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RESEARCH

Switchgrass (Panicum virgatum L.) is being developed as a bio-

mass energy crop in the United States for use on marginal 

cropland (McLaughlin and Kszos, 2005). Improving biomass 

yield of switchgrass will improve its utility as a dedicated energy 

crop by increasing both its net and total energy yield per hect-

are and its potential profi tability (Perrin et al., 2008; Schmer et 

al., 2008). All switchgrass cultivars that have been developed to 

date are improved populations or synthetic cultivars that were 

developed using breeding methods that utilize additive genetic 

variation (Vogel and Pedersen, 1993; Vogel, 2000, 2004). Grass 

breeders have not utilized nonadditive genetic variance to pro-

duce hybrid cultivars except where the hybrids can be propagated 

asexually or via apomictic mechanisms (Burton, 1989; Vogel, 

2000; Vogel and Burson, 2004). Eff ective mechanisms to emas-

culate or control pollination at the seed production fi eld scale and 

lack of information on heterotic groups and extent of heterosis 

has delayed the eff ective use of hybrid cultivars for most perennial 

grass forage and biomass species including switchgrass.

Switchgrass has two distinct ecotypes, lowland and upland, 

and two major ploidy levels, tetraploid (2n = 4x = 36) and 
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ABSTRACT
Improving the biomass yield of switchgrass 
(Panicum virgatum L.) will improve its utility as a 
dedicated energy crop by increasing both its net 
and total energy yield per hectare. In a previous 
space-transplanted study, midparent heterosis 
for biomass yield was reported for population 
and specifi c F1 hybrids of the lowland-tetraploid 
cultivar Kanlow and the upland-tetraploid cultivar 
Summer. These two cultivars were proposed to 
be two different heterotic groups. The objective 
of this study was to determine the extent of het-
erosis for biomass yield in reciprocal Kanlow (K) 
and Summer (S) F1 population hybrids grown in 
simulated swards and to determine the effect of 
advance in generation on biomass yield. Parent 
populations and their F1, F2, and F3 population 
hybrids were grown in transplanted sward plots 
located near Mead, NE, for a three-year period. 
Plant density in the simulated swards was equiv-
alent to acceptable stands in seeded plots. Plots 
were not harvested the establishment year to 
enable them to become fully established. Bio-
mass yields were determined for the following 
two years. There was signifi cant high-parent het-
erosis of 30 to 38% (P ≤ 0.01) for biomass yield 
for both the K × S F1 and S × K F1 hybrid popula-
tions. Heterosis for biomass yield declined with 
advance in generation. Heterosis for biomass 
yield in switchgrass may need the competitive 
conditions of swards to be fully expressed. Addi-
tional trials of specifi c hybrids established from 
seed are needed to further verify these conclu-
sions. These results do provide ample justifi cation 
for additional research to develop switchgrass 
population and specifi c hybrids.
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octaploid (2n = 8x = 72) (Vogel, 2004). Switchgrass has 

