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ABSTRACT

This paper is concerned with the estimation of covariance matrices in the presence
of heteroskedasticity and autocorrelation of unknown forms. Currently available estimat-
ors that are designed for this context depend upon the choice of a lag truncation parameter
and a weighting scheme. Results in the literature provide a condition on the growth rate of
the lag truncation parameter as T -« that is sufficient for consistency. No results are
available, however, regarding the choice of lag truncation parameter for a fixed sample size,
regarding data—dependent automatic lag truncation parameters, or regarding the choice of
weighting scheme. In consequence, available estimators are not entirely operational and
the relative merits of the estimators are unknown.

This paper addresses these problems. The asymptotic truncated mean squared
errors of estimators in a given class are determined and compared. Asymptotically optimal
kernel/weighting scheme and bandwidth/lag truncation parameters are obtained using an
asymptotic truncated mean squared error criterion. Using these results, data—dependent
automatic bandwidth/lag truncation parameters are introduced. The finite sample

properties of the estimators are analyzed via Monte Carlo simulation.
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1. INTRODUCTION

This paper considers heteroskedasticity and autocorrelation consistent (HAC) esti-
mation of covariance matrices of parameter estimators in linear and nonlinear models. A
prime example is the estimation of the covariance matrix of the least squares (LS) estimat-
or in a linear regression model with heteroskedastic, temporally dependent errors of
unknown form. Other examples include covariance matrix estimation of LS estimators of
nonlinear regression and unit root models and of two and three stage LS and generalized
method of moments estimators of nonlinear simultaneous equations models.

The paper has several objectives. The first is to analyze and compare the properties
of several HAC estimators that have been proposed in the literature, see Levine (1983),
White (1984, pp. 147—161), White and Domowitz (1984), Gallant (1987, pp. 533, 551, 573),
Newey and West (1987), and Gallant and White (1988, pp. 97-103). Currently the consis-
tency of such estimators has been established, but their relative merits are unknown.

The second objective is to make existing estimators operational by determining suit-
able values for the lag truncation or bandwidth parameters that are used to define the
estimators. At present, no guidance is available regarding the choice of these parameters
for a given finite sample situation.2 This is a serious problem, because the performance of
these estimators can depend greatly on this choice.

The third objective of the paper is to obtain an optimal estimator out of a class of
kernel estimators that contains the HAC estimators that have been proposed in the litera-
ture. An optimal estimator, called a quadratic spectral (QS) estimator, is obtained using
an asymptotic truncated mean squared error (MSE) optimality criterion.

The fourth objective of the paper is to investigate the finite sample performance of
kernel HAC estimators. Monte Carlo simulation is used. Different kernels and bandwidth
parameters are compared. In addition, kernel estimators are compared with standard para-

metric covariance matrix estimators.



The class of kernel HAC estimators considered here includes estimators that give
some weight to all T—1 lags of the sample autocovariance function. Such estimators have
not been considered previously. As it turns out, the optimal estimator is of this form.

The consistency of kernel HAC estimators is established under weaker conditions on
the growth rate of the lag truncation/bandwidth parameter St than is available
elsewhere. Instead of requiring Sq = o(Tl/ 4‘) or O(Tl/ 5) , as in the papers referenced
above, or S = o(TI/Z) , as in Keener, Kmenta, and Weber (1987) and Kool (1988), we
just require S = o(T) as T-w. Our results also provide rates of convergence of the
estimators to the estimand.

To achieve the objectives outlined above, the general approach taken in this paper is
to exploit existing results in the literature on kernel density estimation—both spectral and
probability—whenever possible. For this purpose, the following references are particularly
pertinent: Parzen (1957), Priestley (1962), Epanechnikov (1969), and Sheather (1986).

The remainder of the paper is organized as follows: Section 2 describes the estima-
tion problem of concern and introduces the class of kernel HAC estimators under study.
Section 3 presents consistency, rate of convergence, and asymptotic truncated MSE results
for these estimators. Section 4 establishes the optimality of the QS kernel. Section 5
determines asymptotically optimal sequences of fixed bandwidth parameters. Section 6
introduces data—dependent "automatic" bandwidth parameter estimators using a plug—in
method. Section 7 establishes consistency, rate of convergence, and asymptotic truncated
MSE results for kernel HAC estimators based on these automatic bandwidths. Section 8
presents Monte Carlo results regarding the finite sample behavior of the estimators con-
sidered in earlier sections. Section 9 provides a summary of the results of the paper. An
appendix contains proofs of results given in the paper.

Those interested primarily in the definition of the preferred HAC estimator—a

HAC estimator with QS kernel and automatic bandwidth—should read Sections 2 and 6.



2. A CLASS OF ESTIMATORS

To motivate the definition of the estimand given below, consider the linear regres-

sion model and LS estimator:

T -1
Y, =X{6+U,, t=1,...,T, b= tzlxtxi t):1>cth, and
(2.1) _ - -
) , T LT T T -1
Var(yT(8-6,)) = thlxtxt Tszl tEIEUSXS(UtXt) thl){tx:c

Since X, is observed, consistent estimation of Var(yT(8 - 6’0)) just requires a consistent

1T T
1 T
estimator of Tsil t__)ElELsXs(UtXt)

More generally, many parameter estimators ¢ in nonlinear dynamic models satisfy

’

-1/2 5 d
(Bpd B4 T(5— 6) L N(Q, 1) as T-e, where

(2.2) T T
Jp=73 T EV(8)V,(6) .

s=1t=1

By isa nonrandom r x p matrix, and Vt(B) is a random p—vector for each #€ © CR'.
Often it is easy to construct estimators BT such that BT - B 2,0 as T-o. The
estimators BT usually are just sample analogues of B with 90 replaced by #. See
Hansen (1982), Gallant (1987, Ch. 7), Gallant and White (1988), Andrews and Fair (1988),
and Andrews (1989) for the treatment of broad classes of parameter estimators and models
that satisfy these conditions.3 Since consistent estimators of B exist, one can estimate
the "asymptotic variance" of JT(6 - 90) , viz,, BpJpBg, if one has a consistent esti-
mator of J T In consequence, we concentrate our attention on the estimation of J T

The primary ingredient of J. is the vector Vt(B) . For LS estimation of a linear
regression model, V (6) = (Y, — X;6)X, . For pseudo-ML estimation, V.(f) is the score
function for the t—th observation. For instrumental variables estimation of a dynamic

nonlinear simultaneous equation model, V, (6) is the Kronecker product of the vector of



model equations evaluated at @ with the instrumental variables. For unit root models,
the LS estimator does not satisfy (2.2). Nevertheless, one still needs to estimate the value

of an expression that has the same form as Jp with Vt(ﬂ)zYt-«Yt_1 or

V() = Y, ;. where {Y,} is the unit root process, see Phillips (1987).
By cha.nge of variables, the estimand J, can be rewritten as
ER Vi f
; . for 320
T-1 T t=j+1 vt
(2.3) Jp = D) I‘T(J) where T'p(j) =
=t 15 py Vi 0
. for j<
Tiejq1  tH
and V, =V, (6), t=1,..., T.

When {V,} is second order stationary, it has spectral density matrix
] ©

(2.4) f(A) =5 =§ml"(_]) , where T'(j)=EV,V{_ .
and i=4~1. The limit as T -« of the estimand ‘]T equals 27 times the spectral
density matrix evaluated at A = 0. This fact motivates the use of spectral density esti-
mators to estimate Jp, as noted by Hansen (1982, p. 1047) and Phillips and Ouliaris
(1988) among others. Furthermore, in the second order stationary context with known 80
the estimators of White (1984, p. 152), Gallant (1987, p. 533), and Newey and West (1987)
correspond to kernel spectral density estimators evaluated at A = 0. The aforementioned
authors have established consistency of their estimators, however, in the more general con-
text in which {Vt(ﬂ)} is non—stationary and ¢, is estimated.

The class of estimators we consider corresponds to Parzen’s (1957) class of kernel
estimators of the spectral density matrix. We consider estimators of the form
(1 T .

T T V,V; .forj>0

(28) dr = In(Se) =L B k(54 700, where () t=ien
. = = where _] = A ]
T T " T 74y By A B

Y V ,.Viforj<0
Tt——j+1 t+j t




V,=V(8), k(-) is a real—valued kernel in the set X, defined below, and S is a band-
width parameter. The factor T/(T—r) is a small sample degrees of freedom adjustment
that is introduced to offset the effect of estimation of the r—vector 6. In Sections 3—5, we
consider estimators jT for which ST is a given non—random scalar. In Sections 6 and 7,
we consider "automatic" estimators J ¢ for which S is a random function of the data.
The class of kernels ll is given by
X, = {k(-) R [1,1]|k(0) = 1, k(x) = k(-x) Vx € R, [° k2(x)dx < s,

(2.6)
k() is continuous at 0 and at all but a finite number of other points} .

