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Innovation and evolution are two processes of paramount relevance for social and biological systems. In general,

the former allows the introduction of elements of novelty, while the latter is responsible for the motion of a system

in its phase space. Often, these processes are strongly related, since an innovation can trigger the evolution, and

the latter can provide the optimal conditions for the emergence of innovations. Both processes can be studied by

using the framework of evolutionary game theory, where evolution constitutes an intrinsic mechanism. At the

same time, the concept of innovation requires an opportune mathematical representation. Notably, innovation can

be modeled as a strategy, or it can constitute the underlying mechanism that allows agents to change strategy. Here,

we analyze the second case, investigating the behavior of a heterogeneous population, composed of imitative and

innovative agents. Imitative agents change strategy only by imitating that of their neighbors, whereas innovative

ones change strategy without the need for a copying source. The proposed model is analyzed by means of

analytical calculations and numerical simulations in different topologies. Remarkably, results indicate that the

mixing of mechanisms can be detrimental to cooperation near phase transitions. In those regions, the spatial

reciprocity from imitative mechanisms is destroyed by innovative agents, leading to the downfall of cooperation.

Our investigation sheds some light on the complex dynamics emerging from the heterogeneity of strategy revision

methods, highlighting the role of innovation in evolutionary games.

DOI: 10.1103/PhysRevE.97.042305

I. INTRODUCTION

The emergence of cooperation is a topic of paramount

relevance in different areas, as demonstrated by the long list

of contributions across various fields, ranging from biology to

sociology, and from economics to robotics [1–4]. In a broad

sense, why should people cooperate with their peers in a

competitive scenario, where selfish individuals would often

fare better? Evolutionary game theory (EGT) constitutes one of

the most suitable tools for approaching such a question [5–7],

and the Prisoner’s dilemma represents the canonical way to

study how a cooperative behavior can emerge in a competitive

scenario [3,8]. The dynamics of evolutionary games shows how

cooperation results from a collective behavior. Notably, these

models consider a population that, under particular conditions,

is able to reach an equilibrium of cooperation even when the

agent interactions are based on games whose Nash equilibrium

is defection.

One of the earliest approaches in EGT, proposed by

Maynard Smith [5,9], uses the mathematical framework of

birth-death dynamics usually seen in biological evolution,

in a model in which individuals copy the strategy of more

successful contacts (akin to a Moran process). Using a linear

copy probability, this mechanism leads to the classical repli-

cator equation [10], i.e., the general mathematical model for

natural evolution. However, from a game theory perspective,

individuals can change strategy by many other mechanisms,

e.g., imitation of the best, win-stay-lose-learn, tit-for-tat, and so

on and so forth [3,10]. Here, updating rules based on imitative

mechanisms can be defined as noninnovative [10], since they

allow individuals to choose only among strategies adopted in

their neighborhood. As a result, once a strategy disappears, it

can be considered as extinct if there is no external mutation

mechanism. It is important to note how mutation mechanisms

can lead to diversity, but they are not directly related to

an innovative updating rule, which represents the ability of

one individual to choose a strategy that does not appear in

its neighborhood. On the other hand, mechanisms that lead

individuals to change strategy without the need to copy from

a source (e.g., a neighbor) can be defined as innovative. For

instance, one individual might change strategy by analyzing

the trend of her or his gain, e.g., a decreasing gain might lead to

testing a different strategy. One of the most famous cases is the

win-stay-lose-shift, where if the individual has a payoff below

some aspiration level, she or he simply changes strategy, no

matter which strategies are available from the neighborhood.

Two other famous examples of innovative updating rules are

the Logit rule and best response [11–14].
From the point of view of information theory, there is an

important difference between these two classes of updating
rules, i.e., innovative and noninnovative. Notably, rational
individuals [15] select their strategy according to rules that
take into account their gain over time, or their current gain and
that of their neighbors. Therefore, they need some information
in order to make a decision. Thus, the essential difference
between innovative and noninnovative individuals lays in the
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information source they adopt or have about the system. As
reported in previous investigations (e.g., [12,14,16–18]), the
application of innovative and noninnovative updating rules
leads to results that can be drastically different. As a very inter-
esting and recent example, Ref. [19] showed how innovative
strategies toward vaccination can lead to different dynamics
from the usual imitative ones, changing the vaccination cov-
erage. It is interesting to observe that imitative mechanisms
are usually associated with long-term biological evolution.
The copying process is related to the offspring of a more
successful individual inheriting her or his parent strategy. On
the other hand, innovative dynamics can model the behavior of
individuals that, like humans, have cognitive responses to the
environment [20,21], and that happen on shorter time scales.