two cytoplasm types, L and U, based on chloroplast DNA 

polymorphisms that are associated with the lowland and 

upland ecotypes, respectively (Hultquist et al., 1996; Mis-

saoui et al., 2006). Martinez-Reyna and Vogel (2008) have 

reported the existence of midparent heterosis for biomass 

yield in switchgrass grown in space-transplanted nurseries 

and identifi ed lowland-tetraploid and upland-tetraploid 

switchgrasses as heterotic groups. Switchgrass is grown in 

swards as a pasture and biomass energy crop. Martinez-

Reyna and Vogel (2008) pointed out that the extent of 

heterosis in switchgrass for biomass yield in sward condi-

tions and the eff ect of advance in generation on heterosis 

needed to be determined. In their study, the lowland-tet-

raploid cultivar Kanlow and the upland-tetraploid culti-

var Summer were identifi ed as being in diff erent heterotic 

groups. Kanlow originates from plant material collected 

near Wetumka, OK, with additional selection work at 

Manhattan, KS (Alderson and Sharp, 1994). Summer 

originates from plant material collected south of Nebraska 

City, NE (Alderson and Sharp, 1994). Mass selection was 

then conducted at Brookings, SD, for earliness, leafi ness, 

and rust resistance. Kanlow’s origin is in upper Plant Har-

diness Zone 7 whereas Summer’s origin is in Plant Har-

diness Zone 5 (Alderson and Sharp, 1994; Vogel et al., 

2005). Winter survival of Kanlow at Mead, NE, has been 

a problem, with substantial winterkill occurring in some 

years. These results are consistent with recently published 

adaptation information for switchgrass (Casler et al., 2004, 

2007) that demonstrates that survival of switchgrass cul-

tivars may be a problem if they are moved more than a 

hardiness zone north of their origin hardiness zone.

In previous heterosis research on alfalfa (Medicago sativa 
L.), Bingham et al. (1994) suggested that while maximum 

heterosis is reached in diploids in one generation (S
1
 or 

F
1
), heterosis is progressive in tetraploid alfalfa and is not 

reached until the double cross (S
2
) or later generations, 

probably due to complementary gene action or epistasis. 

Molecular marker analyses of the genomic structure of 

tetraploid switchgrass indicate that it is an autopolyploid, 

but the results are not unequivocal (Missaoui et al., 2005). 

In constrast to alfalfa, switchgrass tetraploids segregate as 

diploids (Vogel, 2004). The eff ect of advance in genera-

tion on heterosis in tetraploid switchgrasses has not been 

previously investigated.

The objective of this study was to determine the extent 

of heterosis for biomass yield in reciprocal lowland-tetra-

ploid (Kanlow) and upland-tetraploid (Summer) hybrids 

of switchgrass grown in simulated swards and to deter-

mine the eff ect of advance in generation on heterosis for 

biomass yield. High-parent heterosis is defi ned as the posi-

tive diff erence between the mean of the hybrid and the 

mean of the best parent for specifi c traits, while midpar-

ent heterosis is the positive diff erence between the hybrid 

and the mean of the two parents (Lamkey and Edwards, 

1999). Population or panmictic high-parent heterosis 

occurs when two random-mated populations are inter-

mated to form an F
1
 hybrid and the mean of the F

1
 hybrid 

population exceeds the mean of the best-parent popula-

tion (Lamkey and Edwards, 1999). The hybrids evaluated 

in this study are population hybrids.

MATERIALS AND METHODS
The switchgrass cultivars and population hybrids used in this 

study are summarized in Table 1. Kanlow and Summer have 

been fully described above. The strains listed as F
2
 or F

3
 genera-

tion in Table 1 also could be described as Syn 2 (second gen-

eration of synthesis or random mating) or Syn 3 generations, 

respectively, using the terminology commonly used by forage 

breeders to designate generations of propagation for synthetic 

populations (Fehr, 1991). A synthetic is a population produced 

by intermating selected genotypes, usually in isolation, from 

other plants of the same species and which is propagated by 

random mating from generation to generation (Fehr, 1991). 

‘Shawnee’ was released in 1995 and is an upland octaploid cul-

tivar that was developed for use in pastures and potentially for 

biomass energy (Vogel et al., 1996).

Kanlow N1 is a synthetic population based on 72 Kanlow 

genotypes that were selected for winter survival at the Uni-

versity of Nebraska’s Agriculture Research and Development 

Center (ARDC) located near Mead, NE, where we have our 

main breeding nurseries and where this study was conducted. 

A 400-plant, space-transplanted evaluation nursery of Kanlow 

was established in 1995 at the ARDC. Because of winterkill 

that occurred in this nursery during the winters of 1995–1996, 

1996–1997, and 1997–1998, this nursery was converted into a 

winter-survival selection nursery. Surviving plants that were 

nonlodged and visually had good vigor the previous growing 

season were identifi ed in early December 1998. After spring 

green-up in 1999, two ramets from each of 57 surviving gen-

otypes from this nursery were transplanted into an isolated 

polycross nursery along with two ramets from each of 15 other 

Kanlow plants that had survived two winters in another nurs-

ery to form the Kanlow N1 population. A ramet is a member 

of a clone. Within the polycross nursery, the ramets were trans-

planted at random on 1.1-m centers. The intent of including 

Kanlow N1 in this study was to use it as the high-parent con-

trol if winterkill occurred in the parent Kanlow plots during 

the duration of the fi eld sward trial. The Kanlow N1 polycross 

nursery and the other polycross nurseries described below were 

spatially isolated from other switchgrass nurseries at the ARDC 

by a minimal distance of 400 m. Syn 1 seed harvested from this 

polycross nursery in 2000 was used in this study.