The conditions k(0) =1 and k(-) is continuous at 0 reflect the fact that for j small rel-
ative to T one wants the weight given to I'(j) to be close to one.
Examples of kernels in Ky include the following:
1 for |x| <1
Truncated: kpp(x) = { 0 otherwise

1—|x| for |x| <1
Bartlett: kpm(x) =

0 otherwise
1-6x% + 6]x|% for 0 < |x| ¢1/2
(2.7) Parzen: kpp(x) =1 2(1 - |x|)3 for 1/2< |x[ <1
0 otherwise

(1 4 cos(m))/2 for |x| <1
0 otherwise

25 [sin{6mx/5)
55| T 8mx/5
%

Tukey—Hanning: kTH(x) = {

Quadratic Spectral: kQS(x) = — cos(6mx/ 5)] :
1

2

The estimators jT corresponding to the truncated, Bartlett, and Parzen kernels are the
estimators proposed by White (1984, p. 152), Newey and West (1987), and Gallant (1987,
p- 533), respectively. The Tukey—Hanning and QS kernels have not been considered in the

literature concerning HAC estimation. The Tukey—Hanning kernel is popular in the



spectral density estimation literature, however, and the QS kernel has been considered in
the spectral and probability density estimation literature by Priestley (1962) and
Epanechnikov (1969) respectively.

If k(x)=0 for {x| >1 (and k(x)#0 for some |x| arbitrarily to 1), then Sy
is referred to as the lag truncation perameter, because lags of order j > ST receive zero
weight.4 Since some kernels in X, are non—zero for arbitrarily large values of x, it is
not possible to normalize all kernels in X, such that k(x) =0 for |x| > 1. Thus, lag
truncation parameters do not exist for all kernels in xl . The QS kernel is an example.

Figure 1 graphs the five kernels of (2.7), but renormalized such that each yields the
same asymptotic variance of jT —only their asymptotic biases vary.5 (The renormal-
ization is necessary for comparative purposes in order t0 make any given ST value equally
suitable for each kernel.) For a given value of S, the figure illustrates the different
weights the renormalized kernels k(.) put on the lagged covariances. For example, if
St =3, then EBT(1/3), EBT(2/3), ... are the weights the renormalized Bartlett kernel
putson I'(1), I'(2), ...

For some results below, we consider a subset of X, . Let
] .
Ko ={k(-) € £;|K()) 20 VA e R}, where K(}) =7 ffmk(x)e XAy,

The function K(}) is referred to as the spectral window generator corresponding to the
kernel k{-). The set K, contains all kernels in Kl that necessarily generate positive
semi—definite (psd) estimétors in finite sa,mples.6 As emphasized by Newey and West
(1987), this property usually is highly desirable. K, contains the Bartlett, Parzen, and QS

kernels, but not the truncated or Tukey—Hanning kernels.



3. FIXED BANDWIDTH HAC ESTIMATORS

In this section, consistency, rate of convergence, and asymptotic truncated MSE
properties of fixed bandwidth kernel HAC estimators are determined. Results due to
Parzen (1857) for spectral density estimators are utilized. We begin by introducing the
basic assumption that controls the temporal dependence of {V,} .

Let "abcd(t’ t+], t+m, t+n) denote the fourth order cumulant of

(Vo Vbt+j’ Verim th+n) , where V. denotes the a—th element of V, . That is,

Kabed(ts tH) 4, t+n)

(3.1) = E(Vat - Evat)(vbtﬂ - Evbt+j)(vct+m - Evct+m)(vdt+n - Evdt-’rn)
~E(Vy — Evat)(vbt+ i Evbt+j)(vct+m - Evct+m)(vdt+n - Evdt+n) ’

where {Vt} is a Gaussian sequence with the same mean and covariance siructure as

{V,}. Let ||| denote the Euclidean norm of a vector or matrix.

ASSUMPTION A: {Vt} is @ mean zero, fourth order stationary sequence of rv's with

m o 1] L]
DITG) <@ and X ¥ I nabcd((],j,m,n) <o Va,b,c,d<p.
j=—w j=—0 m=-—w D=-0

Assumption A allows for conditional heteroskedasticity, as well as autocorrelation, but pro-

hibits unconditional heteroskedasticity. The following assumption allows for all three:

ASSUMPTION A*: {Vt} is o mean zero sequence of Tv's with )3 supIIEVt t+_]” <o
=0 t2

end T 5% suple gt t+i t4m, t4n)] <o ¥a, bc,d<p.
j=1m=1n=111
In this paper we focus on the fourth order stationary case (Assumption A), but we
also make note of sufficient conditions (including Assumption A*) for consistency and rate
of convergence results for the unconditionalty heteroskedastic case. Optimality results for

kernels and bandwidth sequences are only considered for the fourth order stationary case.

Extensions of these results to the unconditionally heteroskedastic case, using a minimax



MSE criterion, can be found in Andrews (1988).

The cumulant condition of Assumption A is standard in the time series literature,
e.g., see Anderson (1971, pp. 465, 520, 531) and Hannan (1970, p. 280). In fact, Brillinger
(1981) assumes that the cumulant condition of Assumption A holds not only for the fourth
order but for all higher orders as well throughout his book (see his Assumption 2.6.1, p.
26). In the Gaussian case, the fourth order cumulants are zero, so the cumulant condition
is satisfied trivially. In addition, it is well known that fourth order stationary linear pro-
cesses (with absolutely summable coefficients and innovations whose fourth moments exist)
satisfy the cumulant condition of Assumption A (e.g., see Hannan (1970, p. 211)). The
following lemma shows that the cumulant conditions of Assumptions A and A* also are

implied by an a—mixing (i.e., strong mixing) condition plus a moment condition:

LEMMA 1: Suppose {Vt} 18 a mean zero a—mizing sequence of Tv’s. If sup E||Vt||4V <w
t>1

v 2 o (v-1)/v o . iy
and ¥ jofj) <w for some v> 1, then Assumption A* holds. If in addition,
=1

{Vt} is fourth order stationary, then Assumption A holds.

COMMENT: The condition on the mixing numbers in Lemma 1 is satisfied if they are of
size —3v/(v-1) (ie, ofj) = O(j_f_3y/(v—l)) for some ¢ > 0 ). The latter condition is
slightly stronger than that used by White (1984, Thm. 6.20, p. 155), Newey and West
(1987), and Kool (1988). (These authors use the same condition but with 3 replaced by 2.)

Let jT denote the pseudo—estimator that is identical to jT but is based on the
unobserved sequence {V,} = {V,(6,)} rather than {Vt} = {Vt(?)} and is defined

without the degrees of freedom correction T/(T-r) :

1% v
¢ for j2 O
i -1 _ Toimi41 ¢t
(3.2) Jp= T Xk(/S3)I()) and T(j) =+
j=—T+1 , T
' ¥ V. Vi for j<O.
Tyl jyr v




First, we summarize well known results for the pseudo—estimator jT . Then, we show

that analogous results hold for the estimator J. .
The asymptotic bias of kernel estimators depends on the smoothness of the kernel at
zero and on the smoothness of the spectral demsity matrix {(A) of {V,} at zero.

Following Parzen (1957), define
(3.3) k= 1im 22X g qe0,0).

9 x0 x4
The smoother is the kernel at zero, the larger is the value of q for which kq is finite. If

q

q is an even integer, then kq = - E,l— ggkg—{l _ and kq < o if and only if k(x) is gq
times differentiable at zero. For the truncated kernel, kq =0 for all q<a«. For the
Bartlett kernel, kl =1, kq =0 for gq<1, and kq =wm for q> 1. For the Parzen,

Tukey—Hanning, and QS kernels, k, =6, 1r2 /4, and 1.421223, respectively, kq =0 for

2
q< 2, and kq=cn for q>2.

The smoothness of f(A) at A = 0 is indexed by

w
(3.4) {0 = 5 151900) for g€ [0).
j=a
q
If q is even, then #U=p4ﬂﬁii%ﬂ and £9) <o ifand only if f(A) is g
ad | a=0

times differentiable at A =0 .

Let { denote the spectrum of {V,} at zero,i.e, {=1(0). Define

~ T ~ ’ ~
(3.5) MSE(T/Sq, dp, W) = -SEE vee(Jp — Jg) W vec(dp —JIp),

where W is some p2 x p2 weight matrix and vec(-) is the column by column vectoriza-
tion function. Let tr denote the trace function and @ the tensor (or Kronecker) product
operator. Let Kpp denote the p2 x p2 commutation matrix that transforms vec(A)
into vec(A’) (see Magnus and Neudecker (1979)). Unless indicated otherwise, all limits

in the paper are takenas T - o .



