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Abstract: A combination of different types of redox-active systems in one molecule makes it possible
to create coordination compounds with extended redox abilities, combining molecular and electronic
structures determined by the features of intra- and intermolecular interactions between such redox-
active centres. This review summarizes and analyses information from the literature, published
mainly from 2000 to the present, on the methods of preparation, the molecular and electronic structure
of mixed-ligand coordination compounds based on redox-active ligands of the o-benzoquinone
type and ferrocenes, ferrocene-containing ligands, the features of their redox properties, and some
chemical behaviour.
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1. Introduction

Currently, the coordination chemistry of redox-active compounds is attracting a lot
of attention from various research groups worldwide [1–14]. Such growing attention is
caused by the fact that unlike “classical” ligands, redox-active ones significantly expand
the range of redox transitions in their complexes and the number of different electronic
states associated with combinations of oxidized (reduced) forms of redox-active ligands
and the central metal atom.

Distinguished representatives of this type of ligands are o-benzoquinones and related
O,N-; N,N′-; S,N-; etc. chelating ligands [15–25]. They can reversibly accept one or two
electrons while in the coordination sphere of the metal, thus forming the radical anion
or dianion form of the ligand. In turn, this property of redox-active ligands allows their
complexes to be active in various oxidative addition, reductive elimination, and some
other reactions, which are in many respects the key to most catalytic processes [26–30].
Some catalytic systems for various reactions of organic chemistry based on complexes
with redox-active ligands of this type have been created to date, e.g., hydrophosphination,
hydroarylation, hydroamination [31], formation of C–C bonds [32–35], C–O bonds [36], C–
N bonds [37,38], activation of C–Hal bonds [39], etc.; catalysts for the oxidation of various
substrates, including catechol oxidase, etc. [40–43]; catalysts of polymerization [44,45],
hydroboronation, and cyanosilylation [46], etc.

On the other hand, the chemistry of ferrocene has been actively developed in recent
years [47–51]. The unique geometry of the sandwich structure, as well as the ability to
perform reversible oxidation, forming a ferrocene/ferrocenium (Cp2Fe/Cp2Fe+) redox pair,
makes it a suitable object for studying electron transfer processes, utilising ferrocenes in
the design of molecular magnets [52–54], in catalysis [55–57], and as a standard and as
electrochemical agents in electrochemical studies [58]. Functionalized ferrocene derivatives
are widely used in coordination chemistry as donor ligands [59–61].
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A combination of different types of redox-active systems (e.g., derivatives of the
quinone series and ferrocene) in one molecule makes it possible to develop coordination
compounds with extended redox capabilities, combining molecular and electronic struc-
tures determined by the features of intra- and intermolecular interactions between these
redox-active centres. Thus, the study of metal complexes that combine various redox
centres, such as o-benzoquinone/o-iminobenzoquinone and ferrocene, is of undoubted
interest from the point of view of the formation of new types of coordination compounds
that can be involved in a wide range of redox processes. This makes it possible to reveal
the features of the formation of radical ion pairs and the factors that control the process of
electron transfer. However, to date, not many works are devoted to studying systems based
on heteroligand metal complexes that simultaneously contain several redox-active centres,
such as o-benzoquinone-related ligands and the ferrocene group in the literature. In the
present review, we summarize the literature dealing with the coordination chemistry of
systems combining redox-active ligands of o-quinone, o-iminoquinone, and related types
with ferrocene- or ferrocenyl-containing ligands. The list of complexes covered in this
review is given in Appendix A.

2. Metal Complexes Based on Redox-Active Ligands in Reactions with Ferrocenes

The ability of ferrocene to perform reversible oxidation makes it possible to create
charge-transfer systems with ferrocene acting as an electron donor [62–66]. The salts based
on decamethylferrocene Cp*2Fe and tetracyanoethylene (TCNE) or 7,7,8,8-tetracyano-p-
quinodimethane (TCNQ) were the first examples of such systems (Scheme 1). Miller and
co-workers [67] found that the unit cell contains linear chains of alternating [Cp*2Fe]•+ radical
cations and TCNE•− radical anions with spin S = 1/2 (Cp* = pentamethylcyclopentadienyl).
For these compounds, the authors have found a ferromagnetic exchange between the donor
(Cp*2Fe) and the acceptor (TCNE or TCNQ) in the linear chain ...D•+A•−D•+A•−D•+A•−...
at low temperatures [62].
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Scheme 1. The charge-transfer systems based on decamethylferrocene and tetracyanoethylene
(TCNE) or 7,7,8,8-tetracyano-p-quinodimethane (TCNQ).

Other examples of charge-transfer systems are complexes based on hexamethyl-
substituted ferrocene derivatives, for example, L1–L3 containing thioether, S-heterocyclic,
or vinyl tetrathiafulvalene substituents (Scheme 2) [68].
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Acting as electron donors (D), such ligands can easily be oxidized with electron accep-
tors (A) to form paramagnetic salts containing nickel or platinum(III) dimers (Scheme 3).
The authors have shown that in the crystal packing of charge-transfer complexes (CT
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complexes) [L2]+[Ni(mnt)2]− and [L3]+[Ni(mnt)2]−, the donor and acceptor fragments are
arranged in the order D+A–A–D+ with different arrangements of dimers [{Ni(mnt)2}2]2−,
which leads to a strong antiferromagnetic exchange between paramagnetic centres in A−A−

fragments (J = −302 cm−1 for [L2]+[Ni(mnt)2]−, and J = −630 cm−1 for [L3]+[Ni(mnt)2]−).
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In contrast to these complexes, salts [L1]+[Ni(mnt)2]− and [L1]+[Pt(mnt)2]− demon-
strate structural ordering D+A−D+A− and ferromagnetic nature of the exchange between
[{Ni(mnt)2}2]2− dimers at low temperature. Throughout the CT complexes series, the
contribution of the magnetic exchange interaction between the donor (D+) and acceptor
(A−) does not significantly affect the magnetic susceptibility of these ionic systems [68].

B.M. Hoffman et al. [69] have characterized charge-transfer complexes [Cp*2M]+[Co(HMPA-
B)]− based on metallocenes Cp*2M (M = Fe, Co) and cobalt(III) bis-amidophenolate com-
plexes (Scheme 4). X-ray diffraction analysis has shown the formation of a stacked structure
in [Cp*2Fe]+[Co(HMPA-B)]−. The alternation of the [Cp*2Fe]+ fragment with the plane of
the [Co(HMPA-B)]− anion of the complex was observed. This structure is reflected in the
magnetic properties of the compound: a ferromagnetic exchange was found between the
[Cp*2Fe]+ cation with spin S = 1/2 and the complex anion inside one stack.
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An analysis of literature data on metal complexes based on redox-active quinone-type
ligands showed that this class of compounds could also react with metallocenes (usually
cobaltocene, and only a few examples of ferrocene) acting as reducing agents and form
ionic-type complexes [70–72]. C.G. Pierpont et al. [70] have shown that the interaction of
cobaltocene and nickel(II) bis-o-benzosemiquinone complexes NiII(3,6-DBSQ)2 proceeds as
the reduction of both o-benzosemiquinone ligands to catecholates along with the oxidation
of the central metal atom Ni(II) to Ni(III) (Scheme 5, 3,6-DBSQ is a radical anion 3,6-di-tert-
butyl-o-benzosemiquinone, 3,6-DBCat is a dianion 3,6-di-tert-butylcatecholate).
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S. Kitagawa et al. [71,72] characterized a series of related ionic chromium complexes
in sufficient detail. These compounds were prepared by the reaction of ferrocene or
cobaltocene with chromium(III) tris-o-benzosemiquinones CrIII(X4SQ)3, where X = Cl or
Br (Cl4SQ is tetrachloro-o-benzosemiquinone, Br4SQ is tetrabromo-o-benzosemiquinone)



