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Although hybrid crop varieties are among the most popular agricultural innovations,

the rationale for hybrid crop breeding is sometimes misunderstood. Hybrid breeding

is slower and more resource-intensive than inbred breeding, but it allows systematic

improvement of a population by recurrent selection and exploitation of heterosis

simultaneously. Inbred parental lines can identically reproduce both themselves and

their F1 progeny indefinitely, whereas outbred lines cannot, so uniform outbred

lines must be bred indirectly through their inbred parents to harness heterosis.

Heterosis is an expected consequence of whole-genome non-additive effects at the

population level over evolutionary time. Understanding heterosis from the perspective

of molecular genetic mechanisms alone may be elusive, because heterosis is likely an

emergent property of populations. Hybrid breeding is a process of recurrent population

improvement to maximize hybrid performance. Hybrid breeding is not maximization of

heterosis per se, nor testing random combinations of individuals to find an exceptional

hybrid, nor using heterosis in place of population improvement. Though there are

methods to harness heterosis other than hybrid breeding, such as use of open-

pollinated varieties or clonal propagation, they are not currently suitable for all crops

or production environments. The use of genomic selection can decrease cycle time and

costs in hybrid breeding, particularly by rapidly establishing heterotic pools, reducing

testcrossing, and limiting the loss of genetic variance. Open questions in optimal use

of genomic selection in hybrid crop breeding programs remain, such as how to choose

founders of heterotic pools, the importance of dominance effects in genomic prediction,

the necessary frequency of updating the training set with phenotypic information, and

how to maintain genetic variance and prevent fixation of deleterious alleles.

Keywords: heterosis, inbreeding depression, genomic selection, reciprocal recurrent genomic selection,

dominance, autogamous

INTRODUCTION

Hybrid crop varieties vastly outperform their inbred progenitors in economically important species
ranging from maize (Zea mays) to oil palm (Elaeis guineensis; Duvick, 2005; Fu et al., 2014; Cros
et al., 2015). However, hybrid breeding requires more time and resources than inbred breeding
(Troyer andWellin, 2009; Longin et al., 2014; Cros et al., 2018). The effectiveness of hybrid breeding
can be improved by genomic selection, in which marker information partially replaces phenotypes
in estimation of breeding values (Heffner et al., 2009). Genomic selection can shorten the breeding
cycle, reduce the costs of phenotyping, and improve selection accuracies (Lorenz et al., 2011;
Heslot et al., 2015; Zhao et al., 2015b; Schulthess et al., 2017; Kadam and Lorenz, 2018).
Genomic selection also opens new opportunities to establish hybrid breeding programs
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in crops which are widely cultivated as inbreds, such as wheat
(Triticum aestivum; Zhao et al., 2015b). Here, we compare and
contrast genomic selection with conventional selection in hybrid
crop breeding. We summarize the quantitative genetic model
of phenotype, and we synthesize quantitative, evolutionary,
phenotypic, and molecular genetic perspectives to explain the
bases of heterosis and its role in breeding hybrids. Then, we cover
the fundamentals of genomic prediction and its uses in genomic
selection at all stages of the hybrid breeding cycle, including
selection strategies for long-term gain. In closing, we outline
factors which influence the success of hybrid breeding programs
relative to inbred breeding programs.

QUANTITATIVE GENETIC MODEL OF
PHENOTYPE

To consider genomic selection for hybrid performance and
heterosis, it is necessary to understand the statistical model
of phenotype used in quantitative genetics. The observed
performances of individuals in a population are their phenotypic
values (Falconer and Mackay, 1996). The variance of individuals’
phenotypic values is due to genetic and non-genetic variance
components and their interactions (Supplementary Table 1;
Eq. 1; Falconer and Mackay, 1996). If non-genetic variance
were absent, then phenotypic variance would be equal to
genetic variance. Detecting genetic variance does not require
demonstrating molecular modes of gene action, and genetic
effects are indirectly observed as differences in phenotypes
(Falconer and Mackay, 1996). For example, if there are no
differences in individuals’ phenotypes and thus no phenotypic
variance, then genetic effects and genetic variance are zero.
Even though at the molecular genetic level cellular machinery
dynamically generates and maintains identical phenotypes, these
are not genetic effects or genetic variance in the quantitative
genetic sense. Similarly, the amount of genetic variation, genetic
diversity, or nucleotide diversity cannot be inferred from the
magnitude of genetic variance even though genetic variation
underlies genetic variance. If the most genetically diverse lines of
a population are sampled and their phenotypes are identical, then
genetic variance is nonetheless zero, assuming no non-genetic
variance. If the phenotype is also measured in closely related lines
but varies greatly, then genetic variance is large, even if the lines
have nucleotide polymorphisms in just one gene.

Total genetic variance can be further partitioned into additive,
dominance, and epistatic variance (Supplementary Table 1;
Eq. 2; Falconer and Mackay, 1996). Intuitively, individuals share
alleles to the degree that they are related (Falconer and Mackay,
1996; Fisher, 1918). Under the infinitesimal model, an impossibly
large number of alleles additively affect quantitative trait
phenotypes, so the proportion of shared alleles among relatives
is expected to produce concomitant phenotypic resemblance
(Fisher, 1918). The more that relatives phenotypically resemble
each other in proportion to their degree of relatedness, the greater
the proportion of phenotypic variance that can be explained by
additive genetic variance, assuming zero non-genetic variance
(Fisher, 1918). If dominance and epistatic variance is present,

relativesmay resemble each othermore than expected by a strictly
additive model (Lynch and Walsh, 1998).

Genetic variance is also viewed as statistical effects of alleles
at individual loci in a population (Falconer and Mackay, 1996).
Alleles can have additive and dominance effects on genetic value.
At a given locus, the additive effect of an allele, a, is the average
genetic value of all individuals which are homozygous for the
allele (Falconer and Mackay, 1996). The dominance effect of the
allele, d, is the average genetic value of all individuals which
are heterozygous for the allele (Falconer and Mackay, 1996).
Since epistasis requires multiple alleles, single alleles do not have
epistatic effects.

At the population level, the average effect of substituting
one allele for another at a given locus on the genetic
mean of the population depends not only on the additive
and dominance effects of the allele, but also its frequency
(Supplementary Table 1, Eq. 3—5; Falconer and Mackay,
1996). The average effect of an allele, α, is its coefficient
in regression of genetic value on the number of copies of
the allele in each genotype at the locus (Supplementary

Table 1; Eq. 6; Falconer and Mackay, 1996). If dominance
occurs, then observed genetic values do not fall exactly on
the regression line of genetic value on allele copy number
per genotype (Falconer and Mackay, 1996). The deviation of
the heterozygote genetic value from the regression line is the
dominance deviation of the allele, δ (Supplementary Table 1;
Eq. 6; Falconer and Mackay, 1996). If more than one locus
affects phenotype, then epistatic interactions between and/or
among allelic effects across loci can also contribute to genetic
value (Supplementary Table 1; Eq. 7; Falconer and Mackay,
1996). The statistical effects of alleles can be used directly
to calculate respective genetic variances, but realistically it is
almost always unknown which alleles affect phenotype or which
individuals carry which alleles (Falconer and Mackay, 1996).
Therefore, in practice, genetic variances are estimated from
resemblance among relatives, not a priori from allelic effects
(Falconer and Mackay, 1996).

Statistical genetic average, dominance, and epistatic effects
do not represent underlying biological modes of gene action
in most experimental and breeding settings, and modes of
gene action cannot be inferred from the relative contribution
of each source of statistical genetic effects to the genetic
value (Cordell, 2002; Crow, 2010; de los Campos et al., 2015;
Huang and Mackay, 2016; Manfredi et al., 2017). By definition,
biologically dominant or epistatic gene action is largely captured
by statistical average effects, because statistical dominance and
epistasis are residual deviations from average effects (Cheverud
and Routman, 1995). Average, dominance, and epistatic effects
refer to their statistical formulations throughout this review
unless specified as biological.

QUANTITATIVE GENETIC MODEL OF
HETEROSIS

A rationale for hybrid breeding is the systematic exploitation
of heterosis (Schulthess et al., 2017). Mid-parent heterosis is
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FIGURE 1 | Illustration of the partitions of population-level heterosis by Lamkey and Edwards (1999). Arrows indicate random mating or random crossing, and lines

indicate selfing to homozygosity. Note that only dominance, additive × dominance, and dominance × dominance effects can contribute to baseline heterosis, but

dominance, additive × dominance, dominance × dominance, and additive × additive effects can contribute to panmictic-midparent heterosis, inbred-midparent

heterosis, and F2 heterosis. Equations are further described in Supplementary Table 1.

the difference between a progeny genetic value and its mid-
parent value, or the average of its parents’ genetic values
(Supplementary Table 1.; Eq. 8; Lynch and Walsh, 1998). Under
the additive model, the genetic value of a progeny is expected to
be equal to the average genetic value of its parents. Thus, mid-
parent heterosis results from dominance and epistatic deviation.
However, mid-parent heterosis of a single cross is neither a
measure of dominance or epistatic effects nor a measure of
heterosis in a population.

