a) denotes the existential closure
of Pre(a), i.e., all free variables in Pre(a) are governed by an existential quan-
tifier. This condition means that the action « is in fact executable in the state

Os.
A status set S is called action consistent, if S, Os | AC holds.

Besides consistency, we also wish that the presence of certain atoms in S entails
the presence of other atoms in S. For example, if O« is in S, then we expect that
Pa is also in S, and if O« is in S, then we would like to have Do« in S. This is
captured by the concept of deontic and action closure.

Definition A.5 (Deontic and Action Closure). The deontic closure of a status S,
denoted D-C1(S5), is the closure of S under the rule

If O € S, then Pa € S

where « is any ground action. We say that S is deontically closed, if S = D-C1(S)
holds.

The action closure of a status set S, denoted A-CI1(S), is the closure of S under
the rules

If Oa € S, then Doa € S
IfDoa € S, then Pa € S

where « is any ground action. We say that a status S is action-closed, if S =
A-CI1(S) holds.

The following straightforward results shows that status sets that are action-closed
are also deontically closed, i.e.,

Definition A.6 (Operator Appp o,(S)). Suppose P is an agent program, and
Os is an agent state. Then, Appp o, (S5) is defined to be the set of all ground
action status atoms A such that there exists a rule in P having a ground instance
of the form r: A — L1&...&L,, such that
(1) Bf,(r)C S and {L: ~L € B,,(r)} NS =0, and
(2) every code call cc € BY (r) succeeds in Og, and
(3) every code call cc € {L: =L € B_(r)} does not succeed in Og, and
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(4) for every atom Op(a) € BT (r) U {A} such that Op € {P,0,Do}, the action
« is executable in state Og.

Note that part (4) of the above definition only applies to the “positive” modes
P,0,Do. It does not apply to atoms of the form Fa, as such actions are not
executed, nor does it apply to atoms of the form W, because execution of an
action might be (vacuously) waived, if its prerequisites are not fulfilled.

Our approach is to base the semantics of agent programs on consistent and closed
status sets. However, we have to take into account the rules of the program as well
as integrity constraints. This leads us to the notion of a feasible status set.

Definition A.7 (Feasible Status Set). Let P be an agent program, and let Og be
an agent state. Then, a status set S is a feasible status set for P on Og, if the
following conditions hold:

(51). (closure under the program rules) Appp o, (S) C S;

(52). (deontic/action consistency) S is deontically and action consistent;

(S3). (deontic/action closure) S is action closed and deontically closed;

(S4). (state consistency) O% = ZC, where O%5 = apply(Do(S),Os) is the
state which results after taking all actions in Do (S) on the state Os.

Definition A.8 (Groundedness; Rational Status Set). A status set S is grounded,
if there exists no status set S’ # S such that S” C S and S’ satisfies conditions
(51)—(S53) of a feasible status set.

A status set S is a rational status set, if S is a feasible status set and S is
grounded.

Definition A.9 (Reasonable Status Set). Let P be an agent program; let Og be
an agent state, and let S be a status set.

(1) If P is a positive agent program, then S is a reasonable status set for P on Og,
if and only if S is a rational status set for P on Ogs.

(2) The reduct of P w.r.t. S and O, denoted by red® (P, Os), is the program which
is obtained from the ground instances of the rules in P over Og as follows.
(a) First, remove every rule r such that B (r) NS # (.
(b) Remove all atoms in B, (r) from the remaining rules.
Then S is a reasonable status set for P w.r.t. Og, if it is a reasonable status
set of the program red® (P, Os) with respect to Os.

Notational Conventions.

As this paper involves heterogeneous data sources, deontic modalities, actions, log-
ical methods, and temporal reasoning, all of which are complex subjects of research
in their own right, it is inevitable that the paper is heavy on notation. We end this
section with two tables listing the terminology used. While Table I contains the
basic notation already introduced in [Eiter et al. 1999; Subrahmanian et al. 2000],
Table II points to the new notions introduced in this paper.

In addition, we note that agents always appear in the agent font while functions
and constants in software packages are written in italics. Variables and types come
in typewriter font: in(X, agent: function(const;,Vary)). Actions « are denoted
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Notation Description Definition
S¢ software code on top of which a is built | Def. A.1
7s data types of software code S Def. A.1
Fs function of software code §¢ Def. A.1
Cs type composition operations Def. A.1
Os(t) state of an agent at time ¢ Def. A.2
in(X, cc) code call atom indicating that (X € cc) | Def. 3.1
X code call condition Def. 3.2
Opa(f) status atom, e.g., Pa, Oa, Doa, Wa Def. 3.7
L; status literal, e.g., Pa and -P« Def. 3.7
Ic integrity constraints Sec. 1
AC action constraints Sec. 1

Table I.  Glossary 1: Basic Notation

by lower Greek letters. Calligraphic letters are used for meta objects, which are
whole collections of objects: 7§, Os(t), ZC, TP. Boldface is also used for meta-
theoretic notions: operators like Dzp, closures like D-C1(), A-Cl(), and the deontic
modalities P, Do, O, P, W .

The newly introduced temporal expressions and all things that have to do with
time are put into a sans serif font to distinguish them from our base terminology:
tow, te, ti, acthist, tc-7' S, [tey, tey].

Probabilistic items are written in a curly font: £y, /s, §, [¢1,£3]. Sets of objects
are again written in boldface: pas, T.

Both time and probability come together in the notion of a TP annotation:

[®’ <[t17 tQ]a 5>7 [51762”'
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Notation Description Definition
RV (0by, p) random variable Def. 3.3
coherent set of RV’s Def. 3.3
type of a code call Def. 3.3
temporal probabilistic code call based on cc Def. 3.5
probabilistic conjunction (disjunction) strategy | Def. 3.6
temporal expression, e.g., 5, Xnow + 3 Def. 4.1
temporal interval, e.g., [te1, tes] Def. 4.1
probabilistic item, e.g. % Def. 4.2
probabilistic interval, e.g., [¢1, £2] Def. 4.2
probability distribution function (pdf) Def. 4.3
[®, (ti, 8), [¢,¢']] TP-annotation Def. 4.4
X : [®, (ti,d),[¢,¢]] | TP-ccc Def. 4.5
A Ay) @, (6, 6),[6,4]] TP-asc Def. 4.5
TP-annotation for strict programs Def. 4.6
TP agent program Def. 4.7
pas(cc,0,T) set of possible answer situations Def. 5.1
feasible TP status interpretation Def. 5.19
action history Def. 5.12
expected states at time t Def. 5.15
temporally constrained status set Def. 6.1
Comp-tc-7S TP-status interpr. compatible with tc-7.S Def. 6.2
operator applying 7PP on tc-7 S once Def. 6.3
TP hitting set Def. 6.13
chs(te-75) set of temp. constr. hitting sets for tc-7°.S Def. 6.13
Table II.  Glossary 2: Notions wrt. Temporal Probabilistic Approach.