Molecules 2022, 27, 3928 4 of 28

(Scheme 6). The authors pay attention to the fact that chromium(III) monoanionic complexes
can be synthesized by reducing the initial complex with cobaltocene or ferrocene. In con-
trast, the dianionic complex derivatives can be isolated only by the interaction of chromium
tris-o-benzosemiquinolate with cobaltocene in a molar ratio of 1:2. Of course, this is due to
the significant difference in the redox potentials of the selected metallocenes. For the mono-
and di-reduced forms, in the electronic absorption spectra, charge-transfer bands between
ligands in different oxidation states are observed in the range of 3130–10,000 cm−1.
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Besides o-quinone complexes, other types of complexes with chelating redox-active
ligands also undergo the reduction of redox-active ligand with cobaltocene. For example,
K. Wieghardt and co-authors [73] have shown that the interaction of one equivalent of
cobaltocene with iron nitrosyl complex with mono- and di-reduced forms of S,S′-dithiolene
ligands results in the reduction of the radical anion ligand to a dianion ligand. In turn, the
addition of another equivalent of cobaltocene also caused a reduction of nitrosyl ligand
(Scheme 7).
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Scheme 7. The reduction of mixed-ligand iron nitrosyl complex with mono- and di-reduced forms of
S,S′-dithiolene ligands with cobaltocene.

The fact of the formation of the monoanionic derivative [Fe(NO)(L)2]−[Cp2Co]+ is
confirmed by X-ray diffraction data: the authors have unequivocally indicated the forma-
tion of a complex with chelate-bound fragments corresponding to the dianion form of the
dithiolene ligand.

o-Semiquinone complexes with a doublet ground spin state are fruitful objects for EPR
spectroscopic investigations. An inalienable property of o-quinones is the possibility of
forming reduced o-semiquinone derivatives with different reductants, such as alkali metals,
cobaltocene, or copper in the presence of some donor ligands, e.g., phosphines [74–77].
Thus, G.A. Abakumov et al. [74] have shown that cobaltocene efficiently acts as a re-
ducing agent for di-o-benzoquinone, forming the derivative (Q-CH2CH2-SQ)•−[Cp2Co]+

(Scheme 8). The isotropic EPR spectrum of this radical anion complex is a doublet of triplets
(1:2:1) due to the interaction of an unpaired electron with a proton of the o-semiquinone
ring and two protons of the methylene group closest to it with hyperfine coupling (HFC)
constants ai(1HSQ) = 3.6 G and ai(2 1HCH2) = 2.1 G, respectively.
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Scheme 8. The reduction of di-o-benzoquinone Q-CH2-CH2-Q with cobaltocene or elementary
copper in the presence of ferrocene containing neutral diphosphine ligand dppFc.

Using 1,1′-bis-(diphenylphosphino)ferrocene (dppfc) as an example, the authors
have shown that ferrocenes with donor phosphorus-containing groups could act as neu-
tral donor ligands in o-benzosemiquinone complexes, e.g., (Q-CH2CH2-SQ)CuI(dppfc)
(Scheme 8) [74]. The EPR spectrum of this copper(I)-diphosphine complex reflects the
HFC of an unpaired electron with a proton of the o-benzosemiquinone moiety (with HFC
constants ai(1HSQ) = 3.2 G and ai(2 1HCH2) = 2.0 G), magnetic isotopes of a copper atom,
and two phosphorus atoms (ai(2 31P) = 18.9 G). Interestingly, only components correspond-
ing to the transition ∆ms(31P) = ±1 are observed at room temperature. In contrast, as the
temperature rises to 350 K, the intensity of the components ∆ms(31P) = 0 increases, which at
300 K are significantly broadened and have zero intensity. The authors attribute this effect
to the slow exchange of phosphine ligands between the apical and equatorial positions
in the copper coordination sphere on the EPR time scale. It is noteworthy that dppFc
was one of the widely applied ligands in the chemistry of mixed-ligand bis-phosphino-
copper(I) o-semiquinones (e.g., (3,6-DBSQ)CuI(dppfc) [75], Ph3Sb(Cat-SQ)CuI(dppfc) [76],
(Q-TTF-SQ)CuI(dppfc) [77].

In [78], the first example of charge transfer in systems containing a metallocene and
a non-transition metal complex with redox-active o-quinone-type ligands was described.
G.A. Abakumov et al. have shown that the interaction of ferrocene with mono- and bis-
3,6-di-tert-butyl-o-benzosemiquinolate halide-containing tin(IV) complexes in acetonitrile
leads to a reversible electron transfer from ferrocene to the o-benzosemiquinone ligand and
the formation of ionic complexes [(3,6-DBCat)SnBr3(THF)]−[Cp2Fe]+ and [(3,6-DBSQ)(3,6-
DBCat)SnCl2]−[Cp2Fe]+ (Scheme 9). This interaction between ferrocene and halogenated
Sn(IV) o-benzosemquinolates depends on the nature of the solvent: the replacement of
acetonitrile with tetrahydrofuran (THF) shifts the equilibrium shown in Scheme 9 to the
starting reagents. The formation of ionic complexes was confirmed by UV, UV-Vis, and EPR-
spectroscopy as well as X-ray diffraction. For example, the electron transfer from Cp2Fe to
(3,6-DBSQ)SnBr3(THF) or (3,6-DBSQ)2SnCl2 results in the appearance of new absorptions
with maxima at about 620 nm typical for the complexes containing a ferrocenium cation.
Additionally, a broad ligand-to-ligand charge-transfer band (LLCT) with a maximum at
930 nm was observed in the UV-spectrum of [(3,6-DBSQ)(3,6-DBCat)SnCl2]−[Cp2Fe]+ in
acetonitrile. This LLCT band is typical for complexes containing mixed-valency ligands (in
this case, SQ and Cat).
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Scheme 9. The reduction of mono- and di-o-benzosemiquinonato tin(IV) halides with ferrocene to
give charge-transfer complexes.

Magnetochemical studies of the mixed-ligand complex [(3,6-DBSQ)(3,6-DBCat)SnCl2]−

[Cp2Fe]+ containing the ferrocenium radical cation (D•+) and the radical anion of the tin(IV)
complex (A•−) have shown that complexes of this type demonstrate ferromagnetic exchange
in a linear chain of alternating donor-acceptor-donor fragments (···D+•A−•D+•A−•···).

The oxidation of ferrocene with tin(IV) o-semiquinone complexes is quite unusual
in the chemistry of o-semiquinone complexes. Usually, ferrocenium salts are used as a
one-electron oxidant to turn catecholato complex into an o-semiquinone derivative.

