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HETEROSCEDASTIC LATENT TRAIT MODELS FOR DICHOTOMOUS DATA

Dylan Molenaar

UNIVERSITY OF AMSTERDAM

Effort has been devoted to account for heteroscedasticity with respect to observed or latent moderator
variables in item or test scores. For instance, in the multi-group generalized linear latent trait model, it
could be tested whether the observed (polychoric) covariancematrix differs across the levels of an observed
moderator variable. In the case that heteroscedasticity arises across the latent trait itself, existing models
commonly distinguish between heteroscedastic residuals and a skewed trait distribution. These models
have valuable applications in intelligence, personality and psychopathology research. However, existing
approaches are only limited to continuous and polytomous data, while dichotomous data are common in
intelligence and psychopathology research. Therefore, in present paper, a heteroscedastic latent trait model
is presented for dichotomous data. Themodel is studied in a simulation study, and applied to data pertaining
alcohol use and cognitive ability.

Key words: heteroscedasticity, latent trait models, item response theory, two-parameter model,
non-normal latent variables..

Generalized linear models constitute an important class of statistical tools in psychological
research. The most obvious examples are MANOVA, the linear regression model, and the logit
regression model used to test associations among observed variables. Other examples can be
found in psychometrics, where generalized linear latent trait models like the common factor
model and the two-parameter model are used for psychological and educational measurement
(see e.g. Mellenbergh, 1994a).

As a general rule in parametric statistical models, results can only be trusted to reflect an
effect that is actually present in the data if the assumptions underlying the statisticalmodel aremet.
For the generalized linear models that are commonly used in psychology, a central assumption is
that of homoscedasticity (e.g. Dobson, 2010, p. 33; Greene, 2011). Homoscedasticity refers to the
requirement that the variances of the random effects in a statistical model are constant across units
(e.g. Green, 2011).1 In generalized linear modelling approaches, this requirement implies that the
residual covariance matrix does not differ across levels of the independent variables (Slutsky,
1913; see Green, 2011 for the logit and probit case). If this assumption is violated, then one
speaks of heteroscedasticity.

Heteroscedasticity is a well-studied phenomenon within generalized linear models. Methods
have been proposed to test the equality of the residual covariance matrix across the levels of the
independent variables in MANOVA or t test type of analysis (e.g. Anderson, 2006), and methods
have been studied to account for possible violations (e.g. Brunner, Dette, & Munk, 1997). In
linear regression models, various approaches exist to assess, test, or model heteroscedasticity,
including diagnostic graphical approaches (e.g. Stevens, 2009, p. 90), statistical tests (e.g. Jarque
&Bera, 1980), corrections (e.g. Long&Ervin, 2000), and approaches to model heteroscedasticity
explicitly (e.g. Harvey, 1976).

With respect to the generalized linear latent trait models in psychometrics, approaches to
the study of heteroscedasticity differ from those above as these models commonly contain an

Correspondence should be sent to Dylan Molenaar, Psychological Methods, Department of Psychology,
University of Amsterdam, Weesperplein 4, 1018 XA Amsterdam, The Netherlands. E-mail: D.Molenaar@uva.nl

1 A sensible designation as ‘skedasis’ is the Greek word for scatter or dispersion.
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Table 1.
Overview of models for heteroscedasticity within the generalized linear latent trait modelling framework.

Data Categorical moderator Continuous moderator

Manifest Latent Manifest Latent

Continuous Multi-group FM Factor Mixtures Moderated FM Heteroscedastic FM
Categorical Multi-group IRT Mixture IRT Moderated IRT Heteroscedastic GRM

FM factor model, IRT item response theory, GRM graded response model.

additional random subject effect. That is, besides the variable-specific residual effect in the mea-
surement model, there is a latent trait effect in the structural model that is common to all variables.
Thus, for a given variable in a psychometric model, heteroscedasticity can have two sources. In the
literature, methods to model heteroscedasticity within the measurement and/or structural model
have been studied elaborately for continuous and categorical data.2 See Table 1 for an overview
of the different approaches within the generalized linear latent trait framework. As can be seen,
the methods are different in what they assume about the nature of the moderator variable across
which the heteroscedasticity arises. In the case of heteroscedasticity with respect to a categorical
moderator variable (or grouping variable), multi-group models (e.g. Jöreskog, 1971, Lee, Poon,
& Bentler, 1989; Meredith, 1993; Muthén & Christoffersson, 1981) can be used to account for
differences in the latent trait variance and the residual variances across the categories of a manifest
moderator (e.g. gender, see Dolan et al., 2006). In addition, mixture models (e.g. Dolan &Van der
Maas, 1998; Jedidi, Jagpal, & DeSarbo, 1997; Mislevy & Verhelst, 1990; Rost, 1990) can be used
to test for differences in the latent trait variance and the residual variances across the categories
of a latent moderator (i.e. latent to the data at hand; for instance stages of Piagetian conservation,
see Jansen & Van der Maas, 1997).

Models that can be used in the case of heteroscedasticity with respect to a continuous moder-
ator variable have been developed only recently for manifest moderators (e.g. Bauer & Hussong,
2009; Mehta & Neale, 2005; Merkle & Zeileis, 2013; Neale, Aggen, Maes, Kubarych, & Schmitt,
2006; Rabe-Hesketh, Skrondal, & Pickles, 2004). As the moderator is a continuous variable (e.g.
age, see Molenaar, Dolan, Wicherts, & Van der Maas, 2010), the latent trait variance and/or the
residual variance are not estimated for each level of the moderator separately, but these parameters
are made a parametric function of the continuous moderator. This approach can be considered
generalizations of the multi-group models as they include these models as special cases (see e.g.
Bauer & Hussong, 2009). Note, however, that other approaches do not require the specification
of the exact form of the function between the variance parameters and the moderator (see Merkle
& Zeileis, 2013; Merkle, Fan, & Zeileis, 2013).

