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Abstract—Recent advancements in the fields of sensor 
equipment and wireless sensor networks have opened the window 
of opportunity for many innovative applications. In this paper, 
we propose a new architecture for building decision support 
systems using heterogeneous wireless sensor networks. The 
architecture is built around standard hardware and existing 
wireless sensor networks technology. We show the effectiveness 
of the proposed architecture by applying it to a flood prediction 
scenario. 
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I. INTRODUCTION 
The Internet of Things (IoT) [1] revolution where cost 

efficient low-powered sensors and actuators are being deployed 
in massive scale over large areas and communicating over the 
Internet is now becoming a reality. In combination with state-
of-the-art wireless sensor networks (WSNs) [2] technologies 
interesting applications can easily be developed reaching far 
beyond what has been delivered by M2M (Machine-to-
machine) systems until now. This way, 50 billion devices are 
predicted to be connected in 2020 [3]. 

Applications include a variety of examples making objects 
smarter like smart cities, smart regions, smart grids, smart 
homes, and home automation, Earlier, such systems were 
typically designed in stovepipes where end nodes where very 
much tied to a specific communication technology and tailor 
made backend systems. The main trend in both research and 
commercial applications is the move from vendor-specific 
installations to standards based and open source 
implementations. 

This paper proposes a new architecture for building 
decision support systems using heterogeneous wireless sensor 
networks where the architecture is built around standard 
hardware and existing wireless sensor networks technology. 
We show the effectiveness of the proposed architecture by 
applying it to a flood prediction scenario. 

The rest of the paper is organized in the following way. 
Section II covers related work, while Section III outlines our 
architecture proposal. Section IV describes the flood prediction 
scenario, while Section V finally concludes our findings. 

II. RELATED WORK 
Flood prediction systems have been used in many parts of 

the world since long ago. With the introduction of WSN 
technology such systems have been easier to design for higher 
accuracy and faster reactions. 

Ahmad et al. [4] made a reviewed flood prediction and 
disaster risk analysis using of GIS-based wireless sensor 
networks. Furthermore, Seal et al. [5] described and evaluated 
a simple flood-forecasting scheme using wireless sensor 
networks, while Khedo [6] described real-time flood 
monitoring using wireless sensor networks. Moreover, Basha et 
al. [7] proposed and evaluated model-based monitoring for 
early warning flood detection, while Shukla et al. [8] described 
how to design an architectural model for flood monitoring 
using wireless sensor networks. An interesting case from Brazil 
was described by Furquim et al. [9] where an accurate flood-
forecasting model using WSNs and chaos theory was studied 
in a real deployment. Finally, Ishida et al. [10] proposed a real-
time disaster damage information sharing system for disaster 
countermeasures headquarters at the time of large-scale natural 
disaster. 

Our previous work includes [11] where we described how 
smart risk assessment systems can be built using belief-rule 
based decision support systems and WSN technologies and 
[12] where a secure and scalable system for sharing 
information in smart homes was described and evaluated. 

III. PROPOSED ARCHITECTURE 

A. Challenges and Architecture Requirements 
When designing a suitable architecture supporting data 

collection from low-cost sensors spread over a large 
geography, we considered that many existing solutions are 
non-interoperable and vendor-specific. Our proposed solution 
is standards-based and addressing the following basic 
requirements: 

• Modularity (separating functionality within different 
entities with clearly defined interfaces); 

• Scalability (enabling an architecture that scales with an 
increased number of connected nodes); and 
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• Extendibility (enabling step-wise deployment and 
adding/removing of capabilities at later stages)  

Our proposed architecture is composed of three distinct 
parts, namely: 

• Cloud/Server-side entity supporting processing 
managing, monitoring data from IoT devices; 

• Suitable networking model to handle sensor 
communication; and 

• Suitable devices (low-cost, long lifetime, easy 
deployable, etc.) 

The architecture follows a layered structure separating the 
above-mentioned functions also taking security and mobility 
into consideration. 

B. Proposed Heterogeneous WSN Architecture 
To support the challenges and requirements laid out in the 

previous subsection, we designed a heterogeneous wireless 
sensor network (WSN) architecture with three distinct layers, 
see figure 1. 

 
Fig. 1. Layered architecture. 

The data layer is responsible for handling of data and our 
choice is to use the Efficient XML Interchange (EXI), being 
essentially an encoding format that allows efficient interchange 
of the an XML information set. EXI also illustrates effective 
processor implementations of that encoding. 