3. Metal Complexes Based on Ferrocene-Containing Redox-Active Ligands

Much attention is paid to the study of reactions with electron transfer, which are of
crucial importance in many fundamental catalytic and biochemical processes, including
photosynthesis, respiration, the transmission of nerve impulses, etc. [79–85]. Among the
model systems studied, ferrocene derivatives and ferrocene-containing complexes occupy
a special place [47]. As shown above, when interacting with acceptors, ferrocene forms
a stable and reversible Fe(II)/Fe(III) electrochemical pair, which allows it to enter into
electronic interactions with other π-systems. The resulting oxidation product is the ferroce-
nium cation, the paramagnetic centre, which can be involved in intra- and intermolecular
magnetic exchange. From this point of view, it is interesting to consider the molecular and
electronic structure, as well as the properties of various types of metal complexes: (1) com-
pounds containing redox-active centres of different nature, such as quinone, iminoquinone,
iminophenol, dithiolene, and other types of ligands substituted with a ferrocenyl group
and (2) compounds with redox-active ligands coordinated to the central metal atom in a
complex containing a ferrocene fragment in an additional ligand.

An analysis of the literature on the chemistry of ferrocenes has shown that one of
the most common methods for the functionalization of complexes of various metals with
ferrocene groups is the use of Schiff base-type ligands bound to ferrocene [86–99].

For example, the scientific group of M. Mazzanti used the metathesis reaction between
UI4(OEt2)2 and two equivalents of the potassium salt of the tetradentate Schiff base lig-
and containing a ferrocene group to obtain a bis-ligand uranium(IV) complex U(salfen)2
(Scheme 10) [86].
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Scheme 10. The metathesis reaction between UI4(OEt2)2 and potassium salt of the tetradentate Schiff
base ligand containing a ferrocene group to obtain a bis-ligand uranium(IV) complex U(salfen)2, and
its reduction.

The authors have also shown that the reduction of the U(salfen)2 complex occurs at
the ligand centre and includes the reduction of imino groups of Schiff base ligands. As
a result, an intramolecular C–C bond formation occurs within the ligand between two
imino groups of the ferrocene-containing ligand, but not the formation of an interligand
C–C bond, as previously reported for tridentate and tetradentate Schiff bases in similar
complexes without a ferrocenyl function [100,101]. The authors attribute this feature to
the high flexibility of the ferrocene bridge connecting two parts of the imino groups of
one ligand.

J.-R. Hamon et al. [87,89] used the condensation reaction of 2-aminophenol and the cor-
responding ferrocenylacetone to obtain and characterize (using IR-, 1H and 13C NMR-, UV-
spectroscopy, XRD) ferrocene-containing phenol LONOH2, which reacts readily with cop-
per(II) and nickel(II) salts in the presence of neutral donor ligands (pyridine, 4,4′-bipyridyl),
thus forming the corresponding O,N,O′-chelate-bound complexes (LONO-Fc)MII·Py and
(LONO-Fc)MII·(4,4′-bipy)·MII(LONO-Fc), where M = Ni or Cu (Scheme 11). The related
heterobimetallic copper(II) and nickel(II) complexes of the type (LONO-Fc)MII·(PyMP)
(where PyMP is pyridyl 2,6-diphenylmethylenepyran) were described in 2019 by the same
group [90]. Complexes (LONO-Fc)MII·Py and (LONO-Fc)MII·(PyMP) are very similar and
display two quasi-reversible one-electron oxidation waves: at E1/2

1 = 0.05–0.15 V (vs.
Cp2Fe/Cp2Fe+ couple) and E1/2

2 = 0.40–0.45 V. In each case, the first wave was associated
with the oxidation of the ferrocenyl moiety, while the second wave was assigned to the
further oxidation both at the iron and M(II) centres.

According to the electrochemical data, two ferrocene centres of symmetrical Ni(II)
and Cu(II) complexes (LONO-Fc)MII·(4,4′-bipy)·MII(LONO-Fc) are oxidized at the same
redox potential, which indicates the absence of their influence on each other through the
conjugated 4,4′-bipyridyl bridge [87].

A completely different picture is observed for a series of bi/trinuclear neutral asym-
metric copper and nickel complexes based on ferrocene-containing Schiff base ligands
(Scheme 12) [93–95].
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Scheme 12. The synthesis of complexes (LONNOn-Fc)M and [(Cp*Ru+LONNOn-Fc)M]PF6
−, where

M = Ni or Cu (n = 1, 2).

In this case, the strong electronic interaction between two organometallic centres
(Fe-Ru), namely, between the ferrocenyl group and the electron-withdrawing mixed-ligand
ruthenium sandwich structure through the π-conjugated macrocyclic organometallic bridge
[(LONNO)Ni], is observed. The authors confirm this fact by the presence of an anodic shift
in the Fe(II)/Fe(III) oxidation potential in nickel complexes by 108 and 54 mV upon passing
from binuclear complexes (LONNO1-Fc)Ni and (LONNO2-Fc)Ni to trinuclear complexes
[(Cp*Ru+LONNO1-Fc)Ni]PF6

− and [(Cp*Ru+LONNO2-Fc)Ni]PF6
−, respectively.

Another evidence in favour of the electronic interaction between organometallic cen-
tres (ferrocene/ruthenium mixed-ligand sandwich) through the π-conjugated macrocyclic
bridge was the presence of two intense broad absorption bands in the visible region of
the UV spectra of solutions of complexes shown in Scheme 12 in CH2Cl2 and dimethyl
sulfoxide (DMSO): a band in the range of 330–390 nm (intra-ligand π–π* transition) and a
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broad band in the region of 400–600 nm, which the authors attribute to the ligand-ligand
and metal-ligand charge-transfer band [94].

A series of asymmetric nickel(II) and copper(II) complexes of the related type (LONNO-
Fe)M [92,96], M = Ni or Cu, (Scheme 13) based on a tetradentate-bound Schiff base was
synthesized by a similar method as described by the group of J.-R. Hamon [93].
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Nickel and copper complexes containing electron-donor (methoxy-) and electron-
withdrawing (nitro-, 3,5-difluoro-) substituents in the arene fragment of the Schiff base and
a ferrocene substituent form the system D–π–D [92,96].

The interaction between the ferrocene fragment and the (LONNO)M coordination centre
was established according to UV spectroscopy and the electrochemical data. The authors
found that nickel and copper complexes with a methoxy substituent in the arene fragment
have similar oxidation potentials of 0.289 and 0.298 V, related to the reversible one-electron
oxidation of the ferrocene fragment in complexes. These redox potentials are shifted to
the anode region by 90 mV compared to the oxidation potential of free ferrocene. It has
been shown that 5-nitro-substituted derivatives demonstrate a greater anodic shift when
compared to 3,5-difluoro-substituted analogues. The fact that the oxidation of the ferrocenyl
group is more difficult is explained by the influence of electron-withdrawing substituents
in the metal-containing fragment based on the Schiff base [96].

Homoligand systems with ligand LONO-Fc are represented by a cobalt(III) complex
of the type [(LONO-Fc)2Co]−[K(EtOH)2]+ [102]. The complex contains a mononuclear
hexacoordinated pseudo-octahedral complex anion. The CV of this complex shows two
reversible oxidation processes E1/2

1 = 0.53 V (vs. Cp2Fe/Cp2Fe+ couple) assigned to the
oxidation of ferrocenyl groups and E1/2

2 = 0.69 V attributed to the oxidation of Co(III)-
phenolate to Co(III)-phenoxyl derivative, while the third oxidation process at Epa = 1.07 V
is irreversible and presumably corresponds to the irreversible oxidation of the Co(III)-
phenoxyl into unstable phenoxonium cations.

The group of Y. Kushi has shown that ferrocene-containing bis-iminothiophenolate
complexes (LSN-Fc)2M of some metals (M = Ni, Zn, and Pd) (Scheme 14) undergo two
reversible one-electron oxidation processes, corresponding to the ferrocene/ferrocenium ox-
idation, indicating a significant interaction between the two ferrocenyl substituents [97,98].
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The related bis-ligand tin(II) complexes (RLON-Fc)2SnII (Scheme 15) based on the
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were synthesized by the reaction of the corresponding o-iminophenol with tin(II) chloride
in the presence of a base.
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and (R1R2LON-Fc)2MII (M = Ni, Cu).