In the case that the moderator is a latent continuous variable, the moderator variable and
the latent trait become indistinguishable and coincide. This implies that the heteroscedasticity
can only come about by residual variances that differ across the levels of the latent trait (Bollen,
1996; Hessen & Dolan, 2009; Lewin-Koh & Amemiya, 2003; Meijer & Mooijaart, 1996). As
a skewed latent trait distribution can also result in unequal observed (polychoric) variances for
high and low levels of the trait, this effect needs to be taken into account to disentangle the effect
of heteroscedastic residuals from the non-normality of the trait distribution. The resulting model
is thus a latent trait model with heteroscedastic residuals and a skewed trait distribution, shortly
denoted by heteroscedastic latent trait model.

2 Truly continuous observed scores are rare in psychological and educational measurement. It has been shown that
pragmatically, a scale with 7 or more ordered levels can be treated as continuous (Dolan, 1994). Therefore, in this paper,
the term ‘continuous variable’ is used to denote variables with 7 or more ordered levels.
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There are a number of reasons why studying this specific type of model is important (see
Molenaar, Dolan, & De Boeck, 2012, for a comprehensive discussion). First, as heteroscedastic
residuals result in asymmetric item characteristic curves, parameter bias may arise as has been
shown by Bazán, Branco, and Bolfarine (2006) and Molenaar et al. (2012). Second, Samejima
(1997, 2000, 2008) demonstrated that symmetrical item characteristic functions imply an incon-
sistent relationship between the order of the latent trait estimates and the difficulty parameters.
As discussed by Samejima, models with asymmetric characteristic functions are not subject to
this problem. Third, wrongfully assuming a normal latent trait distribution has been shown to bias
item parameter estimates (Azevedo, Bolfarine, & Andrade, 2011; Zwinderman & van der Wol-
lenberg, 1990) and ability estimates (Ree, 1979; Seong, 1990; Swaminathan & Gifford, 1983),
although the occurrence of bias may depend on factors like the number of items and the sample
size (Kirisci, Hsu, & Yu, 2001; Stone, 1992). Fourth, as will be shown in this paper, neglecting
heteroscedasticity may bias the item information function. This has implications in, for instance,
computerized adaptive testing. Finally, a reason to study the heteroscedastic latent trait model is
that it has shown valuable substantive applications in various research fields. These applications
include the ability differentiation hypothesis in intelligence research (e.g. Murray, Dixon, & John-
son, 2013), the schematicity or traitedness hypothesis in personality research (Molenaar et al.,
2012), and genotype by environment interactions in behaviour genetics (e.g. Van der Sluis, Dolan,
Neale, Boomsma, & Posthuma, 2006). In addition, other possible applications may include psy-
chopathology where it is hypothesized that subjects with a higher level of a psychopathological
trait like depression are more consistent in their self-reports of the symptoms (Fokkema, Smits,
Kelderman, & Cuijpers, 2013).

Heteroscedastic latent trait models have been proposed for continuous data (Molenaar, Dolan,
& Van der Maas, 2011; Molenaar, Dolan, & Verhelst, 2010a), and for polytomous data (Molenaar
et al., 2012). However, for dichotomous data, no suitable procedure has yet been proposed, while
these kind of data are common in intelligence and psychopathology research. Therefore, in present
paper, a generalized linear latent trait modelling approach is presented to model heteroscedastic
residuals and a skewed latent trait in dichotomous data. The outline of this paper is as follows:
First, the homoscedastic and heteroscedastic case of the generalized linear latent trait model
are presented for continuous and polytomous data. Then, this approach is extended to enable
modelling of dichotomous data. Next, the newmodel is studied in a simulation study to investigate
the parameter recovery, the required sample size, the resolvability of the different effects, and the
power to detect the effects. Subsequently, the model is applied to two real datasets pertaining to
alcohol use and cognitive ability. Finally, some limitations and future directions are discussed.

1. The Generalized Linear Latent Trait Model

1.1. The Homoscedastic Case

The models covered in this paper concern unidimensional generalized linear latent trait mod-
els (Mellenbergh, 1994a) for continuous and ordered categorical data. These models are part of
the more general class of models commonly referred to as the generalized latent variable mod-
elling framework (Bartholomew, Knott, & Moustaki, 2011; Moustaki & Knott, 2000; Skrondal
& Rabe-Hesketh, 2004). It is thus assumed that the data consist of either sum scores, responses
to continuous items, responses to Likert scale items, item scores that are recoded into correct and
false, or items with a dichotomous answer scale (e.g. yes/no questions). Poisson models (e.g. for
counts) and gamma models (e.g. for time taken to complete a task) which are part of the gen-
eralized framework, are not considered in this paper as these commonly do not have a separate
dispersion parameter.



628 PSYCHOMETRIKA

In the unidimensional generalized linear latent trait model, given local independence, the
marginal likelihood of a response vector, y, is given by (Bock & Aitkin, 1981; Moustaki & Knott,
2000)

L(y; τ ) =
∞∫

−∞

n∏
i=1

h(yi |θ)g(θ)dθ, (1)

where τ is a vector of parameters, n is the number of observed variables, h(.) is the distribution
of the observed variables under the measurement model, and g(.) denotes the distribution of the
latent trait, θ , under the structural model. The general measurement model considered in this
paper is given by

y∗
i = νi + αiθ + εi , (2)

where y∗
i is an unobserved continuously distributed variable underlying item i, νi is the fixed

intercept parameter, αi is the fixed discrimination parameter and εpi is a random residual effect
with variance σ 2

εi . If the observed data, yi , are continuous, then in Eq. 2, yi = y∗
i . If yi is ordered

categorical or dichotomous, then

yi = c i f y∗
i ∈ (βci , β(c+1)i ) c = 0, . . . , C − 1. (3)

That is, the continuous y∗
i is categorized at increasing thresholds, βic, where β0i = −∞ and

βCi = ∞. This approach is sometimes referred to as item factor analysis (Christofferson, 1975;
Muthén, 1978; Olssen, 1979) or the underlying variable approach (Jöreskog & Moustaki, 2001),
and is based on Thurston’s model for categorical judgement (1920; see Master, 1982; Skrondal,
1996, Chapt. 10). As shown by Takane and de Leeuw (1987), this approach is equivalent to the
item response theory approach for categorical data.