It is important to define heterosis further at the population
level, because (a) heterosis emerges at the population level,
even if it partially can be observed in single crosses, and
(b) breeding involves populations rather than individuals
alone (Figure 1; Lamkey and Edwards, 1999). In a group of
individuals which can potentially intermate, such as a species,
random mating may not occur among all individuals. Non-
random mating of individuals—or any factor which leads to
Hardy–Weinberg disequilibrium, such as migration—can cause
distinct subpopulations form within the overall population,

termed population structure. Within subpopulations, mating is
random andHardy–Weinberg equilibrium is reached, but among
subpopulations mating is non-random. The subpopulations
are inbred relative to the population that would result if
random mating had occurred among all individuals in the
overall population, and allele frequencies may come to differ
among subpopulations.

What results if two of these subpopulations are randomly
mated to each other? The mean genetic value of their F1
may differ from the mean of the average genetic values within
each subpopulation, and this difference is termed panmictic-
midparent heterosis (Supplementary Table 1; Eq. 9—11; Lamkey
and Edwards, 1999). Panmictic-midparent heterosis is thought
to result from (a) dominance, as allele frequencies differ
between the parent populations, and dominant genotypes that
do not occur in the parents are observed in their F1, and/or
(b) additive × additive epistasis, as new interactions among
alleles are possible in the F1 compared to the parents. The
portion of panmictic-midparent heterosis due to dominance, if
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present, can be thought of as recovery from inbreeding due to
population structure, because subpopulations are by definition
inbred relative to a population in which structure had never
occurred. Although this base population in which structure never
occurred is hypothetical and cannot be observed, it is possible to
form an analogous population in Hardy–Weinberg equilibrium
by randomly intermating the two subpopulations to form an F1,
then randomly mating the F1 to form an F2. Heterosis in the F2,
or F2 heterosis, is reduced by half compared to the panmictic-
midparent heterosis in the F1 (Supplementary Table 1; Eq. 12—
13; Lamkey and Edwards, 1999).

Panmictic-midparent heterosis can be positive or negative.
If panmictic-midparent heterosis is negative, it is sometimes
referred to as outbreeding depression (Waser and Price, 1994;
Lynch and Walsh, 1998; Grindeland, 2008; Oakley et al., 2015).
Outbreeding depression is thought to primarily result not from
dominance, but rather from loss of favorable additive × additive
epistases as co-selected, genomically compatible combinations
of alleles are separated in the F1 of two random-mating
populations (Dobzhansky, 1941; Welch, 2004). These losses of
favorable biological epistases are termed Dobzhansky–Muller
incompatibilities (Dobzhansky, 1941).

What results if, within a subpopulation, inbreeding occurs
rather than random mating? Inbred lines are often observed
to have a lower mean genetic value than the mean of the less
inbred subpopulation, a phenomenon referred to as inbreeding
depression (Charlesworth and Charlesworth, 1987; Falconer
and Mackay, 1996; Charlesworth and Willis, 2009). Inbreeding
depression is thought to result biologically from (a) deleterious
recessive alleles driven to homozygosity, (b) homozygosity at
overdominant loci at which the heterozygous state outperforms
either homozygote, and/or (c) a loss of favorable epistatic
interactions between heterozygous genotypes (Davenport, 1908;
East, 1908; Shull, 1908; Falconer and Mackay, 1996). If it were
possible to randomly mate the inbred lines without selection to
form an F1, the original subpopulation would be reconstituted
and its mean restored to its original state if inbreeding depression
were due to dominance and/or epistasis (Falconer and Mackay,
1996). Interestingly, there is some evidence of inbreeding
depression due to epigenetic changes which may not be reversible
by random mating, termed hybrid decay or hybrid dysgenesis
(de la Luz Gutiérrez-Nava et al., 1998; Xue et al., 2019). Though
hybrid decay is not thought to be a universal cause of inbreeding
depression and has not prevented production of hybrids from
inbreds in commercial programs, it is unknown how widespread
this occurrence is.

If two subpopulations are again considered, an F1 of the
subpopulations can be produced in two ways: (a) the randomly
mating subpopulations can be randomly intermated, or (b) each
subpopulation can first be selfed to produce fully inbred lines,
and the fully inbred lines can be randomly intermated (Lamkey
and Edwards, 1999). The average genetic value of the F1 resulting
from either of these processes is equal (Supplementary Table 1;
Eq. 9; Lamkey and Edwards, 1999). Some of the mean genetic
value of the F1 is due to baseline heterosis, or the restoration
of what was lost due to inbreeding depression during selfing
of both the parent subpopulations (Supplementary Table 1;

Eq. 14; Lamkey and Edwards, 1999). However, the panmictic-
midparent heterosis that results from crossing two randomly
mating subpopulations also contributes to the genetic value of
these F1. Therefore, inbred-midparent heterosis is defined as the
sum of baseline heterosis and panmictic-midparent heterosis,
which is equivalent to the difference of the mean genetic value of
the F1 and themean genetic value of all the inbred parents derived
from both populations (Supplementary Table 1; Eq. 9, Eq. 15—
16; Lamkey and Edwards, 1999). The key reason to partition
heterosis into panmictic-midparent, F2, baseline, and inbred-
midparent heterosis is that it allows definition of average heterosis
and inbreeding depression at the population level. Furthermore,
it provides a framework to contrast heterosis that results from
crossing two random-mating subpopulations and heterosis that
results from crossing inbred lines that result from the random-
mating subpopulations.

Heterosis is often described as the “opposite” or converse
of inbreeding depression. However, of the partitions of
heterosis described here, only baseline heterosis is strictly
the opposite of inbreeding depression. Panmictic-midparent
heterosis (and therefore inbred-midparent heterosis) can
arise totally from epistatic effects without dominance,
whereas inbreeding depression cannot (Falconer and Mackay,
1996; Lamkey and Edwards, 1999; Chen, 2013). Heterosis
due to epistasis can only result from additive × additive
epistasis, whereas inbreeding depression can result from both
additive × dominance and dominance × dominance epistasis
(Lynch, 1991; Lynch and Walsh, 1998).

EVOLUTIONARY AND MOLECULAR
GENETIC BASES OF HETEROSIS

From the evolutionary perspective, heterosis in quantitative
genetics ultimately rests on assumptions of biological dominance
and biological epistasis, even though the additive model captures
most of the effects of biological dominance and epistasis (Huang
and Mackay, 2016). For biological dominance to affect heterosis,
dominant alleles should have directional effects on fitness (Lynch
and Walsh, 1998). As biologically dominant mutations arise
in a population, they affect phenotype regardless of zygosity
and are exposed to selection (Falconer and Mackay, 1996).
Recessive mutations are only exposed to selection on phenotype
in their homozygous state and can propagate in populations as
they are not selected as heterozygotes (Falconer and Mackay,
1996). Therefore, deleterious dominant alleles are more likely
to be eliminated from populations by selection than deleterious
recessives (Falconer and Mackay, 1996). Over evolutionary time,
it is expected that biologically dominant alleles tend to be
favorable, and deleterious alleles tend to be recessive (Falconer
and Mackay, 1996). If dominant alleles have directional effects
on fitness, the effect is then often positive (i.e., the sign of
dominance occurs in the same direction as the measure of
fitness). In maize, alleles identified as likely deleterious via
genomic evolutionary rate profiling were found more likely
to be recessive (Yang et al., 2017). The likelihood of purging
recessive deleterious alleles is reduced as effective population
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size increases, and deleterious alleles may be shielded from
selection in genomic regions with low recombination rates,
such as the centromere, regardless of dominance (Barrett and
Charlesworth, 1991; Rodgers-Melnick et al., 2015; Yang et al.,
2017). Evolutionary mechanisms besides directional selection
have also been proposed to explain the emergence of dominance,
such as stabilizing selection (Manna et al., 2011).