10

The following results for jT are due to Parzen (1957) for the scalar V, case.

Hannan (1870, pp. 280, 283) gives the corresponding vector Vt results.

PROPOSITION 1. Suppose k(-)€X;, Assumption A holds, St~o and S4/T-0.
Then, we have:

T s, 2,2
(a) %:il S——Var(vec Jp) = 47" [k (x)dx(I + Kpp)f@ f.

() I SHT-0 for some q€[oe) for which ki, 1Y) e oe), then
- _ q)

lim SUEIp —Ip) = —21rkqi( .

(¢} If S%Q+1/T - 7€ (0,0) for some qe€ (0,0) for which k_, II{(Q)H <w, then

Lim MSE(T/Sq, Jop, W) = 477 [kQ(vec £9) W vee {9y + fk%(x)dx tr W(I+K )f@f} |

T-ax q bp

COMMENTS: 1. By Proposition 1(a), the covariance between the (a,b) and (c,d)
elements of ‘IT is 4r2 fk (x)dx(f cfbd T fagfpe) » Where f,;, denotes the (a,b) element
of .

2. Under Assumption A* rather than A, Proposition 1 continues to hold by

Lemmas 1 and 2 and Theorem 1 of Andrews (1988) with the following changes: In part

(a), lim, vec jT , =, and (I+K_ )ef arereplaced by Tim, b’ij , <, and
o pp Tow
2b’fb, respectively, for arbitrary be RP. In part (b), ||f(Q)|l , lim (E.TT -7,
- m
) ®
=, and fa are replaced by % ;|9 sup|Eb- VVibl Iim,
= 01 it -z
lEb‘ij—b’JTb[ , ¢, and j_i{_][q iup[Eb Vv t+| | bi , respectively, for arbitrary
beRP. In part (c ||f(q)|| is changed as above and the result is changed to: ¥b e RP |

2 m
; S—E(b Jpbbr3pb)? ¢ dr [kq. % | qusup|Eb A

e

2
. b /r+e(b b ] _
1y Vigpjbl/ 7206 )
Next we state additional assumptions used to obtain results for the estimator of
interest jT . The first assumption below, together with Assumption A or A* is sufficient

for consistency of jT when St = o(Tlf 2) . Let © denote some neighborhood of 6‘0 .
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ASSUMPTION B: (i) yT(8-6,) = 0,(1)-

(ii) sup E sup|[V,()|* < w.
t21 60O

2
(iii) sup E sup ag,-vt(e)” <wm.

21 6e®
(iv) jm k(%) | dx < o .

Assumption B is not overly restrictive and usually is easy to verify. Its first three parts are
identical to assumptions of Newey and West (1987). Its fourth part is satisfied by each of
the kernels of (2.7) and by almost all other kernels that have been used in practice.

The next assumption needs to be imposed in place of Assumption A in order to ob-
tain sharp rate of convergence results and to obtain consistency of J 1 when Sp is only

required to satisfy Sy = o(T) .

ASSUMPTION C: (i) Assumption A  holds with \Y replaced by

1
[Vi’ vec [H%vt(ao) - E-a;vt(ao)] ] ’

2 I
(ii) 21;11) E sﬂgg”mvat” <weVa=1,...,p, where V(0) = (V (6), ..., th(f))) :

For the non—fourth order stationary case, let Assumption C* be defined as is
Assumption C but with reference to Assumption A* rather than Assumption A.
Suppose Vt(ﬁ) is of the form V(Zt, §) for some rv Zt and some {measurable)

function V(-,-). In this case, Assumption C*(i) holds if EV,=0Vt21, {Zt 't > 1} is

41/] <

1)
strong mixing witk % 2a()* DY <o, and sup[E]|Vt|]4V+ E”agTVt(‘;o)
j=1 21

for some v > 1. If, in addition, [V {» vec {B—ZTVt(BO)] ] is fourth order stationary, then
Assumption C(i) holds.

Under the assumptions above, the effect of using 9 rather than 90 when con-
structing jT is at most op(l) . Nevertheless, if @& has infinite second moment (as

occurs, e.g., with the two stage LS estimator in some scenarios) its use can dominate the
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MSE criterion of (3.5). To circumvent undue influence of # on the criterion of perform-

ance, we replace the MSE criterion with a truncated MSE criterion. Define
- . T -~ ’ -
(3.6) MSEh(T/ST, I, WT) =E mln{ |-SEvec(JT —Jp) W vecJp — J) l, h} ,

2

where Wo isa p™x p2 weight matrix that may be random. The criterion that we use

for the optimality results is asymptotic truncated MSE with arbitrarily large truncation

point, viz., ]11:1: %:1;1 MSEh(T/ST, jT’ WT) . This criterion yields the same value as the

asymptotic MSE criterion of Proposition 1 when & has well defined moments, but does
not blow up when # has infinite second moments.
To obtain the desired asymptotic truncated MSE results, we impose an additional

assumption. Let V_, denote the a—th element of V, . Let x, (0, Jps e j7)
1°""78

denote the cumulant of (V_ ., V_ . . ) (e.g., see Brillinger (1981, p. 19)),
310" "9l agly

where apy «vey g are positive integers less than p+1 and jl, ceny j7 are integers.

s orey V

ASSUMPTION D (i) {vi} is  eighth  order  statiomary  with
j44] ® ) .

.E "'l E ﬁa...a (0"]1’1-!,‘]7)<m.

Ji=~® jo=—ao 1 8

1 7

(ii) Wp B2 W,

As noted above, Assumption D(i) is part of the assumption utilized by Brillinger (1981, p.
26). It seems likely that an analogue of Lemma 1 could be established which would show
that a-mixing plus a moment condition implies Assumption D(i). Without Assumption
D(i), the right—hand side of (3.5) with the expectation removed is L' bounded. Assump-
tion D(i) is used only to ensure that it is also L1*0 bounded for some 6> 0. Any other
assumption that suffices for this result could be used in place of Assumption D(i).

Utilizing the assumptions above, we have:
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THEOREM 1: Suppose k(:) €X; and Sp-o.

() If Assumptions A and B hold and SA/T+0, then Jp—Jp—Ra0 and

Jp—JIp B0,

(b) If Assumptions B and C hold and qu+1/T - 7€ (0,0) for some q€ (0,0) for which
If(Q)|| <w, then YIJS;(Jp—3q) =0 p(1) and YT7S (3 —Jq) 240

(¢} Under the conditions of part (b) plus Assumption D,

lim lim MSEh(T/ST, Jp, W

)
h-o T-o T

= lim lim MSE, (T/Sr, JT, Wo) = %ml MSE(T/Sq, JT, W)

o T-®

= 41° [kq(vec f(q)) W vec £9) [y + sz(x)dx tr W(I + Kpp)f e f] :

COMMENTS: 1. Theorem 1{a) continues to hold with Assumption A replaced by
Assumption A*. (Using the results of Comment 2 following Proposition 1, the proof is a
trivial extension of that given in the Appendix.) Thus, Theorem 1(a) yields consistency of
jT in a scenario comparable to that of White (1984, pp. 147-161) and Newey and West
(1987). The results here, however, apply to kernels with unbounded support and to band-
width parameter sequences that grow at rate 0(T1/ 2) rather than o(Tl/ 4) . These
extensions are useful, because the optimal kernel discussed below has unbounded support
and the optimal growth rate of the bandwidth parameters for the Bartlett kernel consider-
ed by Newey and West (1987) exceeds o(T1/4) . (Tt equals 0(T1/3) )

2. Theorem 1(b) continues to hold with Assumption C replaced by Assumption C*

and f(q) replaced by E | Jl sup ||EV \Y (The proof is as in Comment 1.)

j=—w

3. Theorem 1(b) yields con51stency of JT with S only required to be o(T).

t+|J|”

This extension is of theoretical interest, but is of little practical import, because optimal

1/2

growth rates typically are less than T (see Section 5 below), and hence, are covered by

the results of Theorem 1(a) under weaker assumptions. The main contribution of Theorem
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1(b) is the rate of convergence results that it delivers. These rates are identical to those in
the case where no parameters £, are estimated. As indicated by Theorem 1{c), the rates
are sharp. If the bandwidth parameters are chosen to grow at the optimal rate determined
in Section 5 below, then the rate of convergence for the Bartlett, Parzen, Tukey—Hanning,

2/5 respectively. In contrast, the rate

and QS kernels are Tl/3 , ’.l£‘2/5 , T2/5 , and T
for parametric estimators typically is TI/ 2

4. The expression given in Theorem 1(c) for the asymptotic truncated MSE of jT
is identical to that of Proposition 1(c) for the asymptotic untruncated MSE of jT'
Theorem 1{c) is used below in determining an asymptotically optimal kernel and sequence

of fixed bandwidth parameters, see Sections 4 and 5, as well as in determining automatic

bandwidth parameters, see Sections 6 and 7.