The F
1
 hybrid plants used in this study were from crosses 

described by Martinez-Reyna and Vogel (2008). None of the 

parent Kanlow or Summer plants used to produce the F
1
 plants 

were selected. The parent plants were grown from seedlings 

in a greenhouse where the crossing and F
1
 seed production 

occurred. Extra F
1
 seedlings not needed in the spaced-trans-

planted heterosis experiments described by Martinez-Reyna 

and Vogel (2008) were transplanted into a fi eld nursery in 1997 

and maintained there until the initial biomass yield results were 
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2001. They were transplanted into small greenhouse pots and 

were held in a greenhouse under similar conditions as the seed-

lings until all seedlings and micro-ramets were transplanted 

into the fi eld nursery.

Seedlings and micro-ramets were transplanted into a fi eld 

evaluation nursery located near Mead, NE, on 6 June 2001. A 

fi eld plot consisted of plants transplanted on 0.3-m centers in a 

4 by 8 arrangement. This plant density has been demonstrated 

to be an adequate sward stand for switchgrass grown as either 

a pasture or biomass crop in research spanning several decades 

(Launchbaugh and Owensby, 1970; Vogel, 1987; Schmer et al., 

2006). This stand density also is supported by the comprehen-

sive ecological studies of Weaver (1968), which spanned a 50-yr 

period. The basal cover occupied by grasses in tallgrass prairies 

of the United States was <15% (Weaver, 1968).