By assuming a normal distributions for εi , the distribution of yi under themeasurementmodel
in the homoscedastic case is

h(yi |θ) = f (y∗
i |θ) for continuous yi (4)

h(yi |θ) =
β(c+1)i∫

βci

f (y∗
i |θ)dy∗

i for ordinal yi (5)

with

f (y∗
i |θ) = 1

σεi
ϕ

(
y∗

i − νi − αiθ

σεi

)
, (6)

whereϕ(.) denotes the standard normal density function.By further assuming a normal distribution
for θ , the density function in the structural model for the homoscedastic case is given by

g(θ) = 1

σθ

ϕ

(
θ − μθ

σθ

)
. (7)

In the case of ordinal data, Eq. 5 gives the item category response functions (for C ≥ 3) or the
item characteristic function (for C = 2).

The formulation above has the advantage that it includes a number of important and commonly
usedmeasurementmodels as special cases. That is, if yi has a normal distribution and cov(θ, εi ) =
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0, then the common factor model arises (Mellenbergh, 1994b). If C ≥ 3, then the model is
equivalent to a graded response model (Samejima, 1969) with νi = ν = 0 and σ 2

εi = σ 2
ε = 1.

Subsequently, if C = 2, then the model is a two-parameter normal ogive item response theory
model (Lord, 1952). Other models that can be formulated within the present approach are the
linear logistic model (Fischer, 1983) and the nominal response model (Bock, 1972).

Some well-known models cannot be formulated within the present approach because an
underlying variable formulation is not possible. These models include the rating scale model
(Andrich, 1978), the model for guessing by Thissen and Steinberg (1984), the partial credit model
(Masters, 1982), and the three-parameter model (Birnbaum, 1968). However, in the case of the
rating scale model and the partial credit model, the graded response model might be considered as
an alternative because this model is highly similar (but not equivalent, see Masters, 1982; Thissen
& Steinberg, 1986).

1.2. The Heteroscedastic Case

For each variable i in the general model in Eq. 2, there are two random effects, εi and θ ,
that may be subject to heteroscedasticity. Heteroscedasticity is formalized by considering the
variance of the random effects conditional on a so-called moderator variable, M. By assuming
that E(εi ) = cor(εi , θ) = 0, the variance of y∗

i is then given by

σ 2
y∗i |M = α2

i σθ |M2 + σεi |M2

μ2
y∗i |M = νi + αiμθ |M , (8)

where σ 2
θ |M and σ 2

εi |M denote the conditional variance of θ and εi , respectively, and μθ |M is the
conditional mean of θ . Introducing the idea in Eq. 8 into the general model in Eqs. 6 and 7, the
general model for heteroscedasticity is given by

f
(
y∗

i |θ, M
) = 1

σεi |M
ϕ

(
y∗

i − νi − αiθ

σεi |M

)

g(θ) = 1

σθ |M
ϕ

(
θ − μθ |M

σθ |M

)
(9)

Note that if M is manifest and categorical, then Eq. 9 is equivalent to the strong measurement
invariance model proposed by Meredith (1993); if M is latent and categorical, then the model is
equivalent to a mixture of two latent trait models; and if M is manifest and continuous, then the
model in Eq. 9 is a moderated latent trait model where the residual variances, the trait variance,
and the trait mean are some parametric functions of the moderator.

If the continuous moderator is a latent variable, then M and θ are indistinguishable and
coincide, which implies that—conditional on θ (i.e. M)—the only source of (polychoric) variance
is the residual variance, σ 2

εi . Thus, heteroscedasticity can be modelled by making σ 2
εi a function

of θ itself, that is σ 2
εi |M = σ 2

εi |θ . For the residuals, a suitable function needs to be specified for

σ 2
εi |θ = w(θ; δ), where δ is a parameter vector. In the case of continuous data, an exponential

function is commonly used (see e.g. Bauer & Hussong, 2009; Harvey, 1976; Hessen & Dolan,
2009). However, as pointed out by Molenaar et al. (2012), in models for categorical data, this
function causes undesirable behaviour of the item category response functions (Eq. 5). Therefore,
for polytomous item scores, the following function is proposed (Molenaar et al., 2012):

σ 2
εi |θ = w(θ; δ) = 2δ0[1 + exp(−δ1θ)]−1, (10)
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where δ0 is a baseline parameter, δ0 ∈ (−∞,∞), and δ1 is a heteroscedasticity parameter,
δ1 ∈ (−∞,∞). Note that if δ1=0, then the residual variances are homoscedastic with σ 2

εi |θ = δ0;
if δ1 > 0, then the residual variances are increasing across θ ; and if δ1 < 0, residual variances
are decreasing across θ . For polytomous items, the resulting model can be identified by fixing
two adjacent thresholds, βic, in Eq. 5 (see Mehta, Neale, & Flay, 2004). Due to this identification
constraint, the model is only suitable in the case of C ≥ 3, and not in the case of dichotomous
data where C = 2.