The related cobalt(II) and nickel(II) bis-o-iminophenolates (RLON-Fc)2MII (M = Co or
Ni), nickel(II) and copper(II) bis-o-iminophenolates (R1R2LON-Fc)2MII (M = Ni or Cu) with
ferrocenyl groups (Scheme 15) are reported in [104,105]. The crystalline structures of some
of these complexes were established by XRD. It is noteworthy that in contrast to nickel(II)
complexes which are square-planar, the aforementioned tin(II) bis-o-iminophenolates are
tetragonal-pyramidal with an electron pair in the apex of pyramid [103]. The electrochemical
behaviour of some complexes was investigated by means of cyclic voltammetry (CV). The
CV of cobalt complex (HLON-Fc)2Co in CH2Cl2 in the potential sweep from −0.5 to 1.0 V
has one two-electron oxidation wave Eox1 = 0.8 V (vs. Ag/AgCl/KCl(sat.)) assigned to
the oxidation of two ferrocenyl moieties with the generation of dicationic complexes. An
increase in the scanning potential of up to 1 V·s−1 does not lead to the separation of the
peaks, which indicates the absence of the electronic interaction between the two oxidized
ferrocenyl groups. In contrast, the CVs of complexes (tBuLON-Fc)2M (M = Co, Ni) with di-tert-
butyl-substituted o-iminophenolato ligands contain two close waves at Eox1 = 0.76–0.77 V
and Eox2 = 0.90–0.94 V corresponding to the oxidations of two ferrocenyl fragments with
generation of dicationic form of complexes and the third wave at Eox3 = 1.37–1.38 V which
was attributed to the oxidation of the coordinated phenolic fragment.

Cobalt(II) bis-o-iminophenolates (RLON-Fc)2CoII react with o-benzoquinones with a
one-electron oxidation of cobalt(II) to paramagnetic cobalt(III) o-semiquinone derivatives as,
for example, (RLON-Fc)2CoIII(3,6-DBSQ) (Scheme 16), which have well-resolved isotropic
EPR spectra (gi = 2.000-2.001, ai(1 1H) = 2.9 G, ai(1 1H) = 3.7 G, ai(59Co) = 11.3–11.5 G) [104].

In contrast to cobalt(II) derivatives, tin(II) bis-iminophenolates (RLON-Fc)2SnII eas-
ily react with o-benzoquinones or o-iminobenzoquinones through the two-electron oxi-
dation yielding mixed-ligand tin(IV) catecholato-bis-iminophenolates (RLON-Fc)2SnIV(R-
Cat) (Scheme 16) or o-amidophenolato-bis-iminophenolates (RLON-Fc)2SnIV(AP) [106,107],
where R-Cat is a substituted catecholate and AP is a substituted o-amidophenolate. These
complexes undergo a series of electrochemical redox-transformations involving both fer-
rocene groups as well as dianionic ligand (catecholate or o-amidophenolate). The relative
oxidation potentials of these redox centres depend on the acceptor properties of the redox-
active chelating O,O′ or O,N ligand. An increase in the acceptor properties of redox-active
o-quinonato-type ligands leads to an increase in the oxidation potentials of redox ligands
as well as the following oxidation of ferrocenyl group(s). As a result, such a conver-
gence leads to the observation of the simultaneous oxidation of the catecholate moiety
and ferrocenyl group in (HLON-Fc)2Sn(4,5-Cl2-3,6-DBCat), where 4,5-Cl2-3,6-DBCat is a
dianion 4,5-dichloro-3,6-di-tert-butylcatecholate. These observations allow to suggest the
possibility of creating mixed-ligand main-group metal complexes based on oquinone-type
ligands and ferrocene capable of intramolecular electron transfer, which is well-known for
transition-metal complexes.
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A number of related complexes based on ferrocene-containing o-iminophenolate
LON-Fc− (namely, (LON-Fe)2Mn·4H2O, (LON-Fe)2VO·H2O, (LON-Fe)Zn(NO3)·3H2O, and
(LON-Fe)Pd(CH3COO)·2H2O) was studied for their biological activity (DNA interaction,
antimicrobial, antioxidant, anticancer activities, and molecular docking) with promising
results [108].

Some zwitterionic complexes are reported in [109]. It has been established that the
reaction of Ph3SbBr2 with ferrocene-containing catechol Fc-L-CatH2 (Scheme 17) in the
presence of a base in toluene leads to the formation of a mixture of two products with
“classic” triphenylantimony(IV) catecholate (Fc-L-Cat)SbPh3 as the main product (85%
according to 1H NMR spectroscopy) and the derivative (Fc-LH-Cat)SbPh3Br as a by-product
of the reaction (with a yield of less than 15%). However, a similar reaction in THF gives
the zwitterionic complex (Fc-LH-Cat)SbPh3Br as the main product, while the “classic”
catecholate is a minor product.

The interaction of catechol Fc-L-CatH2 with tin(IV) halides Ph2SnCl2 and SnCl4 in
a toluene solution in the presence of a base (triethylamine) yields only ionic complexes
(Fc-LH-Cat)SnPh2Cl, (Fc-LH-Cat)2SnCl2, and (Fc-LH-Cat)2SnPh2, where the Cat group
is connected with ferrocenyl through the positively charged linker –CH=NH+–N=CH–
(Scheme 17). These complexes also undergo electrochemical oxidation in three stages
involving oxidation of catecholato centre, and ferrocenyl group. The –CH=NH+–N=CH–
linker plays a role of the redox centre of the third type, which can be reduced in two stages
(at the range of −1.7 to −2.2V vs. Cp2Fe/Cp2Fe+).

C. López et al. have found that ferrocenyliminophenol (LON-Fc)H can exhibit an
atypical nature of binding to the metal centre in reactions with Na2[PdCl4] and Pd(OAc)2
(Scheme 18) [91]. Thus, it was shown that iminophenol can act as a neutral donor ligand in
reactions, being coordinated to the metal centre by the nitrogen atom of the imino-group (N)
in complex [(LON-Fc)H]2Pd, and as a bidentate one forming bis-iminophenolate derivative
(LON-Fc)2Pd containing N,O-chelating cycles. Alongside this, this iminophenol can form
palladium complexes (LONC-Fc)Pd[(LON-Fc)H] with tridentate form of Schiff base ligand
with two types of binding (N, and [C(sp2, ferrocene), N,O]2-) in reactions with Pd(OAc)2
in toluene (Scheme 18). The same authors have shown that this ferrocenyliminophenol
behaves as a mono-, bi- or tridentate ligand in related platinum(II) complexes depending
on the acid/base addition [110].
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Scheme 18. Different types of binding of ferrocene-containing o-iminophenol in reactions with
palladium salts.

Another example of the ferrocene-containing Schiff base ligands are the N-(3,5-di-
tert-butyl-4-hydroxyphenyl/benzyl)iminomethyl derivatives of ferrocene [99]. This work
shows that the formation of the corresponding phenoxyl radicals takes place during the
oxidation of phenolic derivatives Fc-CH=N-(t-Bu)2phenol with lead(IV) oxide in toluene
(Scheme 19).