Imitative dynamics have been broadly studied for different

games, updating rules and connection topologies. Some classic

mechanisms that support cooperation in this setting include kin

selection [22], mobility and dilution [23], direct and indirect

reciprocity [24], network reciprocity [25,26], group selection

[27], dissociation [28], and population heterogeneity [29–31]

(for reviews, see [10,32,33]). Nevertheless, innovative mech-

anisms still require deeper studies in the evolutionary context.

It is worth highlighting the strong relation between innovation

and cooperation, as reported in recent works demonstrating

that, if a population adopts just an innovative strategy for

performing updates, cooperation can be sustained for a large

range of parameters. In [16], the authors show that win-stay-

lose-shift with dynamic aspiration can lead to the coexistence

of cooperation and defection for the whole parameter range,

while, at the same time, cooperators do not need to form

islands to survive. In [12,34,35], a model based on the Glauber

dynamics (from magnetism) shows the survival of cooperators

while leading the population to global stable patterns, in a

process akin to the minimization of energy. Driven by this

observation, in this work we propose an evolutionary model

for studying the dynamics of a heterogeneous population

composed of imitative and innovative agents. In particular,

imitative agents adopt the typical copying mechanism with

a probability weighted by the Fermi-Dirac distribution, while

the innovative ones use the Logit rule (also weighted by the

Fermi-Dirac distribution).

Heterogeneity, in the most general form, is a strong facil-

itator of cooperation. The mixing of strategies, e.g., different

kinds of players, topologies, etc., has been shown time and

again to be a great promoter of cooperation [30,31,36–45]. In

this sense, we mix two kinds of agents, each one following a

specific updating rule. In doing so, we can analyze the results

coming from a form of heterogeneity related to the “updating

rules.”

We first solve the mean-field equation for the model in the

well-mixed case and perform Monte Carlo simulations in a

square lattice to observe the effects of the spatial structure.

Most intriguingly, we find that while a pure innovative pop-

ulation can maintain a high level of cooperation, a minimum

cooperation level occurs in the mixed state of innovators and

imitators. This happens for the Prisoner’s dilemma near a

critical point that characterizes the phase transition of the pure

imitative model. To verify the robustness of this result, we also

analyze other connection topologies and games such as the

Stag Hunt and Snow Drift. Lastly, we study what mechanisms

create this drop in cooperation for the mixed states using lattice

snapshots and the individual fraction of each population (i.e.,

innovative cooperators, innovative defectors, etc.).

The remainder of the paper is organized as follows:

Section II introduces the proposed model and its dynamics.

Section III reports results of analytical calculations and nu-

merical simulations. Finally, Sec. IV provides a summary of

the main outcomes and related observations.

II. MODEL

In the proposed model, we aim to clarify the influence

of innovation in the dynamics of evolutionary games by

considering the behavior of a population whose agents have

two strategies available, namely cooperation (C) and defection

(D). Such a scenario can be represented by the following payoff

matrix:

(

C D

C R S

D T P

)

, (1)

where two cooperative agents receive a reward (R), two de-

fectors receive a punishment (P ), and an agent that cooperates

with a defector receives S, while the defecting agent receives a

temptation (T ). Using the parametrization R = 1,P = 0,S =

[−1,1],T = [0,2], we can explore the dynamics of the model

in four different configurations, i.e., the Prisoner’s Dilemma

for (T > 1,S < 0), the Stag-Hunt for (T < 1,S < 0), the

Snow-Drift for (T > 1,S > 0), and the Harmony Game for

(T < 1,S > 0) [10,46].