Heterosis can also result from overdominance, a type
of biological dominance in which heterozygotes have more
extreme phenotypes than both homozygotes, and alleles
persist in populations at intermediate frequencies (Crow,
1999). One overdominant locus alone is sufficient to cause
heterosis (Falconer and Mackay, 1996; Krieger et al., 2010).
However, detection of overdominance is complicated because
it requires inbred parents to be identical at all loci except
the locus of interest. If they are not, then parents can carry
biologically dominant alleles of opposite effects on fitness
linked in repulsion, and pseudooverdominance results: the
loci are never observed in their uncoupled state, and they
appear as one overdominant locus. In absence of linkage,
pseudooverdominance would not exist.

Finally, biological epistasis may contribute to heterosis as
interactions of multiple loci contribute to fitness. Ample evidence
of biological epistasis is available; for example, genes encoding
transcription factor proteins may physically bind to DNA
sequence motifs to activate or repress other genes which affect
phenotype, among other mechanisms (Phillips, 2008; Lehner,
2011; Burdo et al., 2014). However, detecting all types of both
statistical and biological epistasis in regular experimental samples
is often not feasible because the number of combinations of alleles
is much larger than the number of individual genotypes in a
population (Wei et al., 2014). Epistasis also cannot be detected
in a population if the experimental sample is not segregating for
both interacting genes (Stitzer and Ross-Ibarra, 2018).

It is possible that heterosis can be explained fully by
biologically additive, dominant, and epistatic gene action and
that no single gene, class of genes, or physiological phenomenon
causes heterosis (Birchler et al., 2010; Fiévet et al., 2018). If
so, searching for the genetic basis of heterosis would lead to
the genetic basis of the specific trait in question in a particular
experimental sample, and heterosis would be conferred by
biological dominance, overdominance, or epistasis of those genes
which controlled the trait (Fiévet et al., 2018). For example,
consider inquiry into the genetic basis of heterosis for grain yield
in maize and biomass yield in sorghum (Sorghum bicolor). By the
explanation of heterosis above, maize grain yield and sorghum
biomass yield could be controlled by completely different genes
and classes of genes, and dominant, overdominant, or epistatic
action of the genes involved would lead to heterosis. If more
individuals were sampled, which presented more combinations
of genes and/or more genetic variants, then the genetic basis of
observed heterosis could change.

It has been further hypothesized that actions of particular
classes of genes or physiological effects of genes cause heterosis
universally across traits and species (Birchler et al., 2010; Fiévet
et al., 2018). These proposed unifying mechanisms include
organellar complementation, circadian rhythm changes, changes

in hormone expression, genome-wide changes in chromatin
state and/or changes in small RNA expression, dosage effects,
regulatory incompatibility, parent-specific gene expression, and
changes in signaling in response to heterozygosity (Auger et al.,
2005; Reif et al., 2005; Lippman and Zamir, 2007; Kaeppler,
2012; Chen and Birchler, 2013; Bar-Zvi et al., 2017; Herbst
et al., 2017; Li et al., 2020). It is challenging to detangle
whether each of these actions of gene classes and physiological
effects are themselves causes of heterosis, or instead the effect
of a true unobserved cause of heterosis. None has been
demonstrated to universally explain heterosis, but some have
been demonstrated to be associated with heterosis in some
cases and have been incorporated into predictive models with
varying effects on prediction accuracy (Kaeppler, 2012; Westhues
et al., 2017; Schrag et al., 2018; Seifert et al., 2018). At the
transcriptome level, hybrids generally display transcript levels
near their mid-parent value, with some exceptions (Swanson-
Wagner et al., 2006; Hochholdinger and Hoecker, 2007; Springer
and Stupar, 2007). At the proteome level, hybrids generally show
protein levels which deviate from the mid-parent, particularly
in functional classes related to central metabolism and stress
responses (Marcon et al., 2010). Efforts to map heterosis for
various traits generally do not reveal loci for which the association
holds universally across genotypes, even for single traits within
a species (Huang et al., 2016; Liu et al., 2020). If a particular
universal mechanism of heterosis were ultimately revealed, the
genes involved would still have biologically additive, dominant,
or epistatic gene action. The genes may not be identical at the
sequence level, but it would be expected that the mechanism
would be common to all cases of heterosis.

PHENOTYPIC BASES OF HETEROSIS

In hybrid individuals, not all traits are necessarily heterotic
(Kaeppler, 2011). Nor is there correlation in levels of heterosis
for different traits (Longin et al., 2013; Huang et al., 2015).
For example, a hybrid individual might show heterosis in yield
and height, but not root angle, and the amount of heterosis
for yield and height may differ. The sign of heterosis can vary
among traits; inter-subspecific hybrids of indica and japonica rice
(Oryza sativa) show increased vigor, but reduced fertility, as do
interspecific hybrids of donkeys (Equus asinus) and horses (Equus
caballus; Troyer, 2006; Fu et al., 2014). The degree of heterosis
can also depend on environment. Maize hybrids usually show
more heterosis in stressful than non-stressful environments, even
as overall performance is decreased (Duvick et al., 2004). The
lack of consistent levels of heterosis across traits may indicate
that heterosis cannot be explained by a unifying, systems-wide
mechanism—the reasoning being that all traits would then be
affected equally.

Heterosis is also found in complex traits that are a function
of multiple component traits, even if the component traits can
be fully explained by an additive genetic model. If component
traits diverge phenotypically in parents, then heterosis in the
complex trait is often detected in progeny even as the component
traits remain near the mid-parent (Powers, 1944; Williams, 1959;
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Grafius, 1961; Coyne, 1965; Melchinger et al., 1994; Dan et al.,
2015; Fiévet et al., 2018). For example, in the heterotic pools
of oil palm, one pool has a few heavy fruit bunches, and the
other has many light fruit bunches (Cros et al., 2015). Their
hybrids exhibit substantial heterosis (25%) for fruit production—
the product of bunch number and bunch weight—but the hybrid
values for bunch number and bunch weight remain near the
mid-parent. Notably from the genetics perspective, biological
dominance is not required to explain heterosis in multiplicative
complex traits (Schnell and Cockerham, 1992; Cros et al., 2015).
In this example, it is possible that all of the heterosis in fruit
production of oil palms can be fully explained by biologically
additive gene action in bunch number and bunch weight (in
which case hybrid breeding would not be the optimal strategy to
increase fruit production), but in practice the true genetic bases
of these traits are unknown.

At the biochemical level, complex phenotypes are a function
of multiple component metabolites over time (Fiévet et al.,
2018). Metabolite levels or concentrations are themselves a
complex phenotype, because they are the product of enzyme
amounts and activities within pathways, as well as flux (i.e.,
rate of turnover) through the pathway (Marshall-Colón et al.,
2010; Fiévet et al., 2018). Heterosis can emerge because enzyme
activities often affectmetabolic flux non-linearly—i.e., halving the
activity or concentration of a given enzyme does not necessarily
halve metabolic flux (Fiévet et al., 2018; Govindaraju, 2019;
Vacher and Small, 2019). The non-linear relationships of enzyme
activity and metabolic flux has been proposed as the molecular
basis of dominance (Kacser and Burns, 1981). Even if hybrids
have enzyme concentrations near the mid-parent, as would be
expected under additive inheritance, whether flux or the product
metabolite is also at the mid-parent depends on the biochemistry
of the pathway (Vacher and Small, 2019). For example, the
product metabolite concentration in hybrids may deviate from
the mid-parent as enzymes with activities at the mid-parent
interact along a pathway and change the flux, or as a rate-limiting
step of the pathway is saturated at lower levels than the mid-
parent enzyme activity and further increases in enzyme activity
do not affect flux (Fiévet et al., 2018). A key conclusion, then, is
that non-additive phenotypes such as metabolite concentrations
may arise from component additive phenotypes such as enzyme
concentrations or activities. Since metabolites are component
traits of even more integrated traits, like grain yield, non-
additivity in metabolite concentrations can reverberate across
levels of phenotype and can lead to heterosis in the integrated
trait (Fiévet et al., 2018). Whether heterosis is detected can
depend on the choice of phenotype. The metabolome is a
phenotype, and using metabolomics data as component traits
in multi-trait prediction then has instant appeal, despite current
limits in metabolomics on throughput, cost, and the number of
metabolites which can be sampled.

ALTERNATIVE DEFINITIONS OF
HETEROSIS

There are several alternative definitions of heterosis which are not
equivalent to mid-parent heterosis and do not have a well-defined

genetic interpretation. Better parent heterosis (heterobeltiosis)
and commercial heterosis, in which either the phenotypic
value of the better-performing parent or a commercial check,
respectively, is taken from the progeny phenotypic value, may
be useful measures for varietal development but have no
immediate relevance to genetic improvement of a population
by selection, except perhaps to define selection targets (Flint-
Garcia et al., 2009; Schnable and Springer, 2013). Better-parent
and commercial heterosis might be more informatively described
as better-parent and commercial relative performance to avoid
equating these measurements with mid-parent heterosis.