As a skewed latent trait distribution causes unequal observed (polychoric) variances at high
and low levels of the trait, this effect needs to be taken into account to disentangle the effect of
heteroscedastic residuals from the effect of non-normality in the trait distribution. Within latent
trait modelling, a number of authors (Azzevado, Bolfarine, & Andrade, 2011; Molenaar, Dolan,
& De Boeck, 2012; Molenaar, Dolan et al., 2010a) have proposed the skew-normal distribution
(Azzalini, 1985, 1986; Azzalini &Capatanio, 1999). This distribution has the convenient property
that it includes the normal distribution as a special case. However, any other distribution that allows
for skew can be considered for pragmatic or theoretical reasons.

1.3. An Approach for Dichotomous Data

In this section, a suitable approach is presented to account for heteroscedasticity in the case
of dichotomous data. For dichotomous data, the function in Eq. 10 can be used, but different
identification constraints are necessary. The required constraints could be inferred from results
in Millsap and Yun-Tein (2004) for dichotomous data and a categorical moderator, M (Eq. 9).
That is, in addition to the standard scale and location constraints (e.g. Bollen, 1989, p. 238), the
following restrictions are required in Eq. 9 to identify both σ 2

εi |M and σ 2
θ |M across groups (i.e.

across the levels of M). First, νi = 0 for all i and σ 2
εi |M = 1 for all i in an arbitrary reference

group. Next, σ 2
εi |M = 1 for all groups for some i (the anchor item).3 Now, as αi in Eq. 9 and βic

in Eq. 5 do not depend on M (i.e. they are invariant across levels of M), the multi-group model
for dichotomous data is identified.

For the heteroscedastic latent trait model for dichotomous data, the results above imply that
(1) δ0 should be constrained to equal 1 for all i , such that for θ = 0 → σ 2

εi |θ = 1 (the reference
point); and (2) δ1 should be constrained to equal 0 for some i (the anchor item). The parameter ζ

will then pick up the effect of heteroscedasticity that is common to all items, where δ1i models
item-specific departures from this main effect. As in the multi-group case, these two sets of
parameter(s) capture the same effect of heteroscedasticity. Thus, two models are possible that are
just identified in their heteroscedasticity parameters:

#1: A model with δ1i free for all i and ζ fixed.
#2: A model with δ1i free for all i except for the anchor item and ζ free.

This is opposed to the models for polytomous and continuous data, where the two effects can
be combined for all items without further restrictions.

3 In fact, Millsap and Yun-Tein (2004) use the restriction of VAR(y∗
pi ) = 1 instead of fixing σ 2

εi = 1 as is done

here. Because, VAR(y∗
pi ) = α2i × σ 2

θ + σ 2
εi in which σ 2

θ is already identified by fixing σ 2
θ = 1 (or αi = 1), fixing

VAR(ypi ) = 1 will result in σ 2
εi = 1− α2i (or σ 2

εi = 1− σ 2
θ ) which thus implies a fixed σ 2

εi . The opposite holds as well,

that is, fixing σ 2
εi = 1 implies a fixed VAR(y∗

pi ).
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Figure 1.
Example of an item characteristic function (left) and the corresponding item information function (right) in the het-
eroscedastic latent trait model for αi = 1, βi = 1, and δ1 = 0.8.

The resulting heteroscedastic latent trait model for dichotomous data is given by

f (y∗
i |θ, M) = 1

√
2

[
1 + exp (−δ1iθ)

]− 1
2

ϕ

⎛
⎝ y∗

i − αiθ
√
2

[
1 + exp (−δ1iθ)

]− 1
2

⎞
⎠

g(θ) = 2

σθ

�

(
ζ

θ − μθ

σθ

)
ϕ

(
θ − μθ

σθ

)
(11)

where g(.) is a skew-normal density function with location parameter μθ and scale parameter σθ

for which it holds that

E(θ) = μθ + σθ

√
2

π

ζ√
1 + ζ 2

, (12)

and

SD(θ) = σθ

√
1 − 2

π

(
ζ 2

1 + ζ 2

)
, (13)

where ζ is a shape parameter for which it holds that if ζ = 0, then g(.) in Eq. 11 will simplify to
a normal distribution with E(θ) = μθ and SD(θ) = σθ . The item characteristic function of the
heteroscedastic latent trait model can be derived by substituting f (.) from Eq. 11 into Eq. 5 for
C = 2 which gives

P (yi = 1|θ) = �

⎛
⎝ αiθp + βi√

2
[
1 + exp (−δ1iθ)

]− 1
2

⎞
⎠ ,

where βi is the item difficulty parameter. See Figure 1 for an example of the item characteristic
function (left) and the corresponding item information function (right) for αi = 1, βi = 1, and
δ1 = 0.8.
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1.4. Parameter Estimation and Implementation

The heteroscedastic latent trait models discussed in this paper can be fit to data usingmarginal
maximum likelihood estimation (MML; Bock & Aitkin, 1981). For the new model, an MML
estimation procedure is implemented in the statistical software package R (R Core Team, 2012).
Specifically, −2 times the log of the marginal likelihood function (Eq. 1 with Eqs. 5 and 11)
is minimized using the R built-in function ‘optim’. This optimizer uses a Broyden-Fletcher-
Goldfarb-Shanno algorithm (BFGS; see e.g. Nocedal & Wright, 2006; p. 194) which is a quasi-
Newton algorithm that uses first-order derivatives. The likelihood function is approximated using
50 Gauss-Hermite quadrature points (see Molenaar et al., 2012). It is also possible to fit the
model using existing software like Mx (Neale, Aggen, Maes, Kubarych & Schmitt, 2006) and
SAS (SAS Institute, 2011). The R scripts used here are available on the personal webpage of the
author, together with an Mx script to fit the model.

2. Simulation Study

In this simulation study, the viability of the model for dichotomous data is investigated. That
is, this simulation study is conducted to (1) investigate whether true parameters are adequately
recovered, (2) to assess what sample sizes are at least needed to apply the model, (3) to examine
whether δ1i and ζ can be disentangled satisfactorily, and (4) to see whether the statistical power
to detect the effects is acceptable given a reasonable effect size.