In addition, our agents are provided with a character, i.e.,

they can be innovators or imitators. Notably, a fixed fraction of

agents, say α, will update its strategy according to a mechanism

based on innovation, whereas a fraction (1 − α) of agents will

change its strategy by adopting the typical imitative dynamic

[8,10]. We emphasize that while agents can change strategy

(e.g., from C to D) over time, their character (imitative or

innovative) never changes. As result, an imitative agent i, at

each update, randomly chooses one neighbor j and copies its

strategy with probability:

p(�uij )imt =
1

1 + e−(uj −ui )/k
, (2)

where ui and uj indicate the payoff of the selected agent (i) and

of its neighbor (j ), respectively, while k represents the agent’s

irrationality. Here we set k = 0.1, i.e., a numerical value that

is widely used in the literature in order to add small noise in

the decision process. As reported above, the imitation rule is

a noninnovative mechanism [10] because an agent changes

strategy by considering only among those available in its

neighborhood. In doing so, new strategies can never appear

once extinguished, and, most importantly, agents can never

“explore” new ones [10,14]. Notably, the process of imitation

is similar to local competition where death is a random uniform

process, and reproduction rates are determined by the payoff

(fitness).

On the other hand, an innovative agent, i, changes its current

strategy to the opposite one with probability:

p(�ui)inv =
1

1 + e−(ui∗−ui )/k
, (3)
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where ui∗ is the agent’s own payoff if it had changed to the

opposite strategy and everything else remained the same. It is

worth remembering that this updating rule corresponds to the

Glauber dynamics in magnetic models [47,48], while in the

context of Game Theory it is known as Logit dynamics, myopic

best response, or the myopic Logit rule [11,14,35]. According

to this rule, an innovative agent evaluates the gain that it might

achieve by changing strategy, under the hypothesis that its

neighborhood remains unchanged. As reported in previous

investigations [12–14,16,49], this mechanism leads to very

different results compared to imitative dynamics. Tuning the

value of α between 0 (i.e., full imitation) and 1 (i.e., full

innovation), we aim to analyze how innovation affects the

dynamics toward cooperation in different conditions.

III. RESULTS

The proposed model is studied by means of numerical

simulations, by arranging agents over a regular lattice, and

on complex networks. However, as a preliminary study, we

perform analytical calculations considering the dynamics of a

well-mixed population using the mean-field approximation.

A. Well-mixed population

We begin the analysis of the proposed model with the case of

a well-mixed population. Notably, by using the master equation

in the mean-field approach [10,50,51], the temporal evolution

of the cooperator’s density, ρ, reads

ρ̇ = (1 − ρ)Ŵ+ − ρŴ−, (4)

where Ŵ+ stands for the average rate at which agents change

strategy from D to C, leading to an increase in ρ (and similarly

to Ŵ−). While usually this rate depends on just one updating

rule, in our case we need to consider the presence of two

kinds of agents, i.e., innovators and imitators. As result, both

rates, Ŵ±, will be the average rate between each updating rule,

weighted by α:

Ŵ± = (1 − α)Ŵ±imt + αŴ±inv. (5)

Notably, for the well-mixed population we have the follow-

ing rates [10,12]:

Ŵ+imt =
ρ

1 + e−A/k
, (6)

Ŵ−imt =
1 − ρ

1 + e+A/k
, (7)

Ŵ±inv =
1

1 + e∓A/k
, (8)

where A = ρ(1 − T ) + (1 − ρ)S is the difference in the aver-

age payoff from a typical C and D agent interacting with all

other agents. Note that for the innovative updating rate, Ŵ±inv,

the only change between the positive (Ŵ+inv) and negative

(Ŵ−inv) rate is in the sign of A. Accordingly, the full equation

becomes

ρ̇ = (1 − ρ)

[

ρ(1 − α) + α

1 + e−A/k

]

− ρ

[

(1 − ρ)(1 − α) + α

1 + eA/k

]

.

(9)

0 0.5 1 1.5
T

0

0.2

0.4

0.6

0.8

1

 ρ

α=0
α=0.5
α=1

FIG. 1. Asymptotic cooperation fraction (ρ) vs temptation to

defect (T ) in the weak Prisoner’s dilemma (S = 0) in the mean-field,

well-mixed population for the innovative (α = 1) and imitative (α =

0) model, compared with the mixed population of half innovative and

half imitative agents (α = 0.5).