Heterosis has also been restricted to describing only increases
in progeny vigor relative to parents, i.e., positive heterosis
(Shull, 1948). Negative heterosis is observed, as in the progeny
of outbreeding depressed parents (Lynch and Walsh, 1998).
However, the sign of heterosis can also be a simple artifact of
the investigator’s choice of phenotypic measurement (Falconer
and Mackay, 1996). For example, positive heterosis for days
to flowering is equivalent to negative heterosis for speed of
development—a plant which flowers later would have a more
positive value for days to flowering, but it would have a less
positive value for speed of development since it matures more
slowly (Falconer and Mackay, 1996). Therefore, a progeny
that flowers later than its mid-parent would show positive
heterosis for days to flowering, but negative heterosis for
speed of development even though the character measured
(when the progeny flowers) is identical. Another common
example is that severity of disease can also be viewed as
plant health status, and the investigator chooses whether a
more positive number represents more or less severe disease
symptoms. In the case that a progeny is more resistant to
disease that its mid-parent, it will show positive heterosis
if less severe disease is measured as a more positive value
but negative heterosis if less severe disease is measured as a
less positive value.

Finally, heterosis has been conceptualized as a systems-wide
phenomenon is which “the increased vigor, size, fruitfulness,
speed of development, resistance to disease and to insect
pests, or to climactic rigors of any kind” is observed (Shull,
1952). It is perhaps this perspective of heterosis which has
fueled the search for a unifying theory of heterosis as well
as investigation into its functional genomic causes (Birchler
et al., 2003, 2010). Understanding biological bases of heterosis
is valuable, but further investigation is needed to use biological
insights into heterosis in hybrid crop breeding programs
(Ramstein et al., 2019).

GENOMIC PREDICTION

As parents, individuals transmit neither their phenotype nor their
full genotype to their offspring. The allele, or more broadly, the
gamete is the unit of inheritance. Only the additive portion of
genetic value is heritable in the narrow sense if mating is random,
because it does not depend on intra- or inter-locus combinations
of loci which are potentially disrupted upon mating (Falconer
and Mackay, 1996). If mating is random, additive genetic value is
all that is maximizable or “breedable” cyclically over generations,
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and an individual’s additive genetic value is its breeding value
(Falconer and Mackay, 1996; Huang and Mackay, 2016).

Despite its name, the concept of breeding value was not
developed specifically for the purpose of breeding, but rather
to explain the inheritance of quantitative traits: because Mendel
discovered inheritance in traits which had discrete classes, it was
initially unknown whether continuous, quantitative traits were
also controlled by genes that could be transmitted from parent to
progeny (Bernardo, 2020). Fisher (1918) not only conceptualized
that quantitative traits could be the effect of many genes, but also
connected the partial inheritance of parental alleles to observed
patterns of resemblances among relatives (Bernardo, 2020). In
applied breeding programs, some of the assumptions that define
breeding value—such as random mating—are routinely unmet
(Falconer, 1985; Bernardo, 2020). Recently, it has been suggested
to move away from referring to estimates of transmissible
variance as breeding values in applied plant breeding programs
for clarity and because non-additive variance can be transmitted
via cross selection (Bernardo, 2020; Werner et al., 2020). Here,
we refer to breeding values even though at times the definition is
not strictly met.

True breeding value cannot be measured or even observed
in the individual alone, since true measure of breeding
value requires errorless observations of every possible progeny
resulting from the individual mated to every possible member
of the population to which it belongs. Therefore, breeding
values are estimated. The estimation of breeding values was
first accomplished by progeny testing. With random mating,
the average performance of an individual’s progeny is an
estimate of its breeding value (Supplementary Table 1; Eq. 17).
Many mating schemes were developed to more accurately
estimate breeding values by use of more types of relatives
(Hallauer et al., 2010). However, best linear unbiased prediction
(BLUP) was developed to estimate breeding values without the
need for mating designs, as pedigree-based variance-covariance
relationship matrices describe the resemblance between relatives
in a linear mixed model (Supplementary Table 1; Eq. 18;
Henderson, 1975). Assuming no fixed effects, BLUP of breeding
value can be thought of as a linear combination of observed
phenotypes weighted by the degree of their relationship with
the individual for which breeding value is predicted. The
pedigree-based relationship matrix is often referred to as the
numerator relationship matrix, A, and pedigree-based BLUP
is sometimes called ABLUP (Bernardo, 2002; Gianola et al.,
2018). Interestingly, BLUP was slow to gain traction in plant
breeding, but quickly became popular in animal breeding due
to the standing practical impossibility of replicating animal
genotypes (Piepho et al., 2008). It was perhaps here that the
two fields decoupled in their study of genomic prediction and
selection, and the benefits of cross-disciplinary synchronization
of methods are recognized in both fields (Schön and Simianer,
2015; Hickey et al., 2017).

Well in advance of the sequencing technologies that would
make markers cheaper, less biased, and more representative
of the genome, the framework for genomic prediction of
EBV using molecular markers was developed. Bernardo (1994;
1996) used genome-wide markers to estimate breeding values

from kinship rather than pedigree in the first instance of
genomic prediction. Whittaker et al. (2000) addressed the
problem of selection of marker subsets for linear regression in
marker-assisted selection (MAS) by ridge regression, which is
a regularization method that shrinks normalized effects for all
markers equally toward an assumedmean of zero by an optimized
parameter, λ (Supplementary Table 1; Eq. 19). This was a crucial
advance for the use of genomic markers in selection, because
markers generally outnumber phenotypes and cause the “large
p, small n” problem: linear regression by OLS is not possible
if predictors (p) outnumber responses (n), and subsampling is
usually suboptimal (Whittaker et al., 2000). Ridge regression,
like other regularization methods, addresses the problem of
selecting predictors by shrinking their coefficients instead of
subsampling. Regularization also reduces model overfitting, in
which models capture noise (i.e., residual error) as well as signal
(i.e., effects of predictors). Bothmodel overfitting and poor choice
of predictors reduce prediction accuracies. Meuwissen et al.
(2001) realized that if markers in linkage with every quantitative
trait locus (QTL) affecting a trait were to become available, then
additive effects permarker (estimated by ridge regression or other
methods) could be summed to calculate individuals’ genomic
estimated breeding values (GEBVs). Use of GEBVs or any other
value estimated using genome-wide information for selection is
referred to as genomic selection.

Since 2001, tens of methods for genomic prediction of
breeding values, as well as the genetic values of lines used
for production rather than breeding, have been developed
(Gianola et al., 2006, 2009; Legarra et al., 2009; Habier et al.,
2011; Momen et al., 2018; Wang et al., 2018; Howard et al.,
2019; Kadam and Lorenz, 2019). These methods include both
frequentist and Bayesian, as well as parametric and non-
parametric, methods (Gianola et al., 2018). The parametric
method of Whittaker et al. (2000), ridge regression of marker
effects, is called RR-BLUP and assumes marker effects are drawn
from a normal distribution. Hayes et al. (2009) later showed
that estimation of breeding values by RR-BLUP is equivalent to
estimation by genomic BLUP (GBLUP), in which markers are
used to compute a genomic relationship matrix. The genomic
relationship matrix (often denoted G) replaces the pedigree
relationship matrix (A) to calculate BLUPs of GEBVs (VanRaden,
2008). GBLUP is generally more accurate than ABLUP, because
realized genetic relationships deviate from pedigree expectations
following Mendelian sampling, selection, and other events
(VanRaden, 2008). RR-BLUP and GBLUP are widely used for
genomic prediction because they are relatively straightforward
to interpret, often more computationally efficient, and often
as accurate as other methods with more realistic assumptions
(Zhao et al., 2015b; Howard et al., 2019). For reviews
of genomic prediction methods, see Gianola et al. (2018)
and Howard et al. (2019).

In hybrid breeding, genomic prediction can be used to (a)
predict the combining abilities of inbred lines, and (b) predict
the performance of new hybrid genotypes (Bernardo and Yu,
2007; Technow et al., 2012). To predict the combining abilities
of inbred lines, phenotypes of their hybrid progeny are used to
estimate inbred combining abilities, then the combining abilities
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of the inbred lines are modeled as a function of their inbred
genotypes (Bernardo and Yu, 2007). To predict the performance
of new hybrid genotypes, hybrid phenotypes are modeled as a
function of hybrid genotypes (Technow et al., 2012). However,
hybrid genotypes are usually not sequenced directly, and are
inferred instead by genotyping their inbred parents, which
reduces the total number of individuals for genotyping. Even
though within hybrid genotypes a given allele may be specific
to a particular population, modeling population-specific effects
of alleles has not been shown to greatly increase accuracy in
predicting hybrid performance (Technow et al., 2012).