2.1. Design

Data are generated according to either (1) the full model with heteroscedastic residuals and a
skew-normal trait where both effects are in the same direction, denoted ‘het(+)’ and ‘skw(−)’ (i.e.
a negatively skewed trait and increasing residuals for increasing trait levels); (2) the full model
with heteroscedastic residuals and a skew-normal trait where both effects are in the opposite
direction, denoted ‘het(+)’ and ‘skw(+)’ (i.e. a positively skewed trait and increasing residuals
for increasing trait levels); (3) a model with het(+) only; and 4) a model with a skw(−) only.
Sample sizes equalled 500, 1,000, 3,000 and 5,000; the number of items equalled 10 and 500
replications were conducted for each condition. Parameter values in the case of item-specific
heteroscedasticity effects (i.e. the effect of ‘het(+)’) are δ1i = 0.4 (‘small effect’), δ1i = 0.6
(‘medium effect’), and δ1i = 0.8 (‘large effect’) for all i except for one item (δ1i = 0 for this
anchor item). For skw(+) and skw(−), ζ = 2.17 and ζ = −2.17 are used, respectively (‘medium
effect’). The above effect sizes are based on Molenaar et al. (2010a, 2012).4 The anchor item was
the 5th item. The remaining parameters were chosen to be αi = 1 for all i and the βi parameters
were chosen equally spaced in the interval [−1.5, 1.5]. In addition, E(θ) and SD(θ)were restricted
to equal 0 and 1 respectively.

2.2. Models and Power

Four models are fit to the generated datasets:

1. M0:2PM. A homoscedastic two-parameter model with a normal distribution for the
trait (i.e. a traditional two-parameter model (i.e. δ1i = 0 for all i and ζ = 0);

2. M1:het. A model with heteroscedastic residuals and a normal distribution for the trait
(i.e. ζ = 0, and δ1i is free for all i except the anchor item);

4 Note that Molenaar et al. (2012) used δ0i = 1.5 instead of δ0i = 1,; therefore, in the present case, δ1i is rescaled to
correspond to the effect size in Molenaar et al (i.e. due to the difference in δ0i , there is no one-to-one correspondence).
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3. M1:skw. Amodelwith a skew-normal trait distribution andwith homoscedastic residual
variances (i.e. ζ is free and δ1i = 0 for all i);

4. M2:full. A full model with both heteroscedastic residuals and a skewed trait (i.e. ζ is
free and δ1i is free for all i except the anchor item).

In all models, αi and βi are estimated for all i , and identification is accomplished by fixing
E(θ) = 0,SD(θ) = 1, δ1i = 0 for the anchor item, and δ0i = 1, for all i .

For each model except M0:2PM (as this model serves as the baseline model), the power
of the likelihood ratio test to detect the effect(s) in the model is determined for a 0.05 level
of significance (e.g. Satorra & Saris, 1985). In the likelihood ratio test, HA is the model under
consideration (M1:het, M1:skw or M2:full) and H0 is the model without the effect of interest that
is nested in HA (i.e. M0:2PM, M1:het, or M1:skw). The likelihood ratio statistic is then given by

T = −2 × [
ln L

(
yp; τ̂ 0

) − ln L
(
yp; τ̂A

)]
,

where L(.) is given by Eq. 1, τ̂ 0 is the vector of parameter estimates of H0 and τ̂A is the vector of
parameter estimates of HA. As H0 is nested in HA, the parameter vector τ̂ 0 is a restricted version
of τ̂A. If the parameter constraints in H0 are not on the boundary of the parameter space, then
under H0, T has a central χ2-distribution with degrees of freedom (df) equal to the number of
restrictions in H0. Under HA, T has a non-central χ2-distribution with non-centrality parameter
λ and with df equal to the number of restrictions in H0. To calculate power, the non-centrality
parameter needs to be estimated. As it holds that E(T) = d f +λ (see Fisher, 1928), an estimate of
λ could be obtained by averaging T -df over the replications in the simulation study. Next, power
is obtained by integrating the non-central χ2 distribution from the critical value to ∞.

3. Results

3.1. Parameter Recovery and Sample Size

In Table 2, results are depicted for the conditions in which the true model includes het-
eroscedastic residuals with a small effect size. Items are sorted according to their item difficulty
parameter, where item 1 is located at the lower θ range and item 10 is located at the upper θ range.
As can be seen, for N = 5, 000 and N = 3, 000, parameters are acceptably recovered. For item
10, variability is large due to, respectively, 1 and 9 diverged estimates in the case of N = 5, 000
and N = 3, 000. For N = 1, 000 and N = 500, estimates of δ1i are diverging in an increasing
number of cases causing large parameter variability for the items at the upper and lower end of
the θ range. See Figure 2 for a histogram of the parameter estimates of δ1i for item 10 (an item
at the upper range of θ) for N = 1, 000 and N = 500. As can be seen, the estimates centre
approximately around the true value (0.4), but a number of estimates diverged. Apparently, for
the cases that diverged, there was not enough information in the data concerning the δ1i parameter.

Results for the model with a skewed latent trait only (δ1i = 0 and ζ = −2.17) are not
tabulated but were generally good. Specifically, parameter estimates (SD) for ζ in this condition
are −2.19(0.30),−2.22(0.39),−2.27(0.81) and −2.54(1.48) for samples sizes of, respectively,
5,000, 3,000, 1,000 and 500. From these results and the results concerning ζ in Table 2, it could
be concluded that the true value is well recovered for all sample sizes. Notably, in the case of
N = 500, the parameter estimate variability tends to be quite large.

3.2. Power and Resolvability

Table 3 depicts the power to detect heteroscedasticity in the items (i.e. the power to detect
that δ1i �= 0) for a model with heteroscedastic residuals only (M1:het) and a model with both
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Figure 2.
Histograms of the heteroscedasticity parameter estimates for item 10 across replications. The true value equals 0.4.