We solve Eq. (9) numerically, letting the system reach the equi-

librium point as t → ∞. This gives the asymptotic behavior

of the population for the well-mixed case—see Fig. 1 for the

fully imitative (α = 0), fully innovative (α = 1), and mixed

(α = 0.5) cases.

This preliminary analysis shows that the behavior of the

heterogeneous population is not just the average value of the

two pure cases (α = 0 or 1), i.e., even if half the population

is imitative, the behavior is much more similar to the pure

innovative population. Also, we observe in Fig. 1 that the

point T = 1 is relevant, as it defines which updating rule leads

to the highest value of cooperation. If T < 1, the imitative

population has a higher cooperation fraction, while for T > 1,

the innovative population has higher levels of cooperation.

Specifically, if T = 1 and S = 0, we obtain that A = 0 in

Eq. (9), leading to ρ̇ = α(1 − 2ρ). This ODE has only one

fixed point at ρ = 0.5, which is independent of α, as we see in

Fig. 1; all three models have the same value of ρ for T = 1.

We proceed by analyzing how different values of α affect

the population. In particular, as shown in Fig. 2, cooperation

increases monotonously with α in the region T > 1, while the

opposite occurs for T < 1. In this case, innovation is beneficial

to cooperation only for the Prisoner’s Dilemma region of the

parameter T . If T < 1, which characterizes the region of Stag-

Hunt and Harmony-Game, cooperation fares better if there are

more imitative agents, i.e., low α values.

B. Structured population

To study the behavior of the proposed model considering

a structured population, we initially perform Monte Carlo

simulations by arranging 104 agents in a square lattice with

periodic boundary conditions. Here, at each time step, an agent

(say i) interacts with its neighbors and, according to the payoff

matrix of the game, obtains a cumulative payoff. Then, agent i

undergoes the “strategy revision phase” (SRP) that is based on

the probability defined in Eq. (2), or in Eq. (3), depending on

its nature, i.e., imitator or innovator. Thus, the described set of

actions (i.e., from the agent selection to the SRP) is repeated N

times (where N is the total number of agents), which constitute
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0 0.25 0.5 0.75 1
 α

0

0.25

0.5

0.75

1
 ρ

T=0.9
T=0.99
T=1
T=0.01
T=1.1

FIG. 2. Asymptotic cooperation level, ρ, vs fraction of innova-

tors, α, here S = 0. Results obtained from the mean-field equation in

the well-mixed population. The increasing of innovators is beneficial

for cooperation in the weak Prisoner’s Dilemma (T > 1), while

detrimental to it in the region T < 1. In T = 1 all models have the

same asymptotic behavior.

a single Monte Carlo step (MCS). The simulation lasts until

the population reaches a stable state (103–104 MCS’s) [10].

After that, results are averaged over the last 1000 MCS and

observed for 10–50 different initial conditions. It is worth

reporting that, at the beginning of each simulation, we start with

a homogeneous strategy distribution, so that half the population

is composed of cooperators, and half of defectors.

Figure 3, based on the weak Prisoner’s Dilemma (S = 0),

shows the ρ-T graph for the following cases: fully imitative

(α = 0), fully innovative (α = 1), and equally mixed popula-

tion (α = 0.5). The behavior in the structured population is

different from the well-mixed case, especially for T > 0.9.

It is worth noting that, in the square lattice, even if the

behavior of the mixed population stays, usually, between the

two pure cases (i.e., α = 0 and 1), some values of T can

lead to different scenarios. In particular, in the range 0.8 <

T < 1.03, detailed in the inset of Fig. 3, the heterogeneous

population exhibits the lowest cooperation value among the

three presented models. Surprisingly, we find that in this region,

0 0.5 1 1.5 2
T

0

0.2

0.4

0.6

0.8

1

 ρ

α=0
α=0.5
α=1

0.85 0.9 0.95 1

0.2

0.4

0.6

0.8

1

FIG. 3. Asymptotic cooperation level (ρ) vs temptation to defect

(T ) in a square lattice for the weak Prisoner’s Dilemma. Each line

corresponds to a different fraction of innovators (α). The inset shows

the T region where the heterogeneous population, α = 0.5, has a

cooperation level lower than any pure population.