4. AN OPTIMAL KERNEL

In this section, we show that the QS kernel is best with respect to asymptotic trun-
cated MSE in the class K2 of kernels that necessarily generate psd estimates. This
optimality property holds for any psd (limiting) weight matrix W and any distribution of
{V,} such that Assumptions B—D hold.

The QS kernel also has been shown to possess optimality properties in the context of
spectral density estimation, see Priestley (1962; 1981, pp. 567—571), and probability dens-
ity estimation, see Epanechnikov (1969) and Sacks and Yvisacker (1981). The results of
Priestley and Epanechnikov are for an asymptotic maximum relative MSE criterion {where
the maximum is over different frequencies or points of support) rather than for a criterion
of asymptotic truncated MSE at a given point as is used here. In addition, the present
results establish optimality for any given bandwidth sequence {ST} , whereas each of the
other results referred to above establishes optimality only for a particular bandwidth

sequence that is optimal in some sense.
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Since the kernels in I2 are not subject to any normalization, it is meaningless to
compare two kernels using the same sequence of bandwidth parameters {ST}. For
example, two kernels that are the same but scaled differently would yield non—identical
results in such a comparison. To make comparisons meaningful, one has to use comparable

bandwidths. The latter are defined as follows: Given k(-) € X,, the QS kernel kQS(-) ,

2 H
and a sequence {ST} of bandwidth parameters to be used with the QS kernel, define a
comparable sequence {STk} of bandwidth parameters for use with k(-) such that both
kernel/bandwidth combinations have the same asymptotic truncated variance when scaled

by the same factor T/S." This definition yields
(See footnote 5 for the value of | k2(x)dx for the kernels of (2.7).)

Note that for the QS kernel kiyg(+), Sy =Sy, since Ikgs(x)dx= 1. Also

QS

note that the use of the QS kernel as the standard for comparability is made for conven-
ience only and does not affect the optimality results.

Let jQST(sT) denote Jp(Sp) when the latter is based on the QS kernel.

THEOREM 2: Suppose Assumptions B—D hold, |lf(2)|| <w, and W 1is psd For any
sequence of bandwidth parameters {ST} such that Sqp-~o aend S%/T -7 for some
v€ (0,0} and for any kernel k(-)e¢ Ky that 15 used to construct jT , the QS kernel is

preferred to k(+) in the sense that

Iim 1§ T{MSEh(T/ST, Ip(S 3> Wp) = MSEy (T/S, Igp(Sp) WT)]

= ar%(vec £2)) W vec 12 [kg[ sz(x)de4 _ kgqs] I

2 0.

provided (vec f(z))’W vec {2) > 0. The inequality is strict if k(x)# kQS(x) with

positive Lebesgue measure.
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COMMENT: Theorem 2 implies that given any e > 0 there exists a truncation height
h* such that the QS kernel is e—optimal in the sense that the first line of the result of

Theorem 2 with " 1im " deleted is > —¢ for any fixed h > h*.
h-w

5. OPTIMAL FIXED BANDWIDTH PARAMETERS

In this section, sequences of fixed bandwidth parameters are determined that are
optimal in the sense of minimizing asymptotic truncated MSE for a given psd (limiting)
weight matrix W . The results apply to each kernel k(-) in X; for which kq € (0,x) for
some q € (0,m) . This excludes the truncated kernel, but includes all of the other kernels of
(2.7). The results are obtained as a simple corollary to Theorem 1(c) above.

Define the optimal bandwidth parameters {S}} as follows: Let

vee 9V W v )
(5.1) Q(Q)=2(tfcwflq+)KV:p)?c@f§q and
1/(2q+1
(5.2) 5% = [qua(q)T/jkz(x)dx] faat)

a{q) 1is a function of the unknown spectral density matrix f(A) . Hence, the optimal band-
width parameter S% also is unknown in practice. For this reason, estimates of a(q) are

considered in Sections 6 and 7 below in order to obtain a feasible analogue of S,} .

COROLLARY 1: Suppose Assumptions B—D hold. Consider a kernel k(-) € K, for which
kq € (0,0) for some q€ (0,0) . Suppose I]f(Q)II <w, ofq)€(0,x), and W 1is psd. For
any sequence of bandwidth parameters {ST} such that S%Q+1/T ~y for some 7€ (O},

the sequence {ST} is preferredto {Sp} in the sense that

L 2q/(2q+1) 3 29/(2q+1) j
ilf%:T{MSEh(T 3p(Sp), Wop) - SBT3/ O, (s 5), w2 0.

The inequality 1s strict unless S = S,’f + 0(T1/(2q+1)) )
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COMMENTS: 1. The values of q in Corollary 1 for the Bartlett, Parzen, Tukey-
Hanning, and QS kernels are 1, 2, 2, and 2, respectively. Thus, we have

Bartlett kernel: 57 = 1.1447'(0:(1)T)1/3

Parzen kernel: S} = 2.6614(&(2)'1‘)1/5

(5.3) . 1/5
Tukey-Hanning kernel: S7 = 1.7462(a(2)T)

Quadratic Spectral kernel: St = 1.3221(0(2)T)1/5 :

2. For illustrative purposes, Table 1 tabulates S,} for the Bartlett, Parzen, Tukey-
Hanning, and QS kernels for a linear regression model in which the regressors and errors
are mutually independent, homoskedastic, first order autoregressive (AR(1)} random vari-
ables each with autoregressive parameter p . For this model each element of \A (except
that corresponding to the intercept) has correlation structure identical to that of an AR(1)
process with parameter 7= p2 . The weight matrix WT is taken to be a diagonal matrix
that gives weight ome to the diagonal elements of jT_JT that correspond to non-
constant regressors and weight zero to all other elements.

3. Corollary 1 can be used to assess Gallant’s (1987, pp. 551, 573) suggestion to set
the lag truncation parameter S, at [Tll 5] + 1 with the Parzen kernel. Suppose {Vt}
and WT are as in Comment 2. Then, for T = 128 Gallant’s value of ST is first order
optimal when %= .053 and p=.23. When T =64 itis optimal for n=.073 and
p = 27. Hence, the formula S = [Tl/ 5] + 1 1is appropriate only for a sequence {Vt}
that has relatively little autocorrelation.

4. When the optimal bandwidth parameters {St} are used, the asymptotic trun-
cated MSE is such that the squared bias equals 1/(2q+1) of the total MSE (for any
limiting psd weight matrix W ). Thus, the bias of the Bartlett kernel accounts for a
greater fraction of its MSE asymptotically than do the biases of the Parzen, Tukey-

Hanning, and QS kernels.
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5. When {S,’f} is used, the Parzen and Tukey—Hanning kernels are 8.6% less and
.9% more efficient asymptotically than the QS estimator, respectively, for any distribution
of {V,} and any limiting psd weight matrix W . (Since the Tukey—Hanning kernel does
not necessarily generate psd estimates, i.e., kTH(x) ¢ I2 , the latter result does not vio-
late Theorem 2.) Also, the Bartlett kernel is 100% less efficient asymptotically than the
Parzen, Tukey—Hanning, and QS kernels, since its MSE converges to zero at a slower rate.
In particular finite sample situations, however, the Bartiett kernel may not perform nearly
so poorly in relative terms, depending on the magnitudes of T, f(2) , 1(1) , and f.

6. The only kernels for which k q < o for q > 2 are kernels that do not necessar-
ily generate psd estimates.® Thus, the maximal rate of convergence to zero of the truncat-
ed MSE for kernels in X2 is T4/ 5 mn contrast, the rate is T for parametric estimators.

7. The result of Corollary 1 can be given a "fixed truncation height, e—optimality"
interpretation as in the comment following Theorem 2 above.

8. For asymptotically optimal higher order adjustments to the bandwidth param-
eters {S%}, see Andrews (1988, Thm. 4).

9. The asymptotic truncated MSE criterion utilized here to generate S,’f is justifi-
able if jT is used to construct a standard error or variance estimator for # and one views
this as an estimation problem in its own right. If one wants to use jT in forming a test
statistic involving 8, however, the suitability of the truncated MSE criterion is less clear.
A weak argument in its favor is that the asymptotics typically used with such test statis-
tics treat the estimated covariance matrix as though it equals its probability limit. In
consequence, in many cases the closer is the covariance matrix estimator to its probability
limit, as measured, for example, by truncated MSE, the better is the asymptotic approxi-
mation. This is true in the context of the Monte Carlo experiments reported in Section 8
below. On the other hand, there are cases where the deviation of one part of a test statistic
from its limiting behavior is offset by the deviation of another part of the statistic from its

limiting behavior. In such cases, the argument above breaks down.
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6. AUTOMATIC BANDWIDTH ESTIMATORS

This section introduces automatic bandwidth HAC estimators of I - These esti-
mators are the same as the kernel estimators of Sections 2—5 except that the bandwidth
parameter is a function of the data.