Table 3.
Power of a model with heteroscedastic residuals only (M1:het) and the full model (M2:full) to detect heteroscedasticity
in the items for a 0.05 level of significance.

Condition N Small effect Medium effect Large effect

M1:het M2:full M1:het M2:full M1:het M2:full

het(+) & skew(−) 5,000 1.00 (126.15) 0.60 (10.70) 1.00(191.71) 0.98 (27.94) 1.00 (264.19) 1.00 (53.63)
3,000 1.00 (76.43) 0.35 (6.13) 1.00 (116.03) 0.86 (17.89) 1.00 (157.33) 0.99 (31.67)
1,000 0.96 (24.58) 0.12 (1.77) 1.00 (38.29) 0.34 (5.95) 1.00 (53.36) 0.61 (10.83)
500 0.71 (13.14) 0.07 (0.69) 0.89 (19.32) 0.16 (2.84) 0.97 (26.57) 0.19 (3.37)

het(+) 5,000 1.00 (35.25) 0.22 (3.88) 1.00 (74.30) 0.59 (10.53) 1.00 (124.41) 0.94 (22.92)
3,000 0.92 (20.74) 0.12 (1.88) 1.00 (45.18) 0.35 (6.24) 1.00 (75.33) 0.75 (14.09)
1,000 0.40 (7.09) 0.07 (0.69) 0.76 (14.33) 0.13 (2.03) 0.96 (25.34) 0.26 (4.62)
500 0.25 (4.42) 0.07 (0.65) 0.46 (8.16) 0.09 (1.19) 0.70 (12.84) 0.15 (2.55)

skew(−) 5,000 0.99 (30.84) 0.05 (0.14) 0.99 (30.84) 0.05(0.14) 0.99 (30.99) 0.05 (0.04)
3,000 0.88 (18.86) 0.05 (0.07) 0.89 (19.04) 0.06 (0.29) 0.87 (18.44) 0.06 (0.18)
1,000 0.38 (6.78) 0.06 (0.39) 0.37 (6.59) 0.05 (0.00) 0.40 (6.98) 0.05 (0.02)
500 0.21 (3.77) – 0.21 (3.79) – 0.24 (4.20) 0.06 (0.32)

het(+) & skew(+) 5000 0.06 (0.27) 0.25 (4.49) 0.51 (9.08) 0.52 (9.19) 0.98 (29.00) 0.77 (14.85)
3,000 0.05 (0.03) 0.15 (2.45) 0.26 (4.60) 0.29 (5.17) 0.82 (16.29) 0.47 (8.28)
1,000 0.07 (0.47) 0.07 (0.50) 0.13 (2.04) 0.11 (1.64) 0.35 (6.13) 0.10 (1.38)
500 0.09 (1.09) – 0.11 (1.62) – 0.21 (3.69) –

het(+): heteroscedastic residuals that increase for increasing levels of θ ; skw(−): negatively skewed trait;
skw(+): positively skewed trait. ‘−‘: in these cases, the non-centrality parameter was slightly negative due
to a too small sample size.

heteroscedastic residuals and a skew-normal trait (M2:full). First, it can be seen from the table
that in the case of the ‘het(+) & skew(−)’ condition, the pattern of results is generally acceptable.
That is, for increasing sample sizes and increasing effect sizes, power coefficients approach at
least a 0.80 level. In the case of the ‘het(+)’ condition, the M1:het model has acceptable power
to detect the effect for increasing effect size and sample size, while the M2:full model has only
acceptable power for a large effect. Apparently, incorporation of the additional shape parameter ζ ,
while the effect is actually not in the data, results in a decrease in power. An interesting condition
is the case that there is a skewed trait in the data only (i.e. the ‘skew(+)’ condition), as conclusions
concerning resolvability of the effects could be inferred from the results in this condition. As can
be seen, the skewed trait effect is absorbed in the heteroscedasticity parameters δ1i in the M1:het
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model (i.e. the power is large). Thus, unmodelled skewness in the trait will incorrectly be detected
as heteroscedasticity (i.e. false positives). However, in the full model M2:full, where the skewness
in the trait is accounted for by introducing the ζ parameter, the power to detect heteroscedasticity
adequately equals the Type I error rate (0.05). This indicates that the effect of skewness in the
trait is well separable from heteroscedastic residuals. Finally, it can be seen from the table that in
the ‘het(+) & skw(+)’ condition, the effects may cancel out depending on the effect size. That is,
for the small and medium heteroscedasticity effect size, power is much smaller as compared to
the ‘het(+) & skew(−)’ condition. For the large effect size and N = 5, 000, power is acceptable
again.

4. Conclusion

From the simulation study, it appears that parameter recovery is generally acceptable. How-
ever, in smaller sample sizes, estimates for the heteroscedasticity parameter δ1i are much more
likely to diverge from the population value for items that have difficulty parameters at the extremes
of the trait. The power results indicated that by the identification constraint δ1i = 0 for the anchor
item, the effects on the trait distribution and the residual variances are resolvable. That is, one can
distinguish between a common effect of heteroscedasticity (formalized as a skewed trait) and/or
item-specific effects (operationalized as heteroscedastic residual variances), given that the effects
are not in the same direction. In the case that the effects are in the same direction (e.g. a positively
skewed trait and increasing residual variance across the trait), they may cancel each other out
depending on the effect size. With respect to the sample size needed to apply the model, it could
be concluded that relatively large sample sizes are needed. Power is only acceptable for sample
sizes of at least 1,000 subjects when a single effect is considered, or sample sizes of at least 3,000
subjects when both effects are combined. This will be further discussed in the final section.