The hyperfine structure of the EPR spectrum of the ferrocene-containing N-(3,5-di-
tert-butyl)-4-phenoxy radical corresponds to the HFC of an unpaired electron with two
equivalent protons in the meta-positions of the phenoxy ring (ai(2 1H) = 1.0 G) and the
nitrogen atom of the imine-group (ai(14N) = 5.9 G). The introduction of an electron-donor
ferrocenyl fragment into the para-position of the phenyl ring leads to an increase in the
stability of the radical.
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The ferrocene substituent can also be linked to the metal centre via the β-ketoiminate
ligand [111,112] which, entering into the elimination reaction with lanthanide silylamides,
forms the corresponding complexes [LRLnN(SiMe3)2(THF)]2 (Scheme 20). The redox
properties of these complexes have not been studied. Still, the authors found that such
lanthanide complexes, stabilized by a ferrocene-containing β-ketoiminate ligand, LRH2,
can initiate ring-opening during the polymerization of ε-caprolactone and give polymers
with a high molecular weight and a broad mass distribution.
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Scheme 20. Preparation of lanthanide(III) silylamides stabilized by a ferrocene-containing β-
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However, a reaction of the ferrocene-containing β-ketoiminate ligand LMeH2 with
the lanthanum derivative La[N(SiMe3)2]3(µ-Cl)Li(THF)3 in a 1:1 molar ratio resulted in an
unexpected lanthanum–lithium bimetallic cluster [LMe

2La{µ-Li(THF)}2(µ-Cl)]2, instead of
the desired lanthanum amido complex [LMeLaN(SiMe3)2(THF)]2 [112]. The authors have
supposed that the amine elimination reactions cause differences in the complexes structures
due to the difference in the ionic radii of the lanthanide metals.

In the work of R.F. Winter et al. [113], a vinylphenyl substituent acts as a bridge
connecting ferrocene with a metal centre. The acetylacetonate ferrocenyl–styrylruthenium
complexes (Fc-C6H4-CH=CH)Ru(acac-R)(PiPr3)2(CO) (Scheme 21) demonstrated the elec-
tron density distribution on the alkenyl-ruthenium fragment, depending on the substituent
in acetylacetonate, which is reflected in the results of cyclic voltammetry. All ferrocene-
containing complexes undergo two successive reversible one-electron oxidation stages, the
potential of which depends on the substituents in the acetylacetonate ligand.

In the case of the complex (Fc-C6H4-CH=CH)Ru(acac)(PiPr3)2(CO) based on an parent
acetylacetate (acac) ligand (R = Me, Scheme 21), the authors have found that the oxidation
of this compound leads to the formation of a radical cation, which can exist in the form
of two valence tautomeric forms: Fc+C6H4-CH=CH{Ruacac}↔ Fc-C6H4CH=CH{Ruacac}+,
where {Ruacac} = Ru(acac)(PiPr3)2(CO).
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The positive charge in the tautomeric forms is localized either on the ferrocenyl centre
or delocalized over the styrylruthenium fragment. The authors also found an interesting
temperature dependence of the existence of tautomeric forms of the considered radical
cation obtained by oxidation of complex (Fc-C6H4-CH=CH)Ru(acac)(PiPr3)2(CO) using
[Cp2Fe]+[PF6]−. The intensity of the isotropic signal (gi = 2.0542) in the EPR spectrum
gradually decreases at the decreasing temperature until it almost disappears at −120 ◦C.
This fact indicates that the valence tautomer Fc+C6H4-CH=CH{Ruacac} is more thermody-
namically preferable than the form Fc-C6H4CH=CH{Ruacac}+, which becomes predominant
with increasing temperature.

J. Veciana et al. [114–117] have carried out a detailed analysis of the physicochemical
properties for a series of compounds RR’Fc-CH=CH-PTF based on the perchlorotriphenyl-
methyl radical (PTF) which acts as an electron acceptor bound through a vinylene π-bridge
with various ferrocene derivatives (an electron donor) (Scheme 22).
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Scheme 22. Electron transfer in a series of compounds RR’Fc-CH=CH-PTF based on PTF radical.

There is an intense band at 387 nm in the electronic absorption spectra of radicals
RR’Fc-CH=CH-PTF, which was assigned to the radical of the chromophore (C6Cl5)3C•, as
well as intense broad bands in the near-infrared region in the region of 800–2000 nm, which
are caused by the intramolecular process electron transfer (IET process) from the donor
ferrocenyl group to the acceptor radical group PTF. The replacement of hydrogen atoms in
the ferrocenyl substituent by methyl groups has a significant effect on the energy of the IET
process and leads to a red shift of the absorption band. The authors attribute this effect to
enhancing the donor nature of the ferrocene fragments for methyl-substituted ferrocenyl
derivatives, which reduces the energy of the IET process. An increase in the donor character
of substituents in ferrocenyl was also reflected in the results of electrochemical studies.
Thus, the oxidation of the Fc fragments is much easier in radicals R’Fc-CH=CH-PTF, R = Me,
R’ = H (+0.22 V) and R = R’ = Me (+0.09 V) than in Fc-CH=CH-PTF (+0.59 V) due to
additional electron-donating methyl groups in cyclopentadienyl (Cp) rings.
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Intriguing results were obtained by X. Shen, K. Sakata et al. [118]. They found that fer-
rocene substituents can exhibit the properties of electron acceptors under the conditions of
electrochemical oxidation of ferrocene-containing 14-member macrocyclic nickel complexes
(LN4-Fc)Ni and (Fc-LN4-Fc)Ni (Scheme 23).
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The authors made these conclusions based on the difference between the first oxida-
tion potentials (∆E1

pa = −0.05 and −0.06 V) of complexes (LN4-Fc)Ni and (Fc-LN4-Fc)Ni
(E1

pa = 0.85 and 0.84 V, respectively) and the oxidation potential of free acetylferrocene
CH3C(O)Fc (E1

pa = 0.90 V), where ∆E1
pa= E1

pa((LN4-Fc)Ni, (Fc-LN4-Fc)Ni)–Epa(CH3C(O)Fc).
The authors attribute the negative values of ∆E1

pa for the complexes to the fact that elec-
tron transfer occurs from the π-conjugated system of the 14-membered ring to ferrocenes
(Scheme 21), which confirms the fact that ferrocenes can act as electron acceptors.

H. Nishihara et al. [119] have synthesized platinum dithiolate complexes bearing
the ferrocene group bonded to a planar conjugated redox-active dithiolene fragment
(Scheme 24).
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The results of CV, EPR, and electron absorption spectroscopy indicate that the ferrocene
fragment in FcS4dt(Me)2 undergoes oxidation first, but in FcS4dt[Pt(t-Bu2bpy)], dithiolene
undergoes oxidation first. The anisotropic EPR spectrum of [FcS4dt(Me)2]•+—a product of
the FcS4dt(Me)2 oxidation with [(4-BrC6H4)3N]+SbCl6−—in a frozen methylene chloride
matrix has an axial symmetry with g|| = 3.70 and g⊥ = 1.70 pointing to the formation of
ferrocenium derivatives.

The authors explained the appearance of a broad band at 2500 nm in the electronic
absorption spectrum of the radical cation [FcS4dt(Me)2]•+ with the process of electron
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transfer from a donor (dithiolene fragment) to an acceptor (ferrocenium cation). While
the broad band at 2000 nm for the oxidized form of the platinum complex [FcS4dt[Pt(t-
Bu2bpy)]]•+ corresponds to the process of charge transfer from ferrocene to the dithiolate
substituent. In the latter case, the dithiolene centre acts as an electron acceptor. In contrast,
the ferrocene centre behaves as an electron donor, which indicates a significant electronic
interaction between the ferrocene and dithiolene fragments.