For the application and transport layer, where a basic 
connectivity service is established our choice is the 
Constrained Application Protocol (CoAP) on top of User 
Datagram Protocol (UDP). CoAP is a REST-ful application 
protocol modeled on HTTP semantics with a much smaller 
footprint than MQTT or HTTP itself by taking a binary rather 
than text-based approach. 

The network layer in our solution is realized as an IPv6 
network with support for 6LOWPAN (IPv6 over Low power 
Wireless Personal Area Networks). This is the state-of-the-art 
technology for enabling IP to low power devices like sensors 
cutting down packet overhead, allowing for more payload data 
to be transported. Also, 6LOWPAN only uses 30 KB for a full 
featured stack compared to 90 KB for ZIGBEE. 

C. Communication solutions and sensor hardware for the 
specific scenario 
To support the afore-mentioned challenges and 

requirements we are using Arduino, an open-source electronics 
platform based on easy-to-use hardware and software. Sensors 
are measuring rainfall, river water level, and river water flow. 
For the actual communication we are proposing a combination 
of Zigbee, Ethernet, Wi-Fi connectivity and SMS. In 
combination with that, we propose a sensor data processing 
system converting analog data in a form that could be fed into 
the BRB ES. Last, but not least, we also propose a calibration 
algorithm for sensor data. 

IV. FLOOD PREDICTION SCENARIO 
The data of the various flood intensifying factors as 

mentioned in the previous section is generated by the sensor 
data processing system in a format that can be fed into the 
Belief Rule Based Expert System (BRBES) consisting of a 
knowledge base and an inference engine. Belief Rule Base has 
been used to build the knowledge base while Evidential 
Reasoning, which is multi criterion decision analysis 
procedures and can handle both qualitative and quantitative 
data, considered as the inference engine [13]. Figure 2 
illustrates the interface of the BRBES. Various flood 
intensifying factors can be categorized as meteorological (X8), 
geological (X9), river characteristics (X10), topographical 
(X11) and human activities (X12). These are shown in the 
middle level of the BRB tree as shown in figure 1. The middle 
level factors can be termed as drivers. The value of each driver 
depends on a number of factors. For example, meteorological 
driver depends on rainfall (X22) and rainfall duration (X23). 
These factors (X22, X23) are shown as the leaf nodes of the 
BRB tree. 

 

Fig. 2. BRBES’s Interface. 

Other leaf node factors consist of soil infiltration rate, soil 
saturation limit, soil type, river depth, slope, aspect, unplanned 
infrastructure etc. as can be seen from figure 1. The input data 
includes the collection of the data related to the leaf node 
factors of the BRB tree. It is interesting to note that some of 
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these leaf node data are quantitative in nature and others are 
qualitative in nature. For example, rainfall data is an example 
of quantitative data while unplanned infrastructure is an 
example of qualitative data. Sensors are suitable to collect the 
quantitative data and hence, various sensors have been used to 
collect the data, which are quantitative in nature. However, 
qualitative data has been collected by looking at the documents 
and human perception of a flood prone area. Literature showed 
that various flood prediction models developed either using 
qualitative data or using the quantitative data but not by 
considering the both types of data [14][15]. In addition, various 
types of uncertainty such as ignorance, incompleteness, 
randomness, and vagueness, imprecision exist with these data 
[16][17]. 

There exists various knowledge representation schemas 
such as Propositional Logic (PL), First Order Logic (FOL), 
Fuzzy Logic (FL), Semantic Nets, Frames, Case based 
reasoning but they are not equipped to handle the mentioned 
types of uncertainty [18][19]. For example, FL can handle 
uncertainty due to vagueness or imprecision but it cannot 
handle uncertainty due to ignorance or incompleteness or 
ignorance in fuzziness. PL and FOL can only handle assertive 
knowledge, which is either true or false. Hence, it is necessary 
to have a knowledge representation schema, which can handle 
the above uncertainties. Belief Rule Base, which is a 
knowledge representation schema, can handle the mentioned 
type of uncertainties. There exits inference mechanism such as 
Forward Chaining and Backward chaining but they are not 
equipped to process uncertain data [20][21]. Therefore, ER has 
been considered as an inference engine, which is used to 
aggregate the rules to obtain the value of the consequent of a 
BRB. 