While the simulation study shows that the anchor item is useful to distinguish item common
effects and item-specific effects of heteroscedasticity, the question arises of how an anchor item
should be identified. In application 2 below, the use of Lagrange Multipliers (LM) is illustrated.
The multivariate LM statistic signifies the approximate increase in loglikelihood that will result
from freeing each constraint parameter. This statistic can be calculated by G′

0H0G0, whereG0 is
the vector of first-order derivatives of the loglikelihood function and H0 is the matrix of second-
order derivatives to the model parameters in the baseline model. Using this formula, univariate
LM statistics could be calculated for each constrained parameter separately. As will be shown in
application 2, univariate LM statistics can be calculated for the δ1i parameter of each item in a
model with a skewed trait. Then, these LM statistics will indicate whether —after taking the trait
skewness into account—it is beneficial to incorporate additional item-specific heteroscedasticity
effects. In the present paper, LM statistics are obtained by the exact first-order derivatives, G0.
The second-order derivatives inH0 are obtained by a finite difference approximation. Simulations
showed that this works well (see also Dolan & Molenaar, 1991).

5. Illustrations

5.1. Illustration 1: Alcohol Use

The data comprises scores of 4,627 subjects on 5 items of the Michigan Alcohol Screening
Test (Selzer, 1971) which was administered in the National Survey of Midlife Development in the
United States (MIDUS) in 1995–1996 under the auspices of the Inter-university Consortium for
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Table 4.
Model fit results for application 1.

−2LL LRT d f AIC BIC sBIC DIC

1. Baseline 6,370.02 6,390 6,454 6,423 6,436
2. Heteroscedastic residuals 6,363.39 6.63 5 6,393 6,490 6,442 6,462
3. Skew trait distribution 6,354.51 8.88 1 6,377 6,447 6,412 6,427

−2LL denotes −2 times the loglikelihood. The likelihood ratio test (LRT) is conducted between the corre-
sponding model and the baseline model. For the fit indices, the best values are in boldface.

Political and Social Research (ICPSR), see (Grzywacz & Marks, 1999).5 The items are yes/no
questions about possible consequences of alcohol use, for instance

‘Did you ever, during the past 12 months, have any emotional or psychological prob-
lems from using alcohol – such as feeling depressed, being suspicious of people, or
having strange ideas?’

Unidimensionality of the data was assessed to ensure that possible heteroscedasticity effects
are not due to misfit (e.g. multidimensionality). Using Mplus (Muthén & Muthén, 2007), a two-
parameter probit model was fit to the tetrachoric correlation matrix using weighted least-squares
estimation. The model fit was considered good according to the RMSEA which equals 0.03, the
CFI which equals 0.993, and the TLI which equals 0.986.6

6. Results

Different models were fit to investigate whether heteroscedastic residuals and/or a skewed
trait distribution underlie the data. See Table 4 for the results. First, a model with homoscedastic
residuals and a normal trait distribution was considered. This model is a traditional two-parameter
model and served as a baseline model. Then, all heteroscedasticity parameters δ1i were freed
resulting in a model with heteroscedastic residual variances in all items. As indicated by the
likelihood ratio test, AIC, BIC, sBIC, and DIC, the fit of this model was not an improvement over
the baseline model, that is, the restriction δ1i = 0 were tenable. Next, a model with a skew-normal
trait distribution was fit to test whether a general effect can be detected that is not picked up by
the individual items. According to the fit indices, this model was the best-fitting model. As can
be seen from the table, the estimate of ζ equals 2.739, see Figure 3 for the implied distribution
of θ . As can be seen from the figure and the parameter estimate, the alcohol use trait is positively
skewed, indicating that more subjects are relatively unproblematic alcohol users. This is in line
with the Lucke’s (2012) argument that a normal distribution for traits like addiction is theoretically
suboptimal.An evenbetter theoreticallymotivated distributionmight be a distributionwith support
[0,∞), see Lucke (2012).

6.1. Illustration 2: Scores on the Raven test

The data consist of the responses of 2,301 first-year psychology students to the Raven’s
Progressive Matrices (Raven, 2000) collected between 2001 and 2009 at the University of Ams-
terdam (Bakker & Wicherts, 2013; see also Wicherts & Bakker, 2012). From the 36 items, 10

5 The opinions expressed in this article are those of the author and do not necessarily reflect the views of the ICPSR.
6 RMSEA values smaller than 0.05 are generally considered to indicate good model fit. CFI and TLI values larger

than 0.95 are considered to indicate good model fit, see Hu and Bentler (1999)
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Figure 3.
Solid line The estimated distribution of the alcohol trait in application 1. Dashed line a normal distribution as specified
under the baseline model.

items were selected. Proportions correct of these items are 0.82, 0.71, 0.70, 0.71, 0.65, 0.70, 0.55,
0.59, 0.36 and 0.48. Models were again fit in R as described in application 1. As before, to assess
unidimensionality, a one factor model was fit to the data. Results indicated that unidimensionality
is tenable as judged by the RMSEA (0.040), the CFI (0.952) and the TLI (0.957).

7. Results

First, a traditional two-parameter model and amodel with heteroscedastic residuals only were
fit. See Table 5 for the modelling results. As can be seen, it was unclear whether the model with
heteroscedastic residuals (model 2) is an improvement over the baseline model (model 1). That
is, the LRT, AIC and sBIC indicate that model 2 is the better fitting model, while the BIC and DIC
indicate that model 1 is the better fitting model. However, the large likelihood ratio might indicate
that at least some items are associated with heteroscedastic residuals. This was studied next. First,
a model with a skewed trait distribution was fit (model 3a). All fit indices indicated that this model
fits better than the traditional model. As the likelihood ratio already indicated that heteroscedastic
residuals characterize these data, the question arose whether this heteroscedasticity is due to the
skewed trait, or whether some additional item-specific heteroscedasticity is present. To investigate
this question, univariate LM statistics were calculated within model 3a for the δ1i parameters of
all items as discussed above.