Although the great interest in charge-transfer complexes based on metallocenes and
the variety of scientific material collected to date on o-benzoquinone/o-iminobenzoquinone
complexes, only a few examples of complexes of various metals are known that simultaneously
contain both redox-active sites: o-benzoquinone/o-iminoquinone and ferrocene [120–127].

S.N. Brown et al. [120] have synthesized a palladium bis-o-iminosemiquinolate com-
plex (pFlip)Pd using the exchange reaction of palladium(II) chloride with a ferrocene-
containing bis-o-aminophenol pFlipH4 in the presence of triethylamine on air (Scheme 25).
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Scheme 25. Palladium(II) bis-o-iminosemiquinolate, (pFlip)Pd, prepared by the exchange reaction of
palladium(II) chloride with a ferrocene-containing bis-o-aminophenol pFlipH4.

The data of electrochemical studies, as well as optical spectroscopy (titration using an
oxidizer [CpFe(C5H4COCH3)]+[PF6]− to the formation of a form [(pFlip)Pd]+) showed that
the first oxidation involves that o-iminosemiquinolate centre, the interaction of which with
the ferrocenyl substituent is minimal.

The first example of photoinduced intramolecular electron transfer was found in
systems based on ferrocene bound to p-benzoquinone through an amide bridge in the
meta-position (Scheme 26) [128].
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Scheme 26. Photoinduced intramolecular electron transfer in p-benzoquinone bound with ferrocenyl
through an amide bridge.

As proof of single-electron intramolecular transfer, the authors of [128] referred to
data from EPR spectroscopy and electron absorption spectroscopy. The HFS of the signal in
the EPR spectrum of Fc+-Q•−, obtained by irradiating Fc-Q under laser flash photolysis
conditions, is due to the HFC of an unpaired electron with three non-equivalent protons of
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the p-benzosemiquinone fragment with the following spectral parameters: gi = 2.0055 and
ai(1H) = 4.6, 2.05, and 1.75 G.

When considering the formation mechanism of ferrocene-containing benzodioxines,
the authors have found that 3,5-di-tert-butyl-o-benzoquinone, acting as an electron acceptor,
can initiate the one-electron transfer reaction (Scheme 27) [123].
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Scheme 27. Heterocyclization of ferrocenyl-acetylene-cyclopentadiene with o-quinone.

Using EPR spectroscopy, the authors found that the interaction of o-benzoquinone with
a ferrocene-containing diene in toluene at−20 ◦C leads to the formation of the anion radical
o-benzosemiquinone (g = 2.0047, ai(1H) = 2.3 G). When this reaction is performed under
conditions of an o-benzoquinone deficiency, it is possible to observe the EPR spectrum
(g = 2.0037) of the radical cation, the HFS of which, according to the authors, is caused by
the HFC of an unpaired electron with three groups of protons: (η5-C5H4Fe), C(5)–2H and
C(2)–H (with ai(1H) = 5.8, 2.85, and 1.35 G, respectively) (the carbon atom numbering is
shown in Scheme 27).A detailed electrochemical and spectroelectrochemical investigation
of the redox properties of ferrocenyl-(hydro)-benzoquinones was carried out by the authors
of the work [124] (Scheme 28).
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Scheme 28. Ferrocenyl-substituted o-, p-quinones and hyrdoquinone-ethers.

The authors have found an intramolecular charge transfer from the ferrocene centre to
the quinone part in ferrocenyl-benzoquinones, which is confirmed by a broad band (with
a maximum at 713 nm) in the visible region of the electronic absorption spectrum. The
authors also found that the one-electron reduction of Fc-SQ•− or the one-electron oxidation
to Fc+-Q leads to the disappearance of this transfer band with a change in the colour of the
solution from intense green to pale yellow.

J. Kikuchi et al. [126] have synthesized di- and tetraferrocenyl substituted potassium
bis-catecholborate complexes (Scheme 29) and investigated their redox behaviour.
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Scheme 29. Synthesis of di- and tetraferrocenyl substituted potassium bis-catecholborates.

Electrochemical investigations have shown that the spiroborate linkage between
the mono- and di-ferrocenyl units led to electronic interactions over the boron centre:
K+[(FcCat)B(CatFc)]− displayed two one-electron oxidation processes at 0.376 and 0.678 V
(vs. Cp2Fe/Cp2Fe+), while K+[(Fc2Cat)B(CatFc2)]− exhibited four one-electron-oxidation
waves at the range of 0.36–0.68 V in DMF at the potential switch from −0.15 to 0.85 V. All
these waves are ferrocenyl-centred processes. The related bis-catecholate K+[(Cat)2B]−

without ferrocenyl groups undergoes oxidation waves at more positive potentials > 1.0 V
assigned to the oxidation of catecholates.

K. Heinze and S. Reinhardt described a Pt(II) catecholate complex (3,6-DBCat)Pt(diimfc)
with a neutral-donor ferrocene-containing o-iminopyridine ligand (Scheme 30) [127].
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Scheme 30. Reaction of platinum(0) tris-norbornene with 3,6-di-tert-butyl-o-benzoquinone in the
presence of diimfc.

The complex was synthesized by the reaction of the o-iminopyridine ligand with
3,6-di-tert-butyl-o-benzoquinone in the presence of Pt(nb)3, where nb is norbornene. The
one-electron oxidation of the platinum catecholate obtained as a result of this interaction
produces a cationic particle [(3,6-DBSQ)Pt(diimfc)]+ which contains the radical anion o-
benzosemiquinone ligand. The HFS in the EPR spectrum of the formed radical complex
is due to the HFC of an unpaired electron with two protons of the o-benzosemiquinone
ligand 3,6-DBSQ (ai(2 1H) = 4.25 G), as well as a platinum nucleus (ai(195Pt) = 24.2 G) and
two nitrogen nuclei of the iminopyridine ligand diimfc (ai(2 14N) = 1.75 G).

K.Tahara, J. Kikuchi et al. [125] found that the chemical one-electron oxidation of the
platinum(II) complex (t-Bu2bpy)Pt(FcCat), in which the catecholate fragment is directly
bonded to the ferrocenyl substituent at position four of the six-membered ring, with magic
blue leads to the formation of the radical cation [(t-Bu2bpy)Pt(FcCat)]•+. The authors
have shown a significant interaction between two redox-active centres, and an electron
delocalization occurs between the catecholate fragment and the ferrocenium cation in such
radical (Scheme 31). The form Fc•Cat contains ferrocenium cation and dianion catecholate.
The electron transfer from the latter to Fc+ causes the oxidation of catecholate to radical
anion o-semiquinone and reduction of Fc+ to Fc in the form FcSQ•.
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Scheme 31. Electron delocalization between catecholate and Fc group in platinum(II) complex.

This fact is confirmed by the presence of a wide charge-transfer band in the 1000 nm re-
gion in the electronic absorption spectra, and a band in the visible region (with a maximum
at 594 nm) which corresponds to the ferrocenium cation.

Different interesting applications may be found during the investigations of such
complexes bearing different types of redox-active moieties. Some examples are given below.