The Belief Rule Base (BRB) is an extension of traditional 
IF-THEN rule base. A belief rule has antecedent part and 
consequent part. Antecedent attribute take referential values 
and possible belief degrees are associated with each 
consequent. The rule weights, antecedent attribute weight, and 
belief degrees are knowledge representation parameters used in 
BRB to capture the uncertainty. A belief rule can be defined as:  

Rk:IF Rainfall is Medium AND Rainfall Duration is High 
THEN Meteorological Condition is 
{(Severe,0),(Moderate,0.4),(Low,0.6)}  

In the above rule ‘Rainfall’ and ‘Rainfall Duration’ are the 
antecedent attributes, while ‘Medium’ and ‘High’ are the 
referential values. ‘Meteorological Condition’ is the 
consequent attribute with referential values such as ‘severe’, 
‘moderate’, and ‘low’. This rule is complete because the 
summation of degree of belief associated with each referential 
value of the consequent attribute is one. If the summation is 
less than one then the rule is considered as incomplete, which 
may due to incomplete information or ignorance. The 
relationship between antecedent attributes and the consequent 
attribute is non-linear, which is linear in case of IF-THEN rule. 
There could be L number of rules in a BRB (K = 1, ..., L). Each 
antecedent and consequent attributes may have N number of 
referential values. 

The inference procedures consists various steps including 
input transformation, rule activation, belief update and rule 

aggregation using Evidential Reasoning approach. Figure 3 
shows the structure of the inference procedures of the BRBES. 

The task of input transformation consists of distributing the 
input data over the referential values of the attribute of a rule, 
which called matching degree. In our case, when sensor data 
for a particular flood intensifying factor is received from the 
sensor it is then distributed over the referential values of the 
antecedent attribute of a rule. For example, an antecedent 
attribute is “Rainfall” and its referential values are “High”, 
Medium” and “Low”. A belief rule base consists of too many 
rules and the number of rules in a rule base depends upon the 
antecedent attributes and their referential values. For example, 
it can be observed from Figure 2 that ‘Meteorological 
Condition” sub rule base has two antecedent attributes namely 
“rainfall” and “rainfall duration” and if each of the attributes 
has three referential values then this sub rule base consists of 
nine rules. 

 
Fig. 3. Single-layer BRB inference architecture with RIMER Methodology. 

Once the matching degree is calculated the rules are called 
packet antecedent or they are active or they reside in the short 
term memory while the rule base resides in the long term 
memory. The calculated matching degree is used to calculate 
the activation weight of each rule. It is interesting to note that 
each rule does not have the same weight in calculating the 
referential values of the consequent attribute. The summation 
of the rule activation weight of a rule base should need to be 
one. 

When an input data for any of the leaf nodes is ignored then 
the belief degree associated with each rule in the rule base 
should need to be updated. This is done by following the 
procedures mentioned in [13]. The aggregation of the rules is 
carried out by using either analytical or recursive evidential 
reasoning algorithm [13]. By applying the ER algorithm the 
rules of the “Human Activity” sub rule base have been 
aggregated by taking account of the input data as shown in 
Figure 2. The combined degree of belief associated with the 
referential values (high, medium, low) of the consequent 
attribute (human activity) of this sub rule base obtained as 
{(High, 0.2764), (Medium, 0.7736), (Low, 0)}, which can be 
seen from Figure 2. The combined degree of belief, associated 
with the referential values of the flood water level (X7), 
obtained which is {(High, 0.0008), (Medium, 0.103), (Low, 
0.8963)}. The fuzzy value can be converted into crisp value by 
using the utility score associated with each referential value to 
obtain flood water depth, which is in this case is 52.8292 cm. 
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Fig. 4. Setup of the flood prediction scenario. 

In this way, BRBES allows the generation of different 
flood scenarios of an area by taking account of sensor data in 
real time basis. Consequently, various decisions or response 
strategies can be developed to reduce the risks of flooding in 
an area. 

V. DISCUSSION 
The architecture proposed in Section 3 is being used in 

flood prediction scenario as described in Section 4. We are 
using the setup depicted in Figure 4. Data is visualized in GIS 
system showing values in different regions on an interactive 
map. 

The proposed architecture has shown to successfully meet 
the challenges and requirements outlined. We are now 
developing new scenarios and collecting data from the system 
developed. 
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