In the density estimation literature, several automatic bandwidth methods have
been developed. The two main types are cross—validation, e.g., Beltrao and Bloomfield
(1987) and Robinson (1988), and the "plug—in" method, see Deheuvels (1977) and Sheather
(1986). In the context of spectral density estimation, two additional methods have been
suggested by Wahba (1980) and Cameron (1986). Cross—validation and the methods of
Wahba and Cameron are suitable if one is interested in estimating a density over an inter-
val, such as the real line, rather than estimating a density of a single point. Hence, they
are not well suited to the problem at hand.

Plug~in methods are characterized by the use of an asymptotic formula for an opti-
mal bandwidth parameter (in our case S,i of (5.2)) in which estimates are "plugged—in"
in place of various unknowns in the formula ( o{q) of (5.1)). The estimates that are
plugged-in may be parametric or nonparametric. The former yield a less variable
bandwidth parameter than the latter, but introduce an asymptotic bias in the estimation of
the optimal bandwidth parameter due to the approximate nature of the specified
parametric model. (Note that this bias has no effect on the comsistency or rate of
convergence of the density estimator.)

The automatic bandwidth parameters considered here are of the plug—in type and
use parametric estimates. They deviate from the finite sample optimal ST values due to
error introduced by estimation, the use of approximating parametric models, and the
approximation inherent in the asymptotic formula employed. Good performance of a HAC
estimator, however, only requires the automatic bandwidth parameter to be near the opti-

mal bandwidth value and not precisely equal to it. The reason is that the MSEs of kernel
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HAC estimators tend to be somewhat U—shape functions of the bandwidth parameter ST .
This is illustrated in Figure 2, which shows the MSE of the QS estimator as a function of

St for the AR(1}-HOMO model with p = 0.0, .3, .5, .7, .9, and .95. (As described in

T
Section 8 below, the AR{1)-HOMO model is a linear regression model with regressors and
errors that are homoskedastic AR(1) rv's both with AR(1) coefficient p.) The automatic
bandwidth parameters considered here are designed to produce parameters that are on the
flat part of the MSE function even if they are not at the point of minimum MSE.

The automatic bandwidth parameters are defined as follows: First, one specifies p
univariate approximating parametric models for {Vat} for a=1,...,p (where
Vt = (Vlt’ crey th)’ ) or one specifies a single multivariate approximating parametric
model for {Vt} . Second, one estimates the parameters of the approximating parametric
model(s) by standard methods. Third, one substitutes these estimates into a formula (see
below) that expresses ofq) as a function of the parameters of the parametric model(s).
This yields an estimate &(q) of a{q) . &(q) is then substituted into the formula (5.2) for

-

the optimal bandwidth parameter S,} to yield the automatic bandwidth parameter ST :

. 1/(2q+1)
60 Sp=[aldor @

For the kernels of (2.7), we have
L& . 1/3
Bartlett kernel: S = 1.1447(a(1)T)" /",

Parzen kernel: ST = 2.6614(&(2)T)1/5 ,

(6.2) . n . 1/5
Tukey—Hanning kernel: Sp = 1.7462(a(2)T)"' ",

Quadratic Spectral kernel: ST = 1.3221(&(2)T)1/5 210

For general purposes, the suggested approximating parametric models are first order
autoregressive (AR(1)) models for {Vat} , a=1, ..., p (with different parameters for
each a) or a first order vector autoregressive (VAR(1)) model for {V,}. These models

are parsimonious. If some other model(s) seem more appropriate for a particular problem,
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however, they should be used instead. For example, it may be necessary to use models that
allow for seasonal patterns or it may be preferable to use first order autoregressive—moving
average (ARMA(1,1)) or m—th order moving average (MA(m)) models.

The use of p univariate approximating parametric models has advantages of sim-
plicity and parsimony over the use of a single multivariate model, but requires a simple
form for the weight matrix W that appears in the formula (5.1) for a{q) . In particular,
it requires that W gives weight only to the diagonal elements of jT . Let

{v:ra :a=1, ..., p} denote these weights. In this case, (5.1) reduces to
P (@n?, B
- q)
(6.3) ofq) = azlwa [faa ] /ailwafza !

where fgg) and f_ denote the a~th diagonal elements of f(q) and { respectively.
The usual choice for LA isonefor a=1,...,p oronefor all a except that which
corresponds o an intercept parameter and zero for the ]Latter.11

We now provide formulae for &{q) for several different approximating parametric
models for {Vat} . First, consider AR{1) models for {Vat} . Let (pa, ai) denote the

autoregressive and innovation variance parameters, respectively, for a=1, ..., p. Let

{(f?a, &g) ;a=1, ..., p} denote the corresponding estimates. Then,

a2) = 3 __ﬁgﬁia: /% _.—_7&: g
= w w an
a=1 4(1-p,)%a=1 *(1 - 7))
(6.4) 13258 , 4
a1)= B Wyt S, — 2
a=1 (1 = 5,)°(1 + 5,00 a=1 (1 = })

For ARMA(1,1) models with ARMA parameters (pa, wa) and innovation variance
13

ai for a=1, ..., p, " wehave
2 2.4 4.4
(6.5) o{2) 3 AL+ Pa¥) (o + %) % -—-——7{(1 %) % an
. = W w
a=1 2 (1-5,)° a=1 % (1 - p,)
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p A+ ) (pa + 9% p o+ gt
6.6 )= T w /X w .
oo W= T S5)f0 4 57 am1 2 (1 - py)?

For MA(m) models with MA parameters {wau :u=1, ..., m} and innovation

variances aiu for a=1, ..., p, wehave

7 : Bwlet X i
61 W= S, 20t T b
. 2
I I L T LS (P
a=1 2|j=—m aljl g1 auTautl|jl’| “a

Next, consider a VAR(1) model with p xp AR parameter matrix A and pxp
innovation covariance matrix ¥. With this multivariate approximating parametric model

one can use any psd p2 x p2 weight matrix WT . We have

2(vec f(q)) 'WT vec f(Q)

. S RPN S PUR S
a(q) = ————, where { =5(I-A) EI-A") ",
= Wo(l+ K_)ief Z
. e EPT )
(6.8) (@ = LAy BAE - AS-$A- + ASAHA-1- A8,

N . “ m N L . .
W=l +f), and B= (I—A)—2A_20AJ>:(Af)J 1
J:

A natural choice for the weight matrix W in this case is

(6.9) W= (BT ® BT) W(BT ® BT) ,
where BT is the estimator defined just below (2.2) and W is an 12 diagonal weight
matrix. This choice of WT corresponds to the loss function

vec(Bpd pBA —-I‘BTJTBT)IW vec(BpJ Bt — BpJpB4) (which yields the same asymp-
totic truncated MSE as when Bp is replaced by Bg in the loss function), where
BTj Tﬁ’i‘ is the covariance matrix estimator of #. The diagonal matrix W is chosen to
suitably weight the elements of BT.] TB'i‘ . For example, to give equal weight {0 each non-
redundant element of ET‘?TBT , one takes W to have ones for diagonal elements that

correspond to non—diagonal elements ETjTE"f and twos for diagonal elements that
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correspond to diagonal elements of BTjTE’f .

The choice between using p univariate approximating parametric models (such as
AR(1) models) or a single multivariate model (such as a VAR(1) model) depends upon a
tradeoff between simplicity and parsimony on one hand and flexibility in the choice of
weight matrix on the other. For the Monte Carlo results of Section 8 below, AR(1) univar-
iate approximating models are used.

In practice, the value of a HAC estimator can be sensitive to the choice of the band-
width parameter. Hence, it often is wise to calculate several bandwidth values centered
about the automatic bandwidth value given by (6.1) in order to assess the degree of sensi-
tivity of the estimator. These additional bandwidth values can be chosen by replacing the
estimated parameters of the approximating parametric models used in {6.1) by the estimat-
ed parameters plus or minus one or two standard deviations of their values. For example,

with AR(1) approximating models, one would replace ba by i’a + 1/J/T or f)a +2//T.

7. PROPERTIES OF THE AUTOMATIC BANDWIDTH ESTIMATORS

In this section, we establish consistency, rate of convergence, and asymptotic trun-
cated MSE results for kernel HAC estimators that are constructed using the automatic
bandwidth parameters {ﬁT} introduced in Section 6.

The results of this section apply to kernels in the following class:

Ky = {k(-) € Xy 0 (1) [k(x)] < Cllx|_b for some b > 1 + 1/q and some C; < w,
(7.1) where q € (0,0) is such that kq € (0,0), and (ii) [k(x) — k(y}] < Cq|x—y|

¥x, y € R for some constant 02 < m} .