0 0.2 0.4 0.6 0.8 1
 α

0

0.2

0.4

0.6

0.8

1

 ρ

T=0.9
T=0.95
T=1
T=1.02
T=1.05

FIG. 4. Asymptotic cooperation level, ρ, for an increasing frac-

tion of innovators (α) in the square lattice. The behavior is quite

different from the well-mixed population. In the region T > 1.04,

it is always better to have a fully innovative population. But for

0.8 < T < 1.04, there is always a minimum value of ρ for mixed

populations.

cooperation is higher when the population is composed of

only one kind of agent (i.e., full imitation or full innovation).

In addition, we note that the considered range of T contains

the critical point of the phase transition from cooperation to

defection in the full imitative model [10], suggesting that a

heterogeneous population undergoes a faster transition than a

homogeneous one.

Figure 4 shows how the final cooperation level varies, as we

increase the number of innovative agents for a given T value

(S = 0). There are regions where the dependence with α is not

trivial, especially around T = 1 (i.e., near the edge between the

Prisoner’s Dilemma and the Stag-Hunt game). Notably, in this

region, the mixing of different updating rules tends to reduce

cooperation. This effect is especially strong near T = 1.04,

where the imitative model shows a phase transition [10]. We

note that this drop in cooperation for mixed updating rules was

also observed in [18], which considers a very different setting,

the Public Goods Game with a different kind of innovative SRP

(win-stay-lose-shift), mixed with the imitation model. Also,

[35] showed that mixed strategies coupled with coevolutionary

processes can lead to spontaneous cyclic dominance and

diverse complex patterns in the population.

To further back our claims, we analyze the same setting

in a triangular lattice with periodic boundary conditions. We

see in Fig. 5(a) the same qualitative behavior observed in the

square lattice, i.e., there is a drop in cooperation level near the

phase-transition point of the system when we mix updating

rules. We see that for 0.95 < T < 1.25, the mixing of strategies

only decreases cooperation. The effect disappears after T >

1.25, when cooperation is already extinct for the fully imitative

population. Figure 5(b) shows the behavior as we increase α.

As in the square lattice, ρ reaches a minimum for small α

values near the range of T where the imitative model has a

drop in cooperation.

We also ran simulations of similar settings in a random and a

scale-free network with an average connectivity degree of 2.7,

generated using the Krapivsky-Redner algorithm [52]. Note

that the scale-free network is a very famous case of spatial

reciprocity when the imitation rule is used [10], and at the
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 T
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0.4
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 ρ

 α=0
 α=0.5
 α=1

(a)

0 0.2 0.4 0.6 0.8 1
 α

0.2

0.4

0.6

0.8

1

 ρ

T=0.95
T=1
T=1.1
T=1.3

(b)

FIG. 5. Asymptotic cooperation level (ρ) in a triangular lattice. In

(a) we show the dependence in T , while in (b) we show its dependence

in α. As we can see, the mixing of update rules can lead to a drop

in cooperation for 0.95 < T < 1.25. The behavior is qualitatively

similar to the square lattice.

same time it is known that the pure innovative rule destroys this

reciprocity effect [16]. The results are shown in Fig. 6(a) for the

random network and Fig. 6(b) for the scale-free network. The

same qualitative effect was observe in these two topologies. As

we approach a value of T where cooperation drops for the pure

imitative or innovative model, here T = 1, cooperation from

the mixed model drops below the value of any pure model.

It is interesting to note the same effect in all these different

topologies, as it points to a general behavior.

Next we present the asymptotic levels of cooperation in the

full T -S parameter space for the square lattice. The imitative

model (i.e., α = 0) is presented in Fig. 7(a), the heterogeneous

population (i.e., α = 0.5) in Fig. 7(b), and the fully innovative

population (i.e., α = 1) in Fig. 7(c). In this parametrization

(R = 1, S = 0), each quadrant of the parameter space corre-

sponds to one specific game: Harmony Game (HG), Snow-

Drift (SD), Prisoner’s Dilemma (PD), and Stag-Hunt (SH), in

a clockwise fashion. Note that the pure cases differ mainly in

the SH and SD regions, and the heterogeneous population leads

to a behavior that is, usually, in between the two pure cases.