Prediction accuracy is an important determinant of whether
genomic prediction will lead to effective selection across
environments, years, and genotypes. Factors which influence
accuracy of GEBVs include choice of statistical model, trait
heritability, precision in geno- and phenotyping, size the of
the training set, and relatedness/common LD structure of the
training and testing set (Heslot et al., 2015; Rutkoski et al.,
2017). Modeling non-additive effects is an active area of research
with particular relevance to prediction of GEBV or performance
(Vitezica et al., 2017; Varona et al., 2018b; Voss-Fels et al.,
2019). Dominance deviations are by definition zero in genetic
values of homozygous inbred lines; only additive and epistatic
additive effects are non-zero. In non-inbred individuals, all non-
additive effects contribute to genetic value. Product development,
in contrast to population improvement, is concerned with total
genetic value, which includes non-additive effects.

Though modeling non-additive effects would be expected,
then, to improve prediction accuracies, a reminder is warranted:
modeling non-additive genetic effects will only improve
prediction accuracies if non-additive genetic effects exist for the
traits of interest and non-additive genetic effects can be estimated
accurately in the populations of interest (Hill et al., 2008). In light
of these considerations, it is perhaps unsurprising that in practice
classical models which fit non-additive effects rarely outperform
accuracies of additive models (Varona et al., 2018a; Werner
et al., 2018). Interestingly, though, if dominance effects are fit in
absence of underlying dominance, Duenk et al. (2017) observed
no change in accuracy of estimating additive effects. In fact,
accuracy of estimation of additive effects was always improved
or unchanged by models which incorporated dominance, even
in small sample sizes and/or in cases that genetic variance
explained low proportions of phenotypic variance (Duenk
et al., 2017). Though no similar study has been conducted for
epistasis to our knowledge, there appears to be no penalty to
fitting dominance effects. In crossbred (hybrid) and pure-line
animals, incorporating positive directional dominance effects
and inbreeding depression effects (which are posited to underlie
heterosis) sometimes improves prediction accuracies relative
to assuming dominance effects centered at zero or ignoring
inbreeding (Xiang et al., 2016; Varona et al., 2018a; Christensen
et al., 2019). Inclusion of non-additive effects can also improve
choice of parents for crossing by estimates of their progeny
genetic value (Aliloo et al., 2017; Werner et al., 2020).

Multivariate genomic prediction methods are promising for
improving prediction accuracy when traits under selection with
low heritability are genetically correlated with traits with high

heritability (Jia and Jannink, 2012; Neyhart et al., 2017; Okeke
et al., 2017; Sun et al., 2017; Wang et al., 2017; Fernandes et al.,
2018;Watson et al., 2019). Because heterosis in complex traits can
sometimes be explained by component traits which are negatively
complementary in the parents, multivariate genomic prediction
could potentially improve predictions of hybrid performance and
EBVs if such component traits are included. Hybrid production
also faces a constraint on the performance of the inbred parents,
in that inbred parents must have good per se performance and
specificmale and femalemorphotypes for hybrid seed production
(Hallauer et al., 2010). Generally, inbred parents are selected
for these traits separately from their selection as hybrid parents
(Hallauer et al., 2010). Treating inbred and hybrid performance
as different but genetically correlated traits in multivariate
genomic selection may improve selection accuracy for hybrid
performance, but this has not been reported to date.

GENOMIC SELECTION IN HYBRID
BREEDING

Breeding for hybrid performance can benefit from the
incorporation of genomic selection, and in a few cases
genomic prediction could be used to develop new breeding
strategies (Xu et al., 2017). Hybrid breeding primarily
involves inter-population improvement, in which recurrent
selection of individuals within populations is effected between
populations by selecting on individuals’ performance as parents
in between-population crosses (Hallauer et al., 2010). Unlike
intra-population improvement, in which performance of crosses
within populations is used to recurrently select individuals in
the same population, inter-population recurrent improvement
is not only of the populations themselves but also of the
performance of their hybrid crosses in combination (Hallauer
et al., 2010). Hybrid breeding can be considered to have three
main modules: selecting founders of heterotic pools, breeding
heterotic pools, and selecting parents of crosses for production
pipelines (Figure 2).

Heterotic pools are distinct groups of lines which reliably
produce heterosis upon crossing; the lines may or may
not be related (Melchinger and Gumber, 1998). Breeding
distinct heterotic pools is more effective in consistently
producing high-performing hybrids than making random
crosses, because heterotic pools are improved by recurrent
selection for average line performance in hybrid crosses
with the opposite heterotic pool, which is termed general
combining ability (GCA; Sprague and Tatum, 1942; Reif et al.,
2005). Hybrid performance is modeled as the sum of each
parental GCA and the specific combining ability, or SCA,
of the parent pair (Supplementary Table 1; Eq. 20; Griffing,
1956b). GCA corresponds to additive effects, whereas SCA
corresponds to dominance effects (Griffing, 1956a). The process
of breeding heterotic pools increases the ratio of GCA to
SCA effects over time, so the parents’ performance in crosses
becomes more heritable in the narrow sense (Schulthess et al.,
2017). In addition, distinguishing heterotic pools addresses
the practical need for lines to have specific traits for use
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FIGURE 2 | Graphical overview of traditional and genomics-assisted hybrid crop breeding pipelines.

as males or females, as male and female traits such as
high pollen production or male sterility can be pool-specific
(Zhao et al., 2015b).

Heterotic pools are developed by choosing founders,
then recurrently improving the pools for combining ability.
Historically, hybrid breeding was first systematically conducted
in maize in North America, and maize breeding programs are the
longest-running among hybrid crops (Shull, 1908). Though it is
a common misconception that the founders of the first heterotic
pools of maize were chosen for their origin in geographically and
genetically distinct groups, in fact the archetypal Reid-Lancaster
heterotic pattern was developed empirically by trial-and-error in
crossing (Melchinger and Gumber, 1998; Tracy and Chandler,
2006). Later, successful commercial maize heterotic pools arose
upon separating of lines into groups for use as males or females;
the initial pools used have been posited to have shared around
half of their genetic background (Tracy and Chandler, 2006).
Observed genetic divergence between the first North American
maize heterotic pools developed in response to selection and drift

during breeding, rather than by selection of divergent founders
(Duvick et al., 2004; van Heerwaarden et al., 2012).

Heterotic pools have not been widely established for major
crops such as wheat and rice, and there is interest in methods to
choose founders of heterotic pools (Wang et al., 2015; Zhao et al.,
2015a). Based on evidence from maize, some authors suggest
that any split of available germplasm will allow development of
heterotic pools by breeding, and founder grouping is relatively
unimportant (Cress, 1966; Lee and Tracy, 2009). Others suggest
systematic approaches. To choose founders of heterotic pools,
Melchinger and Gumber (1998) proposed to form genetically
similar groups of individuals, then cross a manageable number
of representatives of each divergent genetic subgroup and test
their progeny performance in replicated field trials. Founders
can then be chosen for high per se performance, high average
progeny performance and progeny genetic variance, and—as
applicable—suitability for use as males or females (Melchinger
and Gumber, 1998; Melchinger, 1999). Use of genetically
diverged founders increases the ratio of GCA to SCA, and
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heterosis due to dominance is expected to be positively correlated
with increasing genetic distance of parents (Falconer andMackay,
1996; Reif et al., 2007). In practice, positive heterosis is often
observed with increasing genetic distance until a point, at which
outbreeding depression prevails and heterosis is negative (East,
1936). A simulation study of heterotic pool formation in an
autogamous crop compared randomly splitting the founder
population, splitting the founder population by genetic distance,
and optimizing the founder split by performance of their F1
hybrids, and found no differences in future hybrid performance
among the formation strategies, suggesting that the initial split
can be arbitrary (Cowling et al., 2020). However, no population
structure in the founder population was assumed, and testing
the formation strategies given a structured founder population
would be of interest. Even though existing heterotic pools
of maize, for example, were not established from genetically
distinct lines, testing the optimal strategy to form heterotic
pools in an allogamous species would be interesting as well
(Duvick et al., 2004).