A border row of switchgrass seedlings were transplanted 

on the edges of the nursery at the same plant density and spac-

ing to eliminate border eff ects. The experimental design was a 

randomized complete block with four replicates. No fertilizers 

were applied the establishment year. In the postestablishment 

years, the study was fertilized in the spring with 112 kg ha–1 N 

(NH
4
NO

3
). Herbicides and hand-weeding were used for weed 

control. One week after transplanting, atrazine (6-chloro-N-

ethyl-N-isopropyl-1,3,5,-triazine-2,4-diamine) and quinclorac 

(3,7-dichloro-8-quinolinecarboxylic acid) were applied at a 

rate of 2.24 and 0.56 kg ha–1, respectively. In the spring of the 

postestablishment years, atrazine, metolachlor [2-chloro-N-(2-

ethyl-6-methylphenyl)-N-(2-methoxy-1-methyl) acetamide], 

and 2,4-D (2,4-dichlorophenoxyacetic acid) were applied at a 

rate of 2.24, 2.12, and 1.12 kg ha–1, respectively. No data were 

collected the establishment year. In 2002 and 2003, the residual 

biomass on the plots from the previous year was removed by 

burning before spring growth was initiated. Entire plots were 

harvested for biomass yield on 14 Aug. 2002 and 18 Aug. 2003 

with a plot fl ail harvester with a cutting height of 10 cm. Plots 

were measured for plant height (height to top of panicle) before 

harvest in 2002. Plots were sampled before harvest to determine 

dry matter concentration. Wet sample weights were added to 

plot yields to nullify the eff ect of subsample size on biomass 

yield. Yields are reported on a dry-weight basis. Harvested area 

obtained from those experiments. In the spring of 1999, ram-

ets from the plants in these nurseries were moved to polycross 

nurseries to initiate the generation advance component of this 

study. The Kanlow × Summer (K × S) F
1
 polycross nursery 

comprised two ramets each of 51 genotypes from 11 diff erent 

K × S crosses. The Summer × Kanlow (S × K) F
1
 polycross 

nursery comprised two ramets each of 59 F
1
 genotypes that 

originated from 13 diff erent K × S crosses. The same polycross 

procedures described previously for the Kanlow N1 popula-

tions were used. The polycrosses of the K × S and S × K F
1
 

plants produced F
2
 seed in 1999 that was used to start seedlings 

in the greenhouse in the spring of 2000, which were used to 

establish 600-plant polycross nurseries for the production of F
3
 

seed in the autumn of 2000. The F
2
 seed used in this study was 

also from the 2000 harvest. Although no winterkill of plants 

was observed by Martinez-Reyna and Vogel (2008) in their 

study, the extent of winterkill in the Kanlow selection nurs-

ery described above raised concerns. To have equivalent plant 

material to compare with the Kanlow N1 population, the plants 

moved to the F
1
 polycross nurseries met the same criteria as the 

plants used to produce the Kanlow N1 population, with the 

exception that there was no apparent winter injury to any of 

the plants.

The strains listed in Table 1 were grown in a simulated 

sward nursery in a transplanted, replicated trial at Mead, NE. 

All entries except for the F
1
 generation were started as seedlings 

in the greenhouse. Seeds were planted in cone-tainers (Stuewe 

& Sons, Inc., Corvallis, OR) 21 cm deep and 4 cm in diam-

eter, fi lled with a mixture of soil, peat, and vermiculite (2:1:1 

volume ratio) in a greenhouse with an 18-h photoperiod and a 

mean temperature of 28°C. After emergence, seedlings were 

thinned to one per cone-tainer and were maintained in the 

greenhouse until they were transplanted to the fi eld. The F
1
 

plants used in the study were obtained by collecting an equal 

number of micro-ramets from each of the F
1
 plants in the K × 

S and S × K polycross nurseries that were established in 1999. 

Micro-ramets of the F
1
 plants were used so that there was 100% 

complete direct lineage from F
1
 to F

2
 and F

3
 in the fi eld evalua-

tion trial. The micro-ramets were about 3.5 cm in diameter and 

10 cm deep and were dug from the nurseries in the spring of 

Table 1. Switchgrass parent and check cultivars, population hybrids, and their advanced generations used to determine the extent 
of heterosis for biomass yield in switchgrass grown in simulated sward plots and effect of generation advance on heterosis.

Strain Description Source 
‘Kanlow’ (K) Released lowland-tetraploid cultivar Foundation seed, USDA-NRCS Plant Materials Cent., Manhattan, KS

‘Summer’ (S) Released upland-tetraploid cultivar Foundation seed, South Dakota State Univ., Brookings

Kanlow N1 Selection from Kanlow for winter survival at Mead, NE Syn 1 seed from polycross of selected plants†

K × S F1 F1 plants of K( ) × S( ) crosses (Martinez-Reyna & Vogel, 2008)‡ F1 generation

S × K F1 F1 plants of S( ) × K( ) crosses (Martinez-Reyna & Vogel, 2008) F1 generation

K × S F2 F2 or Syn 2 population from K × S population cross F2 seed produced from ramets of K × S F1 plants grown in an 
isolated polycross

S × K F2 F2 or Syn 2 population from S × K population cross F2 seed produced from ramets of S × K F1 plants grown in an 
isolated polycross

K × S F3 F3 or Syn 3 population from K × S population cross F3 seed produced from F2 plants grown in an isolated polycross

S × K F3 F3 or Syn 3 population from S × K population cross F3 seed produced from F2 plants grown in an isolated polycross

‘Shawnee’ Upland-octaploid released cultivar Certifi ed seed

†Syn 1, Syn 2, and Syn 3 represent the fi rst, second, and third generations, respectively, of synthesis or random mating.
‡ ,  = male and female, respectively.
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was 3 m2. Stands were determined after harvest by counting the 

number of surviving harvested plants in each plot. All plots were 

at reproductive maturity stages when visually assessed before 

biomass yield harvest using the Nebraska system described by 

Moore et al. (1991). The single harvest treatment, harvest time, 

and N fertilization rates used in this study are based on the 

results of Vogel et al. (2002).