With the aim to compare the mixed and pure cases in

the square lattice, Fig. 8 shows the difference in the final

cooperation fraction between the heterogeneous model (ρmix),

and the average value of the pure imitative (ρimt) and pure

innovative (ρinv) models, i.e.,

�ρ = ρmix − [(1 − α)ρimt + αρinv]. (10)

This is particularly useful for observing whether there is any

nonlinear phenomenon. If innovative and imitative agents did

not influence one another, it would be expected that �ρ = 0,

0 0.5 1 1.5 2
 T

0

0.2

0.4

0.6

0.8

1

 ρ

 α=0
 α=0.5
 α=1

(a)

0 1 2 3 4 5
 T

0

0.2

0.4

0.6

0.8

1

 ρ

α=0
α=0.5 
α=1

(b)

FIG. 6. Asymptotic cooperation level (ρ) as we increase T for a

random network in (a) and a scale-free network in (b). The drop in

cooperation for the mixed population, compared to pure populations,

happens in both topologies.

ρ

(a)

 0  0.5  1  1.5  2

T

-1

-0.5

 0

 0.5

 1

S

 0

 0.2

 0.4

 0.6

 0.8

 1

HG SD

PDSH

ρ

(b)

 0  0.5  1  1.5  2

T

-1

-0.5

 0

 0.5

 1

S

 0

 0.2

 0.4

 0.6

 0.8

 1

HG SD

PDSH

ρ

(c)

 0  0.5  1  1.5  2

T

-1

-0.5

 0

 0.5

 1

S

 0

 0.2

 0.4

 0.6

 0.8

 1

HG SD

PDSH

FIG. 7. Asymptotic cooperation level (colors) in the whole T -S

parameter space for the square lattice. We have (a) the pure imitation

model (α = 0), (b) the mixture of imitation and Logit dynamics (α =

0.5), and (c) the pure Logit (α = 1) model. The main differences

happen in the SH and SD regions.

as the mixing of the two would behave as just the average

of the two pure models. Here we use α = 0.2, as this is the

region where the mixed model differs most from the pure

models. Note that the mixed model is mainly different from

the average in the diagonal (S = T − 1), with specific regions

where the mixing can increase the cooperation in even 0.2,

or lower it in −0.8 for the SH region. On the other hand,

there are smaller positive and negative differences through all

the SD region. The Prisoner’s Dilemma and Harmony Game
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Δ
ρ

 0  0.5  1  1.5  2
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 0
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HG SD
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FIG. 8. Difference in asymptotic cooperation level (colors) be-

tween the mixed model (α = 0.2) and the average between the Logit

and imitation model. The mixed model behaves differently from just

the average of the two models, mainly in the SD and SH regions.

regions are almost unchanged, except near the lineS = 0 (weak

Prisoner’s Dilemma).

To understand how the mixing can be detrimental to coop-

eration, we study the subpopulation of innovative cooperators

(Cinv) and imitative cooperators (Cimt) separately. Figure 9

reports the four subpopulations (including innovative and

imitative defectors) for the mixed case, α = 0.5. Note that

imitative cooperators follow the usual behavior expected for

a fully imitative population, i.e., they are almost extinguished

for T > 1.04, while innovative cooperators survive. But un-

expectedly, while there are some innovative defectors, it is

the imitative defectors that fare better for higher T values.

This result strongly suggests that the imitative behavior favors

cooperation for T < 1 and defection for T > 1, while the

innovative behavior has a smaller effect in this regard. We stress

that such behavior is consistent for all values of α.

In the same spirit, we present in Fig. 10 the four subpopula-

tions as we continuously vary α for three different values of T .