The univariate LM statistics for δ1i equaled 1.05, 0.17, 16.14, 13.07, 6.52, 8.51, 0.48, 28.01,
0.71 and 0.22 for items 1–10, respectively. As these statistics are χ2(1) distributed, δ1i was freed
for items 3, 4, 5, 6 and 8. In the resulting model 3b, Lagrange multipliers for the fixed δ1i equaled,
respectively, 0.11, 1.73, 1.73, 0.01 and 2.98 for item 1, 2, 7, 9 and 10. That is, there was no
indication of additional item-specific heteroscedasticity. As can be seen in Table 5, the LRT, AIC
and sBIC indicate that this model fits best among the models considered. The BIC favours the

Table 5.
Model fit results for application 2.

Model −2LL LRT d f AIC BIC sBIC DIC

1. Baseline 26,854.90 26,895 27,010 26,946 26,973
2. Heteroscedastic residuals 26,801.26 2 vs. 1: 53.64 10 26,861 27,034 26,938 26,978
3a. Skew trait distribution 26,835.15 3 vs. 1: 19.75 1 26,877 26,998 26,931 26,959
3b. Skew and het. on 3,4,5,6, 8 26,805.48 3b vs. 3a: 29.67 5 26,857 27,007 26,924 26,959

−2LL denotes −2 times the loglikelihood. For the fit indices, best values are in boldface.
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Table 6.
Parameter estimates for the final model (model 3b) in application 2.

Item no Baseline Model 3b

αi βi αi βi δ1i

1 0.509 1.037 0.492 1.029 –
2 0.370 0.584 0.367 0.582 –
3 0.468 0.581 0.484 0.635 0.797
4 0.591 0.642 0.593 0.713 1.046
5 0.423 0.430 0.427 0.484 0.773
6 0.633 0.619 0.633 0.678 0.751
7 0.915 0.179 0.926 0.164 –
8 1.158 0.337 1.001 0.009 −3.651
9 0.670 −0.437 0.668 −0.443 –
10 0.700 −0.062 0.693 −0.071 –
ζ − −1.570

model without item-specific heteroscedasticity, and the DIC is undecided. As most indices favour
model 3b, this model was accepted as the final model. See Table 6 for the parameter estimates
in this model and the parameter estimates in the baseline model (model 1, i.e. a traditional two-
parameter model). The item characteristic functions of items 3, 4, 5, 6 and 8 that are associated
with item-specific heteroscedasticity are in Figure 4 both under the homoscedastic model (striped
line) and under the heteroscedastic model (solid line). The item information functions for these
items are in Figure 5 again both under the homoscedastic model (dashed line) and under the
heteroscedastic model (solid line). As can be seen from Figure 4, the item characteristic function
in the homoscedastic case approximates the function in the heteroscedastic case, with systematic
under- or over-prediction.Most importantly, as the heteroscedastic ICFs are asymmetric, the point
at which the slope of the ICF has it maximum can differ noticeably between the homoscedastic
and heteroscedastic cases. This causes the estimated amount of item information and the location
on the θ -scale at which the maximum amount of information is obtained to differ considerably
between the homoscedastic and heteroscedastic models, as can be seen from Figure 5.

8. Discussion

From the results in this paper, it can be concluded that disentangling heteroscedastic residuals
from skewness in the latent trait is a possible but demanding endeavour. As dichotomous data
contain less information concerning individual differences, larger sample sizes were needed as
compared to the polytomous case. In the polytomous case, Molenaar et al. (2012) obtained sat-
isfactory modelling results (acceptable power and parameter recovery) for N =400, while in the
present paper, at least 1,000 to 3,000 subjects were needed. Therefore, the model seems most use-
ful in cases where large sample sizes are involved (e.g. computerized adaptive testing or national
surveys). That is, in these cases, effects of heteroscedasticity could be discovered. However, for
smaller sample sizes, it could be sufficient to only consider a skew-normal distribution for the
trait, as from the simulation study and the applications, it appears that most of the effects of
heteroscedasticity could be captured in this way.

In the present paper, a distinction was made between latent and observed moderators. In
the case of an observed moderator, the moderator is external to the measurement model (i.e. the
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Figure 4.
Solid line The model implied item characteristic functions for the items that display heteroscedasticity in application 2.
Dashed line the item characteristic functions for the corresponding item under the baseline model (a traditional two-
parameter model).

moderator is not an indicator from the measurement model). In the case of a latent moderator
variable, it was assumed that themoderator is latent to the data at hand.An interesting possibility to
consider in future research is the case in which the latent moderator will be an external latent trait
with its ownmeasurementmodel. Thiswill address the latent variable interaction literature (Kenny
& Judd, 1984;Klein&Moosbrugger, 2000). Themodels could be interesting in for instance testing
the personality differentiation hypothesis (Austin, Deary, & Gibson, 1997), which postulates that
personality and intelligence interact. In addition, in the field of behaviour genetics, genotype
by environment interactions are investigated by either the latent continuous moderator approach
(Molenaar, van der Sluis, Boomsma, & Dolan, 2012; Van der Sluis et al., 2006) or the observed
continuous moderator approach (Purcell, 2002; van der Sluis et al., 2012). For instance, it was
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Figure 5.
Solid line The model implied item information functions for items that display heteroscedasticity in application 2. Dashed
line the item information function for the corresponding item under the baseline model (a traditional two-parameter
model). The x-scales of the plots are deliberately chosen to be the same as in Figure 5.

found that for cognitive ability tests, the genetic factor is heteroscedastic across socioeconomic
status (Turkheimer, Haley, Waldron, D’Onofrio, & Gottesman, 2003) indicating a genotype by
environment interaction on cognitive ability. If heteroscedasticity of the genetic factor across a
latent trait is of interest (e.g. depression), then an external latent moderator approach might be
useful.
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