All data were analyzed using the GLM procedure of PC-

SAS software (SAS Institute, 2002). Strain or populations were 

considered to be fi xed eff ects. Because with perennials, mean 

performance over years is of primary importance, plot means 

over years were used in ANOVA for plant biomass yield. A 

split-plot-in-time ANOVA (data not shown) was conducted to 

assess the magnitude of year and genotype × year eff ects on 

biomass yield. Protected LSD values were used to make mean 

comparisons and to test for signifi cance of high-parent heterosis 

expressed as a mean diff erence or deviation. For statistical tests, 

heterosis is best expressed as a deviation from either the mid-

parent (midparent heterosis) or best-parent mean (high-parent 

heterosis), which permits the use of mean comparison statis-

tics such as the LSD for comparing mean diff erences between 

hybrids and their parents (Lamkey and Edwards, 1999). High-

parent heterosis values also are expressed as a percentage, but 

the statistical tests were made using mean diff erences.

RESULTS AND DISCUSSION
A full growing season was utilized to enable the plants 

in the simulated swards trials to become well established 

before any harvests were made. There were no signifi -

cant diff erences among strains for stands (number of plants 

per plot). The mean number of plants per 3-m2 plot was 

30. For readers unfamiliar with switchgrass, by the sec-

ond year after being transplanted as seedlings, individual 

switchgrass plants typically have a diameter of 20 cm or 

more. The calculated basal cover area exceeded 30%, 

which is double that reported by Weaver (1968) for tall-

grass prairie. During the period of this trial, there was no 

apparent winter damage or winterkill for any of the plants 

in the plots.

There were signifi cant diff erences (P ≤ 0.01) among 

strains for biomass yield for the two harvest years (Table 

2). The highest yielding strains in the nursery were the 

two F
1
 population hybrids (K × S F

1
 and S × K F

1
). The 

Kanlow N1 population had numerically greater mean 

biomass yield over the two harvest years than Kanlow, but 

the diff erences were not statistically diff erent. The Kan-

low N1 strain was used as the high parent in the heterosis 

calculations because its greater biomass yield provided a 

more rigorous test of high-parent heterosis. It will be the 

Kanlow germplasm source that will be used in our pro-

gram for hybrids for the central latitudes of the United 

States because of prior selection for winter survival. There 

was signifi cant high-parent heterosis (P ≤ 0.01) for biomass 

yield for both the K × S F
1
 and S × K F

1
 hybrid popu-

lations. There was also signifi cant F
1
 heterosis for plant 

height, which was measured only in 2003. Kanlow and 

Kanlow N1 were similar in maturity and were the latest 

maturing strains in the test. Summer and Shawnee were 

similar in maturity and were the earliest maturing strains. 

The F
1
, F

2
, and F

3
 K × S and S × K populations were 

intermediate in maturity to their two parents. The earlier 

maturity of Summer and Shawnee in comparison to the 

lowland and lowland × upland hybrids likely was a factor 

that was in part responsible for their lower yields.

Heterosis for biomass yield declined with advance in 

generation (Table 2). The F
2
 and F

3
 populations were sig-

nifi cantly lower in biomass yield than the F
1
 populations 

and were typically intermediate to the parents in biomass 

yield. The only inconsistency that did not conform to 

expected results was that the K × S F
3
 population had a 

greater biomass mean yield than F
2
 population of the same 

population hybrid. Although tetraploid switchgrass has 

been tentatively classifi ed as an autotetraploid, its decline 

in heterosis for biomass yield is more similar to that of 

diploid species than autotetraploid alfalfa.

The results of the trial were consistent over the two 

years even though there were large signifi cant year eff ects 

due to diff erences in rainfall during the growing season 

(analyses not shown). In 2002 and 2003, the annual pre-

cipitation was 646 and 651 mm, respectively, but the pre-

cipitation during May, June, and July were 161 mm in 2002 

when drought conditions existed vs. 250 mm in 2003. Plant 

height measurements were not taken in 2002 because of 

the drought conditions. The relative ranking of the strains 

were stable over the two years with only minor changes in 

ranking. The Spearman rank correlation of 2002 and 2003 

biomass yields with the 2-yr mean yields was 0.86 and 0.89 

(P ≤ 0.01), respectively. The Mead location is representative 

of the Plant Adaptation Region (PAR) 251-HZ5, which 

encompasses most of the midwestern United States (Vogel 

et al., 2005). The use of PARs for defi ning switchgrass 

adaptation regions has been demonstrated by Casler et al. 