Genomics-assisted approaches to choose founders have been
proposed (Zhao et al., 2015a; Boeven et al., 2016). One approach
is to simply extend the aforementionedmethod by using genome-
wide markers to identify genetic subgroups (Boeven et al., 2016).
Another approach to select founders of heterotic pools is to
use a training set of observed hybrid crosses of founders to
predict performance of unobserved crosses (Zhao et al., 2015a).
Then, groups of lines which are heterotic in combination can be
identified algorithmically for selection (Zhao et al., 2015a). The
long-term potential of the groups of lines can be further assessed
by simulation for their genetic representativeness of the base
population, usefulness (in terms of the initial population mean
and expected response to selection), and long-term selection
limits (Zhao et al., 2015a). Though this approach has not been
empirically validated, it has been initialized in rice and wheat
(Zhao et al., 2015a; Beukert et al., 2017). In the wheat population
surveyed, only sixteen of the 135 individuals surveyed were
needed to maximize usefulness and the long-term selection
limit (Zhao et al., 2015a). Therefore, if effective, this approach
could dramatically reduce resources needed to screen potential
founders of heterotic pools. It would be interesting to test whether
this particular method would discern the founders of North
American maize heterotic pools as optimal or near-optimal.

Once founders have been chosen, heterotic pools must be
developed by breeding. Heterotic pools can be recurrently
improved for their ability to combine into hybrids with high
performance by reciprocal recurrent selection (RRS; Comstock
et al., 1949). In the first generation, lines from each heterotic
pool are at once selfed and crossed to the opposite heterotic pool
(Comstock et al., 1949). Rather than making every line-by-line
cross, one or more random testers are chosen to represent each
heterotic pool and used for crossing to all lines of the opposite
heterotic pool, hereafter referred to as testcrossing (Comstock
et al., 1949). In the next season, the testcrosses are grown and
the testcross phenotypes are used to determine GCA of their
parents (Comstock et al., 1949). Parents are selected for their
GCA, and in the final season of the cycle, the selected parents are
grown from saved seed and randomly intermated within heterotic

pools (Comstock et al., 1949). The cycle begins again, with no
need to inbreed the parents (Comstock et al., 1949). Overall,
RRS can be thought of as a special case of standard phenotypic
selection, where the phenotype in question is combining ability,
and measuring combining ability requires progeny testing.

Reciprocal recurrent selection, then, is an ideal candidate for
genomic selection. Phenotyping GCA is expensive and time-
consuming. If GCA could be predicted in the first generation
of the RRS cycle, then the selected lines could be intermated
immediately, reducing cycle time by two-thirds. Reciprocal
recurrent genomic selection (RRGS) has been studied by
simulation in oil palm (Ibáñz-Escriche et al., 2009; Kinghorn
et al., 2010; Cros et al., 2015). Cros et al. (2015) investigated
the effects of training set composition, frequency of model
calibration by progeny test, and number of selection candidates
on annual selection response. If number of available selection
candidates was controlled, RRGS showed a 48% advantage in
annual selection response over RRS because genomic predictions
replaced phenotyping by progeny testing. If RRGS was assumed
to permit evaluation of twice as many candidates for selection
relative to RRS as progeny testing was reduced, then the
advantage increased to 72%. Interestingly, Cros et al. (2015)
tested whether including hybrid geno- and phenotypes in the
training set improved accuracy more than including the parents
alone and found accuracy to be sensitive to the frequency of
model calibration and the number of hybrids included. They
posited that optimal number of F1 hybrid genotypes in the
training set should increase with heterozygosity of the parents of
the F1 hybrids, because more heterozygous parents may produce
more within-cross variance than less heterozygous parents (Cros
et al., 2015). In a follow-up study, Cros et al. (2018) also
investigated whether prediction accuracies from a training set of
genotypes from either only the previous breeding cycle, or both
the previous two breeding cycles, was superior in RRGS. They
found that training on two previous breeding cycles was superior
because of both increased in prediction accuracy and slightly
decreased loss of additive genetic variance (Cros et al., 2018).

A key consideration in both studies was that dominance was
not simulated even though RRGS was used, so the mean genetic
values of the hybrids were equal to the mean of their parents
(Cros et al., 2015, 2018). Further simulations of RRGS with
dominance would be valuable. If dominance were simulated,
then the F1 hybrids’ mean genetic value would differ from the
parents’ mean genetic value. To use both parent and hybrid geno-
and phenotypes in the same training model when directional
dominance is present, it would likely be necessary to include a
fixed effect for the average heterozygosity of each individuals’
genotype following Xiang et al. (2016) and Vitezica et al. (2016),
or alternately to estimate hybrid and parent BLUPs of phenotype
separately following Liang et al. (2018), in order to accurately
predict parental GCA or hybrid genetic value.

Reciprocal recurrent selection differs slightly from recurrent
selection within populations in that breeding values depend on
allele frequencies in both heterotic pools (Stuber and Cockerham,
1966). Two issues then arise. Rembe et al. (2019) note that in its
current implementation, RRGS does not optimize frequencies of
overdominant alleles (either positive or negative) and in some
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cases of negative overdominance will fix unfavorable alleles.
RRGS also cannot optimize frequencies of alleles which have
a frequency of zero in either population, nor predict their
effects, and maximum genetic potential cannot then be achieved
(Cress, 1966; Kinghorn et al., 2010). Periodic introduction of
new germplasm to refresh heterotic pools might overcome the
latter issue if it is in fact significant, though care must be
taken not to disrupt the heterotic pattern. Another interesting
but unexplored possibility is to avoid unwanted fixation from
the start of RRGS; methods developed to control long-term
inbreeding under genomic selection might be adaptable for
the latter purpose.

As heterotic pools are developed, the next module is initiated:
parents of crosses for production pipelines are selected. First,
individuals are selected from each heterotic pool (Lee and
Tracy, 2009). In established commercial maize hybrid breeding
programs, within-pool lines which have a past record of
producing high-performing cross-pool hybrids are recycled by
crossing, and it is their progeny which are selected (Mikel
and Dudley, 2006). As of 2006, only seven inbred founder
lines (though from four heterotic pools) were thought to be
the origin of the commercial North American breeding pool
(Mikel and Dudley, 2006).

Next, selected individuals from each pool are used to develop
inbred lines by doubled haploid (DH) production or selfing.
During inbreeding of lines from two-parent crosses or upon
availability of DH lines, lines are selected for per se performance,
often for traits such as disease resistance (Lee and Tracy, 2009;
Kadam and Lorenz, 2018). Then, the selected lines are testcrossed,
usually to a single tester, and selected by the performance of their
hybrids in a few environments (Lee and Tracy, 2009). Only these
selected lines are crossed again (after selfing to homozygosity
if DH lines are not used) to multiple testers, and their hybrids
are advanced to multi-environment trials (METs; Lee and Tracy,
2009). Parental inbred lines which produce outstanding hybrids
can then be commercialized, and their hybrids may be used in
production (Lee and Tracy, 2009).

Some authors have proposed to reduce or eliminate
preliminary testing by use of genomic prediction (Lee and
Tracy, 2009; Kadam et al., 2016). With sufficient prediction
accuracies, genomic predictions of all possible two-parent,
single crosses of a set of inbred lines (i.e., a diallel) could
replace testcrossing, then crosses predicted to have outstanding
performance could immediately be tested in METs (Hallauer
et al., 2010; Kadam et al., 2016). Genomic prediction could
save time and resources as well as retaining useful lines which
happen to perform poorly with chosen testers (Kadam et al.,
2016). The primary challenges in doing so are generating an
adequate training set of crosses and predicting SCA; it remains
difficult to predict the performance of hybrids for which neither
parent is observed in the training set (Kadam et al., 2016; Kadam
and Lorenz, 2019). Notably, the ideal training set to predict
performance of single crosses that would be obtained from
a diallel is thought to be not a set of testcrosses, but rather
the North Carolina II (NCII) design, in which inbred parents
are grouped into males and females, then crossed factorially
across groups (Hallauer et al., 2010; Fristche-Neto et al., 2018).