A series of titanium oxo clusters, Ti3O(OiPr)6(Cat)(FcCOO)2, Ti7O4(OiPr)8(Cat)5(FcCOO)2,
and Ti7O3(OiPr)12(Cat)4(o-BDC), containing ferrocene-1-carboxylate (FcCOO−), catecholate
(Cat2−), and o-benzene dicarboxylate (o-BDC), were found to be promising precursors for
the efficient photovoltaic materials [129]. Q.-Y. Zhu, J. Dai et al. have shown that charge
transfer occurs from ferrocenyl-containing ligands and catecholate to the titanium oxo
cluster core, and the contribution of redox-ctive FcCOO− is greater than that of Cat2−.
The redox-active fragments demonstrate a synergistic effect on the enhancement of pho-
tocurrent responses due to the electron interaction between the neighbouring FcCOO− and
Cat2− groups.

Authors have reported the synthesis of air-stable (RFc-C6H4O)Al(Salophen) complexes
(Scheme 32) which can undergo spontaneous self-assembly at the graphite/solution inter-
face, forming highly-ordered nanostructures [130].
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Scheme 32. Ferrocenyl-containing aluminium Salophen complexes.

The redox properties of these derivatives functionalized with ferrocene units were
studied by cyclic voltammetry in solution and on the surface. It was shown that these
films have remarkable stability under the conditions used in the voltametric experiments
(the reversible behaviour was observed after several cycles). Thus, the authors concluded
that this synthetic strategy may be applied to introduce multiple functionalities with
subnanometer precision at surfaces, to form ordered functional patterns.

T.K. Goswami et al. [131] have synthesized cobalt(II) complexes [CoL2(Fc-cur)]+ClO4
−

(Scheme 33) bearing a ferrocene-based curcuminoid (Fc-curH) ligand (L is 1,10-phenanthroline
(phen) and dipyrido [3,2-a:2′,3′-c]phenazine (dppz)) and investigated their potential as
photochemotherapeutic agents in vitro. These Co(II) complexes were found to be remark-
ably stable at physiological conditions with higher lipophilicity when compared to their
cobalt(II) curcumin analogues.
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The authors have shown that the ferrocenyl-containing curcuminoid cobalt(II) com-
plexes can be considered excellent photochemotherapeutic agents in human cervical and
lung cancer cells. The primary cell death mechanism was proposed to be apoptotic induced
by light-assisted generation of reactive oxygen species.

4. Conclusions

Thus, the first part of the review contains the primary material describing the reactions
of metallocenes, mainly ferrocene, with complexes based on various types of redox-active
ligands. An analysis of the literature showed that the central part of the research is
devoted to the study of the molecular structure and magnetic properties of ionic-type
complexes formed in the course of such reactions, namely, ferrocenium salts and their
derivatives containing, in addition to the paramagnetic ferrocenium cation, a diamagnetic
or paramagnetic anion. Ferrocenium cations act as paramagnetic centres and can enter into
intra- and intermolecular magnetic exchanges.

In addition, ferrocene is capable of effective electronic interaction with other π-systems
(TCNE, TCNQ, bis-amidophenolates, etc.), demonstrating the ordering of structural units
(D and A), which also makes a significant contribution to the nature of the magnetic
exchange, while the Fe(II)/Fe(III) pair is stable and reversible. Among the accumulated ma-
terial on this topic, ferrocene derivatives and ferrocene-containing metal complexes based
on redox-active quinone-type ligands are represented insignificantly. The first example of
charge-transfer complexes among non-transition metal compounds are complexes based
on tin(IV) halide-o-semiquinolates and ferrocene. The dependence of magnetic properties
both on the nature of the auxiliary substituents at the central tin atom (halogens) and from
the solvent was shown for these complexes.

The second part of the review covers the metal complexes which simultaneously com-
bine in their composition, in addition to the ferrocene substituent, additional redox-active
centres, such as quinone- and dithiolene-type ligands, and other substituents covalently
bonded to ferrocene or coordinated to the central metal atom in a complex containing a
ferrocene fragment in an auxiliary ligand. Such complexes have a wide range of redox tran-
sitions, which is determined not only by the nature of the substituents in the redox-active
ligand but also by the substituents in the ferrocene fragment, as well as by the nature of
the bridging group (if any) linking two different redox-active centres. An analysis of the
literature data on the coordination chemistry of redox-active ligands with ferrocenes has
shown that one of the most common methods for the functionalization of complexes of var-
ious metals with ferrocene groups is the use of o-iminophenol ligands such as Schiff bases.
Also, β-ketoiminate ligands, vinylphenyl substituents, etc., have received considerable
distribution as a bridge that binds ferrocene. Among the coordination compounds with
redox-active ligands, there are also several examples of heteroligand derivatives containing
both o-benzoquinone/iminoquinone and ferrocene centres in their composition. Further
study of such model systems will provide information on the influence of various factors
on redox processes, including the electron transfer process, which is a fundamental stage of



Molecules 2022, 27, 3928 21 of 28

many chemical reactions and is of crucial importance in many catalytic and biochemical
processes, including photosynthesis, respiration, the transmission of nerve impulses, etc.
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Appendix A

Table A1. The complexes abbreviations and references.

Complex Abbreviation Description Page Ref.

[Cp*2Fe]•+[TCNE]•−

[Cp*2Fe]•+[TCNQ]•−
TCNE—tetracyanoethylene;
TCNQ—tetracyanoquinodimethane 2 [62,67]

[L1]+[Ni(mnt)2]−

[L1]+[Pt(mnt)2]−

[L2]+[Ni(mnt)2]−

[L3]+[Ni(mnt)2]−

mnt—maleonitriledithiolate ligand;
L1, L2, L3—different thioether-, S-heterocyclic-, or vinyl
tetrathiafulvalene-substituted
2,2′,3,3′,4,4′-hexamethylferrocenes

3 [68]

[Cp*2M]+[Co(HMPA-B)]−, M = Co, Fe HMPA-B—bis(2-hydroxy-2-methylpropanamido)benzene 3 [69]

[NiIII(3,6-DBCat)2]2[Cp2Co]+ 3,6-DBCat—3,6-di-tert-butylcatecholate 3 [70]

[Cp2M]+[CrIII(X4SQ)2(X4Cat)]+, M = Co, Fe
[Cp2Co]+

2[CrIII(X4SQ)(X4Cat)2]2+
X4SQ—tetrahalogeno-o-benzosemiquinone,
X4Cat—tetrahalogenocatecholate; X = Cl, Br 4 [71,72]

[Fe(NO)(L)2]−[Cp2Co]+

[Fe(NO)(L)2]2−[Cp2Co]+
2

L—1,2-diarylethene-1,2-dithiolate,
aryl—is phenyl, p-tolyl, p-methoxyphenyl 4 [73]

(Q-CH2CH2-SQ)•−[Cp2Co]+

(Q-CH2CH2-SQ)CuI(dppfc)
Q—3,6-di-tert-butyl-1,2-benzoquinone-4-yl, SQ—its
radical-anion o-benzosemiquinone 5 [74]

(3,6-DBSQ)CuI(dppfc) 3,6-DBSQ—3,6-di-tert-butyl-o-benzosemiquinone 5 [75]

Ph3Sb(Cat-SQ)CuI(dppfc)
Cat-SQ—6-tert-butyl-4-(6-tert-butyl-3-methyl-1,2-
benzosemiquinone-4-yl)-3-methylcatecholate 5 [76]

(Q-TTF-SQ)CuI(dppfc)
Q-TTF-SQ—monoreduced (o-semiquinone) derivative of
bis-o-benzoquinone with tetrathiafulvalene linker 5 [77]