This class contains the Bartlett, Parzen, Tukey—Hanning, and QS kernels, but not the
truncated kernel, because the latter does not satisfy the Lipschitz condition.

For consistency of jT(ST) , &(q) only needs to satisfy:

ASSUMPTION E: d{q) = Op(l) and 1/a(q) =0_(1).

p
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For rate of convergence and asymptotic truncated MSE results, stronger conditions
on &(q) are needed. Let ¢ denote the estimator of the parameter of the approximating
parametric model(s) introduced in Section 6. (For example, with univariate AR(1) approx-
imating parametric models, ¢ = (ﬁl, Er%, ceey f:p, 612))’ .) Let ¢ denote the probability
limit of £. a(q) is the value of ofq) that corresponds to €. The probability limit of

&(q) depends on ¢ and is denoted a ¢ For the results referred to above, we assume:
ASSUMPTION F: yT(&{q) — ag) = Op(l) for some ay € (0,2) .

Note that o equals the optimal value afq) if the approximating parametric model

indexed by ¢ actually is correct. In general, however, o deviates from a(q) .

The fixed bandwidth sequence that is closest to {ST} is defined by replacing &q)
by o in the definition of §T . Let

1/(2q+1)
(7.2) Ser = [quag’l‘/]kz(x)dx} "

The asymptotic properties of J T(ST) are shown to be equivalent to those of jT(S {T) :

For the rate of convergence and asymptotic truncated MSE results, we also require:

ASSUMPTION G: A (P(j)) € Cai " Vj20, for some Cy<w and some
m > max{2, 1+2q/(q+2)} , where q is as in Ky
For the non—fourth order stationary case, let Assumption G* be defined as is

Assumption G but with A (T'(j)) replaced by 21)11; Amax(EVtVEﬂ) :

If {v.} is strong omixing with mixing numbers of size

—max{2, 1+2q/(q+2)}v/(v —1/2) for some v >1 such that sup E]th||4V <o, then
t>1

Assumptions G and G* hold. In particular, in the cases of interest q < 2, so the size
condition is —3v/(v—1/2). This is less stringent than the size condition —3v/(1—1)
which is sufficient for Assumptions A and A*.

The main result of this section is the following:
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THEOREM 3: Suppose k(-) €KXy, q isasin kg, and ||f(q)|| <w.

(a) If Assumptions A, B, and E hold and q > 1/2, then jT(sT) - ‘]T Pg.

(b) If Assumptions B, C, F, and G hold, then -,/I]SgT (jT(ST) —Jp) = Op(l) and
MS__gT(JT(ST) —Jp(S §T)) P.o.

(c) If Assumptions B—D, F, and G hold, then

lim 1im MSE; (T/S ., Jp(8p), Wp) = lim lim MSE, (T/S e, jT(ng), W)

h-o T-o -0 T-e

= 4r° [ké(vec £y W vec f(Q)/'y{ + x)dx tr W+ K ) e f] ,
Y- 2
where Te = qkqag/]k (x)dx .
COMMENT: Theorem 3(a) and (b) continues to hold if £9) anq Assumptions A, C, and

®
G are replaced by j=§m]j]q2121;1> Ama.x(EVtfojl) and Assumptions A* C* and G*

respectively. (Using Theorem 1 Comments 1 and 2 and Lemmas 1 and 2 of Andrews
(1988), the proof is a straightforward extension of that given in the Appendix.) Thus,
automatic bandwidth kernel estimators are consistent with non—stationary as well as

fourth order stationary rv’s.

I &q) Biafq) (e, ap = o(q) ), as occurs if the approximate parametric
model indexed by ¢ is correct, then {ST} exhibits some optimality properties as a result
of Theorem 1{c) and Corollary 1. In particular, given a kernel k(.)€ Ky, let {ST} be
any sequence of automatic bandwidth parameters such that for some fixed sequence {ST} ,

which satisfies S%Q'H /T -4 for some ye€ (0,0}, we have

. . 2q+1) 3 ;¢ 2q/(2q+1) ;7
(15) lim %:T[MSEh(T‘?q/ (201 5. (8., Wop) - MSEy (120 (1) 5 (s W) = o

Then, {gT} is preferred to {ST} ;
COROLLARY 2: Suppose Assumptions B—D, F, and G hold. Consider a kernel k(-) € K.
Let q beasin Ky. Suppose ||f(q)|i <w, a(q) € (0,0}, and W is psd. Let {ST} be

any sequence of automatic bandwidth parameters that satisfies (7.5). If ap = ofq) (ie,if
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a(q) converges in probability to the optimal value ofq) ), then {ST} is preferred to {ST}

in the sense that

. 20/(2q+1) 7 ;¢ 20/(2a+1) 5 (¢
lim %lxiz[MSEh(T 9/Qe+1) 5, (8.), W) - MSEy(12/(9¥D) 5§, wT)] 50 .

The inequality is strict unless Sq = S.’f + O(TI/ (2Q+1)) .

8. MONTE CARLO RESULTS

In this section, simulation methods are used to evaluate the asymptotic results
obtained in Sections 3735 In particular, we are interested in evaluating the results of
Theorem 2 regarding the optimal kernel, of Corollary 1 regarding the asymptotically
optimal bandwidth parameters, and of Theorem 3 and Corollary 2 regarding automatic
bandwidth parameters.

The models we consider are linear regression models, each with an intercept and
four regressors, see (2.1). The estimand of interest is the variance of the LS estimator of
the first non—constant regressor. (That is, the estimand is the second diagonal element of
Var(yT(8 — 6y)) in (2.1).) Four basic regression models are considered: AR(1)-HOMO,
in which the errors and regressors are homoskedastic AR(1) processes; AR(1)-HET1 and
AR(1)~HET2, in which the errors and regressors are AR(1) processes with multiplicative
heteroskedasticity overlaid on the errors; and MA(1)-HOMO, in which the errors and
regressors are homoskedastic MA(1) processes. (Details are given below.) A range of six to
eight parameter values are considered for each model. Each parameter value corresponds
to a different degree of autocorrelation.

Estimators based on the five kernels of (2.7) are evaluated. They are: truncated
(TRUNC), Bartlett (BART), Parzen (PARZ), Tukey—Hanning (TUK), and quadratic
spectral (QS). The performance of each kernel estimator is determined for a variety of dif-
ferent bandwidths. These bandwidths include the asymptotically optimal bandwidth of

(5.2), the automatic bandwidth of (6.1) based on univariate AR(1) approximating models
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with (pa, ai) estimated by LS for each a, and a grid of fixed bandwidths that are used
to obtain the finite sample optimal bandwidth. For the former two bandwidths, the
weights {w_ } are taken to be zero for the intercept and one for the others.

For comparative purposes, three estimators are considered in addition to the kernel
estimators described above: the heteroskedasticity consistent estimator of Eicker (1967)
and White (1980), denoted INID; the standard LS variance estimator for iid errors, denoted
IID; and a parametric estimator that assumes that the errors are homoskedastic AR(1)
random variables, denoted PARA. More specifically,

-1 1 T -1
INID = [thlxtxi] [T:g 3 UtX X ] [thlxtxé]

22

, and

siae”
X X’]
T 22

(8.1) IID = [T{BEU] LR

PARA = [1 gxx]_l[ L gﬁz][lg 3 ol tlxx][ 3 xx]—l
T2y vt T80 UITE, 2y sTe T2y 22
where EJLS is the LS estimator of p from the regression of 'Ut on ﬁt—l for
t=2,..., T, p=min(.97, ,EJLS) , and [-]22 denotes the (2,2) element of - 16

For each variance estimator and each scenario, the following performance criteria
are estimated by Monte Carlo simulation: (1) the exact bias, variance, mean squared error
(MSE), and mean absolute error (MAE) of the variance estimator and (2) the true confi-
dence levels of the nominal 99%, 95%, and 90% regression coefficient confidence intervals
(CIs) based on the t—statistic constructed using the LS coefficient estimator and the
variance estimator.}’ The control variate method of Davidson and MacKinnon (1981) is
used to estimate the true confidence levels in (2). Sample sizes of 64, 128, and 256 are
investigated. One thousand repetitions are used for each scenario.

The distributions of all of the variance estimators considered here are invariant with
respect to the regression coefficient vector ¢ in the model. Hence, we set §=0 in each

model and do so without loss of generality.
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Next we describe the four models used in the Monte Carlo study. The AR(1)-
HOMO model consists of mutually independent errors and regressors. The errors are mean
zero, homoskedastic, stationary, AR(1), normal random variables with variance 1 and AR
parameter p . The four regressors are generated by four independent draws from the same

distribution as that of the errors, but then are tramsformed to achieve a diagonal

T

r}t ¥ X, X matrix.'® The values considered for the AR(1) parameter p are0, .3, .5, .7,
=1

9, .95, —3, and —.5.