However, the number of crosses needed for training can be
reduced from NCII by using various algorithms which rely on
estimates of relationship (Fristche-Neto et al., 2018; Akdemir and
Isidro-Sánchez, 2019; Guo et al., 2019). Inclusion of historical
single cross information can also improve prediction accuracies,
though in some studies this benefit was only realized if the crosses
were from recent cycles, even within the same breeding program
(Dias et al., 2019; Schrag et al., 2019). If the production of F1
hybrid seed by cross-pollination is too expensive on a large scale
with many hybrid combinations (as in self-pollinated crops),
then F1:2 individuals can be substituted into the training set
with only modest reductions in prediction accuracies (Technow,
2019). If entirely eliminating testcrossing is perceived as too risky,
selections from testcrossing can be supplemented with predicted
exceptional single crosses (Kadam and Lorenz, 2018; Viana
et al., 2018). Another cost-reducing alternative is to testcross a
subset of several related lines, and predict combining abilities
for their relatives (Windhausen et al., 2012). Once exceptional
single crosses are identified, with or without testcrossing, their
seed can be increased, advanced through preliminary and multi-
environment yield trials, and eventually released as varieties for
production (Kadam and Lorenz, 2018).

Other approaches to utilizing heterosis, besides by inbred
development and testing, deserve consideration. The cost and
time required for traditional and genomic hybrid breeding is
substantial, and thus the rate of genetic gain is generally less for
hybrid than inbred breeding (Longin et al., 2012). Furthermore,
hybrid seed production is generally more expensive that inbred
seed production, and hybrid genotypes cannot be replicated by
selfing (Schulthess et al., 2017).

One alternative approach to using heterosis is to systematically
reproduce desirable non-inbred genotypes. A major barrier to
utilization of superior genotypes in non-inbred populations is
that they cannot be repeatedly reproduced identically by crossing,
since their parents are not fully inbred (Wricke and Weber,
1986). However, recent proof-of-concept “reverse breeding” in
Arabidopsis thaliana offers an alternative to fixing heterosis by
crossing inbred lines (Wijnker et al., 2012). In reverse breeding,
recombination is suppressed in non-inbred lines, and DH lines
are generated from their gametes (Wijnker et al., 2012). The
DH lines can then be maintained, genotyped, and crossed at
will to reconstitute the original non-inbred line (Wijnker et al.,
2012). However, this method has not been tested in crop species
or applied in crop breeding. A similar approach is synthetic
apomixis, in which seeds identical to the parent plant are
produced without meiosis or fertilization (Wang et al., 2019).
In rice, apomictic seeds can be produced by editing only four
genes, but fertility issues leading to low seed set also result
(Wang et al., 2019).

Clonal propagation methods also reproduce non-inbred
genotypes. Many non-inbred economically important crops,
including sugarcane, potato, and cassava, are propagated
asexually as clones rather than from seed (McKey et al., 2010).
The drawbacks of clonal propagation, however, include the
accumulation of deleterious somatic mutations, disease, costs
of propagule production, and the recalcitrance of some species
to clonally propagate (McKey et al., 2010). Use of polyploidy
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has also been viewed as a way to “immortalize” hybrids,
as allopolyploids can maintain heterozygosity across their
subgenomes at individual loci even upon selfing (Santantonio
et al., 2019). Dosage effects, or changes in phenotype due to
increases in allele copy number, independent of allele state, have
also been posited to contribute to the genetic values of polyploids
relative to genotypes of lesser ploidies (Gianinetti, 2013; Yao et al.,
2013; Fort et al., 2016). Unlike in diploids, heterosis in polyploids
is not maximized in a single cross; this phenomenon is termed
progressive heterosis (Washburn and Birchler, 2014). Progressive
heterosis is expected in polyploids because the number of gametes
inherited exceeds the number of parents. Going beyond single
crosses permits combining gametes from more than two parents
into a single individual genotype, so additional heterosis results.
For example, in autotetraploids, heterosis would be maximized
by a four-way cross. In diploids, the number of gametes inherited
by the F1 progeny in a single cross (two) is equal to the number
of parents (two), so heterosis is maximized in single crosses.

If a uniform population is not necessary, then breeding
open-pollinated varieties (OPVs) can lead to effective utilization
of heterosis. For much of human history, OPVs were the
only varieties available. This is still true in regions which the
commercial breeding sector does not yet serve, and OPVs can
outperform hybrids in some low-input environments (Pixley,
2006; Masuka et al., 2017; Andorf et al., 2019). In United States
maize production, OPVs were abandoned in the early 1920s
due to the difficulty of improving their quantitative traits (i.e.,
yield) as well as lack of uniformity (Duvick, 1999). However,
it is unknown whether OPVs could outperform hybrids today
if they had been as intensively developed (Duvick, 1999).
OPV breeding could be advanced by genomic selection; the
breeding cycle for OPVs is shorter and less costly than for
hybrids. Furthermore, if used as part of a reverse breeding
pipeline, sufficiently outstanding individuals fromOPVs could be
reproduced indefinitely as uniform “hybrid” varieties.

If heterosis is largely due to dominance rather than
overdominance, then inbred lines which perform as well as
hybrids must be possible, although they may take time to
develop due to linkage disequilibrium (Werner et al., 2020).
There is some evidence from commercial maize programs
that inbred lines bred conventionally are already beginning to
approach hybrid line performance, though likely because of
the longer hybrid breeding cycle (Troyer and Wellin, 2009).
Heterotic effects of yield have decreased as a percentage of
mean yield over a short time—100 years—perhaps also because
some favorable dominant alleles have been fixed in inbreds.
Continued purging of deleterious recessive alleles from the
genome by genome editing has been proposed, especially in
regions hard to reach by recombination such as the centromere
(Wallace et al., 2018; Valluru et al., 2019). If overdominance
also affects hybrid performance, and overdominant loci can be
identified, then arguably copy number variation could be induced
to fix overdominance in inbred lines. These genomics-assisted
approaches are reminiscent of genetic ideotype building, but until
they are possible, genomics-assisted inbred line breedingmay be a
good start to genomics-assisted ideotype building of inbred lines
(Trethowan, 2014).

LONG-TERM OPTIMIZATION OF
SELECTION IN GENOMIC SELECTION
PROGRAMS

All plant breeding programs require genetic variance for
continued progress. Within any breeding population, reducing
effective population size by selection early in the program may
limit long-term genetic gain (Comstock et al., 1949; Robertson,
1960; Woolliams et al., 2015). Though genomic selection
leads to less inbreeding than pedigree-based selection methods,
inbreeding must be controlled (Rodríguez-Ramilo et al., 2015;
Woolliams et al., 2015). Direct selection on GEBV maximizes
gain in the subsequent cycle only and does not necessarily
maximize long-term gain (Sonesson et al., 2012). Fortunately,
data collected routinely in genomic selection programs allow
monitoring and optimization of loss of diversity and inbreeding.
Genomic selection strategies which seek to balance rates of
genetic gain and loss of diversity include:

(a) Optimum contribution selection: genetic value is
maximized while inbreeding is constrained to give the
optimal contributions of parents to the next generation,
i.e., number of progeny (Meuwissen and Sonesson, 1998).

(b) Weighting of rare alleles: allelic effects are weighted by their
frequency such that rare favorable alleles are preserved
(Goddard, 2009).

(c) Weighted genomic selection: allelic effects are weighted by
their frequency, but also the magnitude of their effect, such
that rare favorable alleles which tend to have large effects
on EBV are preserved (Jannink, 2010).

(d) Genotype building: a subpopulation is selected
algorithmically to segregate for maximal haplotype values,
then intermated such that the two best segments ultimately
segregate with equal frequency (Kemper et al., 2012).

(e) Optimal cross selection: selection intensity, inbreeding,
and cross allocation are simultaneously optimized
(Gorjanc et al., 2018).

(f) Usefulness criterion parental contribution: overall
and within-family selection intensity, inbreeding,
and cross allocation are simultaneously optimized
(Allier et al., 2019).

(g) Genomic mating: genetic value, inbreeding, and risk
(calculated from variability in breeding value estimates) are
simultaneously optimized (Akdemir and Sánchez, 2016).

(h) Optimal haploid value selection: outbred individuals are
selected for the predicted value of the best DH lines
they could produce, then used to make DH lines for
which breeding or genetic values are then predicted
(Daetwyler et al., 2015).

(i) Optimal population value selection: sets of individuals
are selected for their collective rather than individual
maximum possible haploid value (Goiffon et al., 2017).

(j) Expected maximum haploid breeding value selection:
individuals are selected for their maximum possible
haploid value (Müller et al., 2018).

(k) IND-HE: genetic gain and expected heterozygosity are
balanced in selection (De Beukelaer et al., 2017).
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(l) Look-ahead selection: sets of individuals are selected for
their collective rather than individual maximum possible
haploid value, with the maximum value occurring in a
user-specified target generation (Moeinizade et al., 2019).

(m) Optimal contribution selection to update the reference
population: assuming a breeding population is used to
update the training set for prediction, selecting the training
set candidates by optimal contribution selection balances
genetic gain and inbreeding (Eynard et al., 2018).