[(3,6-DBCat)SnBr3(THF)]–[Cp2Fe]+

[(3,6-DBSQ)(3,6-DBCat)SnCl2]–[Cp2Fe]+
3,6-DBCat—3,6-di-tert-butylcatecholate;
3,6-DBSQ—3,6-di-tert-butyl-o-benzosemiquinone 5 [78]

U(salfen)2
K3[U(bis-salfen)(Hbis-salfen)]
K4[U(Hbis-salfen)2]

salfen—N,N′-bis-(salicylidene)-1,1′-diaminoferrocene;
bis-salfen and Hbis-salfen—products of an intramolecular
C-C bond formation between two imino groups of salfen

6 [86]

(LONO-Fc)MII·Py, M = Ni, Cu
(LONO-Fc)MII·(4,4′-bipy)·MII(LONO-Fc),
M = Ni, Cu

LONO—doubly deprotonated dianion of 2-((4-ferrocenyl-4-
hydroxybut-3-en-2-ylidene)amino)phenol

7 [87,89]

(LONO-Fc)MII·(PyMP), M = Ni, Cu PyMP—pyridyl 2,6-diphenylmethylenepyran 7 [90]

(LONNO1-Fc)M, M = Ni, Cu
[(Cp*Ru+LONNO1-Fc)M]PF6

−, M = Ni, Cu
(LONNO2-Fc)Ni
[(Cp*Ru+LONNO2-Fc)Ni]PF6

−

LONNOn-Fc (n = 1,2)—unsymmetrical Schiff base
ligands—derivatives of condensation products of
3-(2-aminoethyl(or phenyl)imino)-1-ferrocenylbut-1-en-1-ol
and 5-(Br, H, or OH)-substituted salicylaldehyde

8 [93–95]
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Table A1. Cont.

Complex Abbreviation Description Page Ref.

(LONNO-Fe)M, M = Ni, Cu LONNO-Fe—the unsymmetrical Schiff base ligands from
some other substituted salicylaldehydes

9 [92,96]

[(LONO-Fc)2Co]−[K(EtOH)2]+ LONO—doubly deprotonated dianion of 2-((4-ferrocenyl-4-
hydroxybut-3-en-2-ylidene)amino)phenol

9 [102]

(LSN-Fc)2M, M = Ni, Zn, Pd LSN-Fc—2-(ferrocenylmethyleneamino)-thiophenolate 9 [97,98]

(RLON-Fc)2SnII
RLON-Fc—functionalized
2-(ferrocenylmethyleneamino)phenolate 10 [103]

(RLON-Fc)2MII, M = Co, Ni
(R1R2LON-Fc)2MII, M = Ni, Cu
(RLON-Fc)2CoIII(3,6-DBSQ)

R1R2LON-Fc—bifunctionalized
2-(ferrocenyl-methyleneamino)phenolate 10 [104,105]

(RLON-Fc)2SnIV(R-Cat)
(RLON-Fc)2SnIV(AP)

R-Cat—substituted catecholate;
AP—N-aryl-4,6-di-tert-butyl-o-amidophenolate 11 [106,107]

(LON-Fe)2Mn·4H2O
(LON-Fe)2VO·H2O
(LON-Fe)Zn(NO3)·3H2O
(LON-Fe)Pd(CH3COO)·2H2O

LON-Fc—2-(ferrocenylmethyleneamino)phenolate 11 [108]

(Fc-L-Cat)SbPh3
(Fc-LH-Cat)SbPh3Br
(Fc-LH-Cat)SnPh2Cl
(Fc-LH-Cat)2SnCl2
(Fc-LH-Cat)2SnPh2

Fc-L-Cat—3,5-di-tert-butylcatecholate bound in 6th position
with Fc group via –CH=N–N=CH– linker;
Fc-LH-Cat—3,5-di-tert-butylcatecholate bound in 6th
position with Fc group via –CH=N+H–N=CH– linker

11-
-12 [109]

[(LON-Fc)H]2Pd
(LON-Fc)2Pd
(LONC-Fc)Pd[(LON-Fc)H]

LON-Fc—2-(ferrocenylmethyleneamino)phenolate;
LONC-Fc—tridentate ligand O,N,C-bound with Pd;
(LON-Fc)H—2-(ferrocenylmethyleneamino)phenol as
monodentate N-donor ligand

12 [91]

Fc-CH=N-(t-Bu)2phenol 2,6-di-tert-butyl-4-(ferrocenylmethyleneamino)phenol 13 [99]

Fc-CH=N-(t-Bu)2phenoxyl 2,6-di-tert-butyl-4-(ferrocenylmethyleneamino)phenoxy
radical

[LRLnN(SiMe3)2(THF)]2,
Ln = Ns, Sm, Er, Yb, Y;
[LMe

2La{µ-Li(THF)}2(µ-Cl)]2

LR—ferrocenyl-containing β-ketoiminate ligand 13-
-14 [111,112]

(Fc-C6H4-CH=CH)Ru(acac-R)(PiPr3)2(CO) acac-R—disubstituted β-diketonate ligand 14 [113]
RR’Fc-CH=CH-PTF PTF—perchlorotriphenylmethyl radical 15 [114–117]

(LN4-Fc)Ni
(Fc-LN4-Fc)Ni

LN4-Fc and Fc-LN4-Fc—mono- and diferrocenyl-containing
macrocyclic ligands based on
dibenzo[1,4,8,11]tetraazacyclotetradecines

15 [118]

FcS4dt(Me)2 and FcS4dt[Pt(t-Bu2bpy)] FcS4dt(Me)2—1,1′-ferrocenyl-containing redox-active
dithiolene type ligand

16 [119]

(pFlip)Pd pFlip—ferrocene-containing bis-o-aminophenol 16 [120]

ferrocenyl-amide-p-benzoquinone - 17 [128]

ferrocenyl-acetylene-benzodioxines - 17 [123]

ferrocenyl-(hydro)-benzoquinones - 18 [124]

K+[(FcCat)B(CatFc)]−
K+[(Fc2Cat)B(CatFc2)]−

FcCat—4-ferrocenylcatecholate
Fc2Cat—4,5-diferrocenylcatecholate 18 [126]

(3,6-DBCat)Pt(diimfc)
[(3,6-DBSQ)Pt(diimfc)]+ diimfc—N-ferrocenyl-2-iminomethylpyridine 19 [127]

(t-Bu2bpy)Pt(FcCat),
[(t-Bu2bpy)Pt(FcCat)]•+

t-Bu2bpy—4,4′-di-tert-butyl-2,2′-bipyridine
FcCat—4-ferrocenylcatecholate

19 [125]
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Table A1. Cont.

Complex Abbreviation Description Page Ref.

Ti3O(OiPr)6(Cat)(FcCOO)2
Ti7O4(OiPr)8(Cat)5(FcCOO)2
Ti7O3(OiPr)12(Cat)4(o-BDC)

FcCOO—ferrocene-1-yl-carboxylate,
Cat—catecholate,
o-BDC—o-benzene dicarboxylate

20 [129]

(RFc-C6H4O)Al(Salophen)
RFc—ferrocenyl, diferrocenylpyrrol, or
bis-(diphenylphosphinoferrocenyl)pyrrol type groups;
Salophen—N,N′-bis-(salicylidene)-1,2-diaminobenzene

20 [130]

[CoL2(Fc-cur)]+ClO4
−

L—1,10-phenanthroline (phen) or
dipyrido[3,2-a:2′,3′-c]phenazine (dppz);
Fc-cur—ferrocene-based curcuminoid ligand

20 [131]
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