The AR(1)-HET! and AR(1)-HET2 models are constructed by introducing multi-
plicative heteroskedasticity to the errors of the AR(1)-HOMO model.  Suppose
{xt, th :t=1, ..., T} are the non—constant regressors and errors generated by the

AR(1)-HOMO model (where X, = (I, xi)l ). Let U, = [x{(] = U, . Then, {x,, U, :

.
t=1,..., T} are the non—constant regressors and errors for the AR(1)-HET1 and
AR(1)-HET2 models when ¢ = (1,0,0,0) and ¢ =(1/2,1/2,1/2,1/2)" respectively. In
the AR(1)-HET1 model, the heteroskedasticity is related only to the regressor whose coef-
ficient estimator’s variance is being estimated, whereas in the AR(1)-HET2 model, the
heteroskedasticity is related to all of the 1'egressors.19 The same values of p are
considered as in the AR(1)-HOMO model.

The MA(1)-HOMO mode! is exactly the same as the AR(1)-HOMO model except
that the errors and the (pre—transformed) regressors are homoskedastic, stationary, MA(1)
random variables with variance 1 and MA parameter 4. The values of 3 that are con-
sidered are .3, .5, .7, .99, —.3, and —.7.

The first table of simulation results, Table 2, provides a comparison of the five ker-
nels of (2.7). The table presents ratios of the finite sample MSEs of the TRUNC, BART,
PARZ, and TUK estimators to those of the QS estimator for each model scenario and

T =128 . Each estimator has its bandwidth parameter set equal to its non—random finite

sample optimal value {determined by grid search) to ensure comparability of the kernels.
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The table shows that the QS estimator is slightly more efficient than the PARZ
estimator and very slightly more efficient than the TUK estimator in the scenarios con-
sidered. These results are basically comsistent with the asymptotic results for kernel
comparisons given in Theorem 2 and Corollary 1 Comment 5. The finite sample advantage
of the QS kernel over the PARZ kerne], however, is clearly less than its asymptotic advant-
age. For these kernels, results corresponding to those of Table 2, but for sample sizes
T =64 and T = 256, are quite similar to those of Table 2.

In Table 2, the three estimators QS, PARZ, and TUK consistently exhibit a dis-
tinct, but not large, advantage over the BART estimator. This advantage is predicted by
the asymptotic results of Theorem 1 (also see Corollary 1 Comment §). It is interesting to
note that for sample size T = 256 (not reported here), the MSE advantage of the QS,
PARZ, and TUK estimators over the BART estimator is more pronounced than in Table 2
where T = 128 . This is expected given the asymptotic results.

For all of the estimators, the results of Table 2 are not changed much when the
MSE criterion is replaced by the MAE criterion. The only change is that the differences
between the estimators are somewhat less pronounced.

The TRUNC estimator exhibits wide fluctuations in its MSE relative to that of the
QS estimator and the other three estimators. In the AR(1)-HOMO model, it ranges from
being 9% less efficient to 7% more efficient than the QS estimator. For most scenarios,
however, it is more efficient than the QS estimator. This is what is suggested by the
asymptotic results (see Proposition 1{b) and Theorem 1(c)), since the bias of the TRUNC
estimator declines at a faster rate than it does for the other estimators. Results corres-
ponding to Table 2 but with sample sizes T =64 and T = 256 show that the relative
efficiency of the TRUNC estimator is increasing with T (i.e., the ratios of MSEs are
declining) in most scenarios, but at a fairly slow rate.

Comparisons of the true confidence levels of the Cls constructed using the five dif-

ferent variance estimators are not given in the tables, because they are quite similar to the
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comparisons based on MSEs given in Table 2. In all cases, the CIs’ true confidence levels
fall short of their nominal confidence levels. Thus, the best Cls are the ones whose confi-
dence levels are the largest. Of the BART, PARZ, TUK, and QS-based CIs, the
QS—based CIs are fairly consistently the best, but only by a slight margin over the PARZ
and TUK-based CIs. The margin is larger with respect to the BART-based CIs. There
are two reasons why the BART—-based CIs do worse than the other CIs. First, the BART
variance estimator has greater MSEs than do the other estimators, and second, its squared
bias—variance ratio is significantly larger than that of the other estimators in most cases.
The latter property is to be expected given the asymptotics (see Corollary 4 Comment 4).

The true confidence level results for the TRUNC—based CIs are similar to the
TRUNC estimator’s MSE results. In some scenarios they are the best and in some scenarios
they are the worst. The scenarios in which they are best and worst are the same scenarios
where the TRUNC estimator has lowest and highest MSEs, respectively, in Table 2.

One drawback of the TRUNC estimator (as well as the TUK estimator) is that it
does not necessarily generate non—negative variance estimates. In the Monte Carlo exper-
iments, however, a significant number of negative estimates arise only when there is very
heavy autocorrelation. For example, in the AR(1)-HOMO model with p = .95, the per-
centages of negative TRUNC estimates are 7.6, 1.2, and 0 for T = 64, 128, and 256,
respectively {using the finite sample optimal bandwidth parameter). For smaller values of
p and for the TUK estimator, the percentages are zero for all sample sizes considered.

For brevity, we only discuss results for the QS estimator in the remainder of this
section. For the most part, in the tables that follow, the relative performances of the other
kernel estimators in comparison with the QS estimator follow patterns similar to those
observed in Table 2. Tables analogous to those given here, but including the other kernel
estimators, are available from the author-upon request.

Table 3 is designed to show how well the first order asymptotically optimal band-
width parameter formula (5.2) works. The table gives the ratio of the MSE of the QS
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estimator using S,} to its MSE using the finite sample optimal S’I‘ value . All model
scenarios and sample sizes are reported in the table. For the AR(1)-HOMO and MA(1)-
HOMO models in Table 3, the value of of2) used in the formula for S% is determined
from (6.4) and (6.7), respectively, using the fact that {V,} = {U,X,,} has homoskedastic
AR(1) and MA(1) correlation structures with AR(1) parameter p2 and MA(1) parameter
11;2 in these models. In the AR(1)-HET1 and AR(1)-HET2 models, {Utx2t} does not
have an AR(1) correlation structure. Its correlation structure is parametric, but compli-
cated. The AR(1)-HOMO model is used to approximate the correlation structure in these
models, Thus, the same values of af2) are used in the formula for Sff in the hetero-
skedastic AR(1) models as in the homoskedastic AR(1) model.

Table 3 shows that in general the S,’I'i bandwidth values work very well. This is
true in both the homoskedastic and heteroskedastic cases. The S,f values work better
with positive serial dependence than with negative serial dependence. They work better
with smaller values of p and ¢ than with very large values. No clear improvement or
deterioration of the MSE ratios occurs as T increases from 64 to 128 to 256.

The analogue of Table 3 that uses true confidence levels rather than MSEs as the
performance criteria exhibits patterns similar to those of Table 3, and hence, is not
reported here. The main differences are that the relatively poor performance in Table 3 for
negative p and 9 values and for the MA(1)-HOMO model does not occur. In addition,
the relatively poor performance in Table 3 when p=.9 or 95 and T =64 or 128 is
accentuated. For other parameter values and sample sizes, the QS—based Cls constructed
using S} are close to being as good as those constructed using the "best" fixed Sy value
(i.e,, the Sq value that minimizes the difference between the true and the nominal
confidence levels).

In conclusion, in terms of both MSE and true confidence levels, the asymptotic
formula for S,’f works surprisingly well in selecting the bandwidth parameter for the QS

estimator (in the models considered here). For the other kernels, the results are similar.
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Table 4 assesses the performance of the automatic bandwidth procedure ST of
{(6.1). In all scenarios, the approximating parametric models used by the automatic band-
width procedure are univariate AR(1) models.

The results of Table 4 are similar to those of Table 3 but in general the QS estimat-
or does worse using QT than using SX, as one would expect. The difference in many
cases is not large and in some cases QT outperforms S,’]": . In particular, in each of the
three AR(1) models, when p= .9 or .95 and T = 64, 128, or 256, ST does better than
Si, . The reason is that Si. exceeds the finite sample optimal ST value in these scenar-
ios and the downward bias of the AR(1} parameter estimators causes §T to be less than
S,‘f and closer to the finite sample optimal value on average. With the exception of these
cases, the use of éT rather than S:‘li generally incurs a peralty of a 0~10% increase in
MSE.

The analogue of Table 4 that uses true confidence levels rather than MSEs as the
performance criterion puts the automatic bandwidth parameter éT in an even better light
than does Table 4. In virtually every case, the use of ST incurs only a small reduction in
the true confidence level from the true level obtained using the best fixed St value. (The
latter confidence level, in turn, is always less than or equal to the nominal level.) For
example, in most scenarios, the reduction in the confidence level for the nominal 95% Cls is
in the range of 0 to 1%.