In Fig. 10(a), we have low temptation, T = 0.8, where there is
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 ρ C
inv

C
imt

D
inv

D
imt

FIG. 9. Asymptotic cooperation and defector fraction for the two

types of agents, innovative and imitative, in the square lattice. Here

S = 0 and α = 0.5. While innovative cooperators (Cinv) can survive

for high T , conversely it is the imitative defectors (Dimt) that fare

better when T > 1. A similar behavior occurs for all α values.
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(c)

FIG. 10. Asymptotic fraction of the four types of agents (imitative

and innovative cooperators and defectors) as α is increased for (a)

T = 0.8, (b) T = 1, and (c) T = 1.05. The behavior is linear with α

in (a) and (b). However, For T = 1 there is a nonlinear behavior, with

an increase of Dimt until α = 0.2.

no defection and Cinv grows, while Cimt drops linearly with α.

In Fig. 10(c), the temptation value is high (i.e., T = 1.05) and

then the same linear behavior occurs for defectors (although

now there are some innovative cooperators that can survive

for high T ). The most interesting effect nevertheless occurs

for intermediate values of T . Figure 10(b) shows results for

T = 1, where a nonlinear behavior emerges for imitative

agents. We see that, as expected, the increasing in α (i.e.,

the total fraction of innovative agents) is detrimental to im-

itative cooperators. However, remarkably, imitative defectors

take profit from that, growing to a peak at α = 0.2. The mixing

of updating rules favors defection for this range of α values

(specifically imitative defectors). It is worthwhile to emphasize

that the described phenomenon is not intuitive. The increasing

in innovative agents makes the subpopulation of imitative

042305-6



HETEROGENEOUS UPDATE MECHANISMS IN … PHYSICAL REVIEW E 97, 042305 (2018)

0.85 0.9 0.95 1 1.05
T

0

0.5

1

1.5

2

 φ
c ,

  
φ

d

α=0.2
α=0.5
α=0.7

FIG. 11. Ratio between the normalized fraction of innovative and

imitative agents in the square lattice for three different values of α.

The ratio of cooperators is shown in black, and defectors are in red.

Notice that φC grows with T , while φD is always smaller than 1.

defectors sharply grow until 20% of the lattice is composed

of innovative agents.

Figure 11 reports the ratio between innovative and imitative

agents of each strategy (φC and φD)in the region near T = 1. To

compare different fractions of innovative agents for different

levels of α, we normalize each population, dividing the fraction

of innovative cooperators by α, and the fraction of imitative

cooperators by 1 − α (and doing the same for defectors). This

is done to prevent the oversampling of innovative agents in a

scenario with high α values, i.e.,

φC =
Cinv

α

1 − α

Cimt

. (11)

In doing so, we can see that there is a general behavior in

each population that is independent of α. For T < 1, the ratio

φC is close to 1, as cooperators from both types dominate

the population. Although the total number of cooperators

decreases as we increase T , the ratio between innovative

and imitative cooperators keeps increasing, indicating that

innovative ones have the advantage. At the same time, φD

varies for 1 < T < 1.04 but is always below 1 for the whole T

range. In other words, imitative sites will tend to be defectors,

regardless of the total number of defectors. This general

behavior occurs for any value of α.

Lastly, we analyze the snapshots of the square lattice to

better understand this phenomenon on a microscopic level.

Note that the Monte Carlo method is probabilistic, and accurate

results are dependent on sufficiently large averages [53,54].

Nevertheless, looking at frames of the lattice, after the system

has reached dynamical stability, can lead us to valuable

insights. Those snapshots are shown in Fig. 12. We remind

the reader that the pure imitative model has a phase transition

in T = 1.04 [10], and near this region cooperation is mainly

sustained because cooperators tend to form compact clusters to

support each other [25]. This behavior can be seen in Fig. 12(a),

where α = 0.1 and most of the population is imitative. At

the same time, the pure innovative Logit model has a higher

fraction of cooperators for T = 1.04. However, in this case,

cooperators do not form compact clusters. Instead, they spread

out in the lattice and cooperation is sustained because of other

mechanisms related to second-order spatial effects, as seen in

(a) (b)

FIG. 12. Snapshots of the square lattice with T = 1 for (a) α =

0.1 and (b) α = 0.7. As we mix innovators, the imitative cooperator

islands get dissolved, leading to a drop in total cooperation. Cooper-

ators are shown in blue and defectors in red.