(n) Optimal contribution selection with branching: the
population mating scheme is branched into two paths
which maintain genetic diversity and maximize genetic
gain (Santantonio and Robbins, 2020).

A simulation comparing all methods of long-term selection
optimization in hybrid breeding programs is not yet available
(Rembe et al., 2019). Development of genomic selection strategies
to optimally introgress novel variation are also ongoing (Rembe
et al., 2019). A recent comparison of introducing genetic
donors with varying performance levels either using or omitting
a bridging population to increase mean genetic values of
introgression lines found that use of a bridging step was more
useful when considering low-value donors, and that controlled
introduction of diversity increased gain relative to a completely
closed population (Allier et al., 2020a). Though the field of long-
term selection optimization developed in response to need to
avoid inbreeding and maintain genetic variance, the techniques
developed can also be used to improve short- and medium-term
gain (Müller et al., 2018).

For hybrid programs specifically, selection optimization
methods to prevent unintentional allelic fixation during RRGS in
opposite heterotic groups could be useful (Cowling et al., 2020).
Another issue in hybrid breeding over time is introducing new
germplasm and assigning it to a heterotic pool. Traditionally, new
individuals are assigned to a heterotic pool by their phenotypic
similarity to existing members or observed performance in
testcrosses with representatives of each pool (Melchinger, 1999).
Alternatively, individuals can be assigned to pools by genetic
resemblance (Melchinger, 1999; Boeven et al., 2016). However,
in practice, genetic distance is not consistently useful in
assigning individuals to heterotic pools (Fischer et al., 2010;
Brauner et al., 2019).

Though advanced commercial maize hybrid breeding
programs should not be construed as resulting from long-term
genomic selection, the genetic base of North American and
European commercial maize is narrow, prompting concern
that limiting loss of diversity has occurred (Brauner et al., 2019;
Allier et al., 2020b). Some approaches, such as Germplasm
Enhancement of Maize (GEM), have proposed adaptation
of exotic germplasm to commercial inbred backgrounds by
public-private collaboration. Several inbred lines have been
released as a result of GEM (Samayoa et al., 2018). Other
efforts based on generating DH lines of maize landraces and
characterizing them for their per se and testcross performance
with European testers have also demonstrated a 15% yield
gap between mean testcross yield and mean commercial yield
(Brauner et al., 2019; Hölker et al., 2019). Genomic selection

for line adaptation has been proposed but is largely untested
(Bernardo, 2009; Samayoa et al., 2018; Allier et al., 2020b).
Additionally, commercial breeding programs may reduce loss of
useful diversity by targeted introgression of QTL or transgenes
into elite lines, which improves the lines without drastically
changing their genomic makeup or disrupting the heterotic
pattern (Samayoa et al., 2018).

The limits of long-term selection within closed breeding
populations are unknown (Dudley and Lambert, 2004; Paixão
and Barton, 2016). Breeding progress for high grain oil and
protein content, which was initiated in a maize OPV, has
continued for over 100 cycles of selection without introduction
of new germplasm (Dudley and Lambert, 2004; Moose et al.,
2004). In the same experiment, breeding progress for low
oil and protein content ceased due to measurement and
physiological constraints, respectively (Dudley and Lambert,
2004). Surprisingly, when the direction of selection on lines bred
for low oil and protein content was experimentally reversed at 48
generations, selection response in the opposite direction occurred
rapidly (Dudley and Lambert, 2004). Though not conclusive,
these results suggest that it is difficult to exhaust response to
selection even in completely closed or selected populations using
conventional recurrent selection strategies. The cost of testing
and adapting vast quantities of new germplasm may not be
worth the short-term benefits for advanced commercial hybrid
programs if sufficient genetic variance remains for selection gain,
even among very few lines.

DISCUSSION

Exact recommendations for crop hybrid breeding programs
are situation-dependent, including whether and how to apply
genomic selection. Factors to consider in implementation of
genomic selection strategies include budget, trait heritability, cost
and accuracy of phenotyping, length of the breeding cycle, and
infrastructure for genomic selection (e.g., marker availability,
marker cost, bioinformatics software, statistical expertise, etc.;
Heslot et al., 2015). General factors that affect the success of a
hybrid breeding program relative to an inbred breeding program
include (a) mating system, including whether selfing is possible,
(b) existence of heterotic pools, (c) the degree of heterosis, (d)
the cost of hybrid seed production, including availability of
hybridization systems, and (e) the number of seeds needed in
the cropping system (Longin et al., 2013). Another rationale
for hybrid breeding has been that the sale of hybrid seeds
generates a sustainable funding model for breeding, with built-
in variety protection (Schulthess et al., 2017). However, this
argument is beyond the scope of plant breeding and requires
economics research.

Mating system is a major factor driving the use of hybrid
breeding systems (Longin et al., 2013). Most hybrid crops
(e.g., maize, sugarbeet, rye, and sunflower) are allogamous,
or outcrossing, rather than autogamous, or selfing. Though
both present difficulties in breeding programs—autogamous
crops may be difficult to cross, and allogamous crops may be
difficult or nearly impossible to self—in general autogamous
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crops are less amenable to hybrid breeding due to higher costs
of seed production and less observed heterosis (Wricke and
Weber, 1986; Longin et al., 2012). Less heterosis in autogamous
than allogamous crops may have an evolutionary basis. Over
time, deleterious recessive mutations are more exposed to
selection in selfing than outcrossing species—ultimately leading
to reduced inbreeding depression (Moose et al., 2004). Selfing
genotypes also have more opportunities for selection on epistatic
networks, perhaps leading to increased outbreeding depression
(Fenster et al., 1997).

For a breeding program, the question then remains whether
the gains of heterosis are outweighed by the costs of breeding
hybrids in autogamous crops. The costs of breeding hybrids can
be reduced by developing male-female heterotic pools, scalable
male sterility systems, and hybridization systems. The gains of
heterosis can be increased by breeding heterotic pools. Thus,
initial investment to establish a hybrid breeding program may
be high, but it could provide higher returns over time than an
inbred program. A case study of hybrid wheat, for example,
found that although hybrids are currently competitive with
inbred varieties, whether long-term improvement of hybrids
keeps pace with lines strongly depends on budget, cost of
hybrid seed production, and GCA variance (Longin et al., 2014).
Use of genomic prediction can increase the relative efficiency
of hybrid breeding to line breeding (Longin et al., 2015). If
sufficient budgets to cover the start-up costs of hybrid breeding
(e.g., heterotic pool development, male sterility systems) are
available at no cost to line breeding, then hybrid breeding is
worth investigating.

Whether for autogamous or allogamous species, genomic
selection methods have potential to increase rates of genetic gain
at every stage of hybrid breeding. Use of genomic selection,
for example, to rapidly develop heterotic pools in crops in
which they are not well-established—e.g., rice and wheat— is
worth trying (Rembe et al., 2019). Further reports on RRGS
programs which have been initiated in oil palm, which has
a long generation interval, high phenotyping costs, and high
environmental impact, are anticipated (Cros et al., 2017; Nyouma
et al., 2019). In selection of single crosses, genomic prediction
has potential to reduce the need for testcrossing and field
evaluation (Longin et al., 2015; Kadam et al., 2016). Longin
et al. (2015) considered optimal allocation of resources to
number of DH lines, test locations, and tester lines used for
inbred and hybrid breeding programs with different degrees
of reliance on genomic prediction and different prediction
accuracies. After DH production, testcrosses or lines were either
immediately subject to genomic selection, advanced through
one round of field testing, or advanced through two rounds
of field testing (Longin et al., 2015). The importance of field
testing strongly depended on accuracies of genomic predictions,

but for hybrid breeding, even prediction with low accuracies
improved rate of genetic gain (Longin et al., 2015). If DH lines
underwent a round of phenotypic selection before advancing,
the relative merits of incorporating genomic selection did not
change (Marulanda et al., 2016). The best scenario was genomic
prediction followed by a round of phenotyping (Longin et al.,
2015; Marulanda et al., 2016).

The era of genomic selection offers new opportunities in
hybrid breeding. Genomic selection methods can jumpstart the
establishment of heterotic pools by founder selection and use
of RRGS to unlock heterosis in new hybrid breeding programs.
Genomic selection can also shorten the notoriously long hybrid
breeding cycle by reducing the need for testcrosses and their
phenotypic evaluation. Though implementing genomic selection
methods requires optimization to specific hybrid breeding
situations, a sufficient framework for breeders to make genomics-
assisted decisions already exists.
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