(2007). In this region, genotype × environment interac-

tion eff ects exist for biomass yield of switchgrass, but the 

best cultivars rank at the top of trials across multiple envi-

ronments (Hopkins et al., 1995). Although these results are 

from a single location, the Mead location is predictive of 

switchgrass yields throughout the midwestern United States 

(Hopkins et al., 1995).

The results of this study demonstrate that under the 

competitive conditions that exist under simulated swards, 

high-parent heterosis for biomass yields exists for switch-

grass hybrids developed from the tetraploid-lowland and 

tetraploid-upland heterotic groups represented by Kanlow 

and Summer, respectively. These results substantiate the 

previous identifi cation of these populations as heterotic 

groups by Martinez-Reyna and Vogel (2008). High-parent 

heterosis for biomass yield did not occur in the space-planted 

trials reported previously (Martinez-Reyna and Vogel, 

2008). Although the study reported by Martinez-Reyna 
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and Vogel (2008) and this study occurred in diff erent time 

periods, 1996 to 1999 and 1999 to 2003, respectively, they 

were conducted in fi elds with similar soils that were about 

1 km apart. Hence, it is reasonable to compare the results. 

In space-transplanted conditions where the plants were 

on 1.1-m centers, only midparent heterosis was expressed. 

Under the simulated sward conditions of this study with 10 

plants m–2, greater parent heterosis was expressed. Heterosis 

for biomass yield in switchgrass may need the competition 

associated with sward conditions to be fully expressed. In 

maize (Zea mays L.), the eff ect of high plant densities on the 

expression of heterosis for yield is well documented. The 

eff ects of sward conditions on the expression of hetero-

sis for biomass yield for switchgrass is opposite that which 

has been reported for perennial ryegrass (Lolium perenne 
L.) (Foster, 1971a,b). Switchgrass diff ers from perennial 

ryegrass by many plant characteristics, and the diff erence 

in heterosis response under sward conditions is not unex-

pected. The heterosis for biomass yield may be due in part 

to heterosis for plant height. The biomass yield results from 

the F
2
 and F

3
 populations demonstrate that to optimize 

biomass yields, commercial production fi elds need to be 

planted with F
1
 seed.

Additional trials of specifi c hybrids are still needed 

to further verify these conclusions, however, because 

production fi elds will not be transplanted. These results 

do provide ample justifi cation for additional research to 

develop other populations and specifi c hybrids for seeded 

fi eld trials. A seed production system for producing 

hybrid switchgrass seed was described previously as well 

as breeding procedures for developing the plant materials 

to be used to produce the hybrids (Martinez-Reyna and 

Vogel, 2008). We are currently engaged in this process 

by conducting selection for biomass yield, quality traits, 

and plant maturity with populations based on both Kan-

low and Summer. The plant material from this current 

breeding generation will be used for the production of 

additional F
1
 hybrids for seeded fi eld trials. Research also 

needs to develop improved seed production technology 

and improving methods such as described by Alexandrova 

et al. (1996) to rapidly increase clones for transplanting 

into hybrid seed production fi elds before hybrid switch-

grass becomes a commercial reality.
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Kanlow (K) 14.7 112 3.0

Summer (S) 12.4 96 3.3

Kanlow N1 15.1 117 3.0

K × S F1 20.9 5.8* 38 131 14* 12 3.2

S × K F1 19.7 4.6* 30 139 22* 19 3.2

K × S F2 13.8 112 3.2

S × K F2 14.6 111 3.2

K × S F3 15.4 114 3.2

S × K F3 11.7 105 3.2

‘Shawnee’ 13.9 100 3.3

LSD 0.05 2.9 2.9 14 14 0.1

F ratio from ANOVA 4.31** 7.46** 33.5

*Signifi cant at the 0.05 level of probability.

**Signifi cant at the 0.01 level of probability.
†Maturity was visually scored at time of harvest using the growth staging system of Moore et al. (1991) in which late boot stage = 3.0, infl orescence emergence = 3.1, and 
panicle fully emerged but peduncle not emerged = 3.3.
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