[12,16]. Mixing both models, innovative cooperators spread

through the lattice, and, in turn, imitative cooperators are not

able to form clusters to protect themselves. At the same time,

imitative defectors manage to invade cooperators from both

subpopulations, leading to the downfall of cooperation. This

can be seen in Fig. 12. As we increase α, the clusters tend

to dissolve. The process of dissolving the cooperator islands

is gradual and continuous in α. This is highly dependent on

the parameters, and just a small fraction of innovators can

destroy the clusters when T is near the phase transition point.

The mixing of both updating rules near the critical point man-

ages to neutralize the mechanism for maintaining cooperation

from both imitative and innovative models. This is a robust

mechanism, happening in the square and triangular lattice, as

well as in random and scale-free networks. Nevertheless, it is

important to keep in mind that this phenomenon happens for a

specific range of parameters in the T -S plane, near the phase

transition of the pure imitative model.

IV. CONCLUSION

In this work, we investigate the evolutionary dynamics of

heterogeneous populations, whose interactions are based on

dilemma games. In particular, our populations are composed of

two kinds of agents, i.e., innovators and imitators. In principle,

the main difference between them is related to the information

source they use to modify their strategy, e.g., from cooperation

to defection (or vice versa). Notably, innovators can estimate

the potential gain they would receive when changing strategy,

under the hypothesis that those of their neighbors remain

constant. On the other hand, imitators make decisions by

copying one randomly selected neighbor, depending on their

payoff difference. As a result, innovators are able to adopt

even strategies that do not exist in their neighborhood, while

imitators cannot do the same.

Innovation is an issue of paramount relevance in a number

of systems, spanning from social to biological phenomena.

Thus, it is expected to have an impact also in evolutionary

games. To shed further light on this aspect, the proposed model

aims to analyze the influence of innovation by considering the

updating mechanisms, i.e., the processes that allow agents to

change strategy. To this end, we first studied the dynamics of

a population in the mean-field case, so that we were able to
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solve the model analytically. Then, we performed numerical

simulations considering agents arranged on a regular square

and triangular lattice, as well as in random and scale-free

networks.

The well-mixed case has a transition at T = 1, where

ρ = 0.5, for any fraction of innovators. We found that, if

T < 1, imitation supports cooperation while, if T > 1, in-

novation supports cooperation. This behavior was shown to

be monotonous with the fraction of innovators only for the

well-mixed case. The structured case usually shows a behavior

in between the pure kinds (full imitation and full innovation),

although it is not a linear relation, i.e., 〈ρimt + ρinv〉 �= ρmix.

On the other hand, remarkably, we found that cooperation has

a nontrivial behavior for the heterogeneous population near

phase transition points. For the square lattice, in the region

0.8 < T < 1.04 there is always a minimum level of cooper-

ation for any population mixing (0 < α < 1). The triangular

lattice, random, and scale-free networks also show a similar

behavior, i.e., cooperation drops near the phase transition

point of each topology when we mix strategy updating rules.

Specifically, near the transition from cooperation to defection,

homogeneous populations perform better than heterogeneous

ones in supporting cooperation. We also note that this kind

of behavior has been reported in investigations based on a

different scenario (i.e., using the Public Goods Games, mixing

imitative and win-stay-lose-shift updates).

We obtained compelling evidence that suggests this behav-

ior is due to the interaction of innovative and imitative agents in

heterogeneous populations. In addition, lattice snapshots and

the ratio of innovative to imitative agents indicate that near

T = 1, innovative cooperators destroy the spatial reciprocity,

while at the same time imitative defectors can invade both

populations of cooperators. The mixing of two updating rules

can destroy both mechanisms that sustain cooperation in each

of the two pure cases.

The results of our investigations confirm that innovation

plays a nontrivial role in evolutionary games. Diversity and

heterogeneity usually increase cooperation due to assortative

effects. However, we have seen that this may not always be the

case, as in some particular conditions mixed strategy revision

rules can lead to lower cooperation.
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