In conclusion, the automatic bandwidth procedure ST performs quite well in terms
of MSE and true confidence levels in comparison with the optimal finite sample bandwidth
(in the models considered).

Tables 5-7 aim to show how well kernel HAC estimators perform in COMparison
with other types of variance estimators, viz., INID, IID, and PARA. The kernel estimator
used for all three tables is the QS estimator with the automatic bandwidth parameter ST

discussed above. The results for other kernels and other bandwidth choices (such as S,i,

and the finite sample optimal ST value) can be deduced reasonably well from the
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comparative results given above.

Table 5 presents detailed results for the AR(1)}~HOMO model with sample size
T = 128 . Table 6 presents analogous, but less detailed, results for a subset of parameter
values in the AR(1)-HET1, AR(1)-HET2, and MA(1)-HOMO models with T = 128.
Table 7 presents a selected set of results for all four models with T = 256 .

The first feature of note in Tables 5—T7 is that the QS estimator basically dominates
INID, and PARA basically dominates IID, over all model scenarios. When p or ¥ equals
zero, INID and IID are at most slightly better than QS and PARA, respectively. When p
or ¥ is non—zero, QS and PARA usually are distinctly superior to INID and IID, respec-
tively. Thus, when no autocorrelation is present, one pays a small price for using a HAC
estimator with an automatic bandwidth parameter rather than a heteroskedasticity consis-
tent estimator of the Eicker—White form. On the other hand, when autocorrelation is
present, one stands to gain significantly from the use of a HAC estimator rather than an
Eicker—White type estimator.

The next feature of note in Tables 5—7 is the very poor performance of all of the
estimators in the AR(1) models when p = .9 or .85 . This is expected for INID and IID,
but it also is true for 'QS and PARA. For the QS estimator, this poor performance is not
due to poor choices of ST or to the choice of kernel—the results are improved little or
none if éT is replaced by the finite sample optimal ST value or if the QS kernel is
replaced by any of the other four kernels.

A comparison of the QS and PARA estimators for sample size T = 128 (Tables 5
and 6) shows that PARA is better than QS in the AR(1)-HOMO and MA(1)-HOMO
models in terms of MSE and true confidence levels. The differences in MSE are quite large
for p < .7; the differences in true confidence levels are much smaller. In the AR(1)-HET!
model, the reverse is true. The QS estimator is much better than PARA in terms of both
MSE and true confidence levels over the entire range of p values. In the AR(1)-HET2
model, neither QS nor PARA is dominant. PARA enjoys an edge in MSE, but QS is
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better in terms of true confidence levels.

In sum, for T =128, PARA is the best all-round estimator if one ignores the
AR(1)-HET1 model. Even PARA performs very poorly in each of the AR(1) models, how-
ever, when p= .9 or .95 . If one includes the AR(1)-HET1 model, then the QS estimator
is the best all—round estimator, since PARA does very poorly in this model. Nevertheless,
the QS estimator pays a significant price for attaining its versatility, as the comparison
with PARA in the AR{1)~HOMO model atiests.

Next we discuss the changes that occur in the results when the sample size is
increased from 128 to 256 (see Table 7). For the INID and IID estimators, there is not
much change. When p=0 or ¢ =0 there are improvements in their MSEs and some
improvements in their true confidence levels. But, when p >0 or % > 0, there is not
much improvement in either. In consequence, the dominance of QS over INID and PARA
over IID is enhanced when the sample size is increased.

For the QS and PARA estimators, the increase in sample size from 128 to 256
causes a substantial improvement in their MSEs and true confidence levels in the AR(1)-
BOMO model, especially for large values of p. The gap between the true confidence levels
of the QS and PARA estimators is narrowed. In the AR(1)-HET1 and AR(1)-HET2
models the QS estimator exhibits similar improvements when the sample size is increased.
The PARA estimator, however, shows no improvement in the AR(1)-HET1 model and
only small improvements in the AR(1)-HET2 model. In consequence, the dominance of
QS over PARA in the AR(1)-HET1 model is accentuated when T = 256 , and the lack of
dominance of either QS or PARA in the AR(1)-HET2 model when T = 128 is replaced
by dominance of QS when T =256 . In the MA(1)-HOMO model, QS and PARA both
improve in MSE with the sample size increase; QS also improves in true confidence levels,
but PARA does not.

In sum, the increase in sample size from 128 to 256 improves the overall perform-

ance of the QS estimator absolutely and relatively to the PARA, INID, and IID estimators.
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As when T =128, QS has the best overall performance of the four estimators when
T = 256 if one includes the AR(1)-HET1 model. PARA is the best estimator overall if
this model is excluded. In the latter case, the preference for PARA over QS in terms of

true confidence levels is much less when T = 256 than when T = 128 .

9. CONCLUSION

The results of this paper are summarized as follows:

(i) The paper establishes the consistency of kernel HAC estimators under condi-
tions that are more general in most respects than other results in the literature. In
particular, they are more general with respect to the class of kernels considered and the
allowable rate of increase of the bandwidth parameters. In addition, the paper establishes
rate of convergence and asymptotic truncated MSE results for kernel HAC estimators.

(ii) The paper compares different kernel HAC estimators in the literature via
asymptotic and simulation methods. The paper establishes an asymptotically optimal
kernel, viz., the QS kernel, from the class of kernels that generate psd estimates. The
latter includes the Bartlett and Parzen kernels. The Moante Carlo results substantiate the
optimality of the QS kernel within this class in terms of both MSE and true confidence
level performance. The Monte Carlo results indicate, however, that the difierences
between the kernels are not large. They indicate that the Bartlett kernel, used by Newey
and West (1987), is somewhat inferior to the other kernels considered.

(iii) The paper determines suitable fixed and automatic bandwidth parameters for
use with HAC estimators. The latter are based on the plug—in method. They are found to
perform surprisingly well in most cases in the simulations.

(iv) The paper compares the performance of kernel HAC estimators to that of other
types of covariance matrix estimators via Monte Carlo simulation. The other estimators

considered are the Eicker—White heteroskedasticity consistent estimator, the standard LS
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covariance matrix estimator (IID), and a parametric estimator (PARA) that assumes that
the errors are homoskedastic and AR{1). The QS HAC estimator more or less dominates
the Eicker—White estimator and is the most versatile estimator of those considered. But,
it pays a significant price for its versatility, as is illustrated by its performance relative to
that of PARA in those scenarios for which PARA is designed.

All of the estimators considered perform very poorly in an absolute sense when the
amount of autocorrelation is large. For the HAC estimators, this is found to be true even if

the finite sample optimal bandwidth parameters are used.



APPENDIX

PROOF OF LEMMA 1: First, consider the case where {V,} is fourth order stationary.
For notational simplicity, suppose p = 1. Using a standard a—mixing inequality (see Hall
and Hyde (1980, Cor. A.2, p. 278)), we obtain the first condition of Assumption A:
(A1) ._uzg EV,V, ¢ 3 8(EV2Y) i oY < o
J=—w J=-w
To establish the cumulant condition of Assumption A, it suffices to show that

13} 1]

A2 H=3% I I |EVVV V -EVVV V
(A.2) J—lmlnll j'm'n (J_]mnl<‘lj
© —1
and the analogous result with ¥ replaced by % . The latter follows by a similar
n=1 D=—m

argument to that used to prove (A.2). Hence, we only prove (A.2) here.
There are 3! orderings of (j,m,n) . Hence,

o m  ® - .
H¢3l T IS IEVOV.VmVnuEV V.
J=1m=]n=m .

m ~

@ m
=6 % I I |EVV.V, ~EV V.V, V.
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+6 X [IEV (V_}+m J+m+n) - EV VEVJ+mVJ+m+n|

0<j,n¢m

+ [EVQV(, )+ EV VEV. V. |]

_]+m J+m+n 0")  j+m j+m+n

+6 I [[E(VVV W, + |E(V,V

| + V., V. |].
0<j, m<n 0] j+m’ " }Hm+n 0" j j+m’ " j+m+n

The last inequality uses the fact that {V,} and {Vt} have the same autocovariances.

Using the mixing inequality referred to above, we get
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0 Vj’ Vj+m, Vj+m+n) , which equal the covariances of (VO, Vj, Vj+m’

and by bounding the latter covariances using the mixing inequality, we get

in terms of the covariances of

A%

(v j+m+n) ’

|E\70\7j\7 Vj+m+n| < C[aT(j)aT(n)+aT(j+m)aT(m+n)+aT(j+m+n)aT(m)] ,
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for some C < o, where 7= (1-1)/v.

Next, we have

(A.6) s o)V E 5 d a0 § e <o,
0<m,n<j j=0 m=0 n=0 j=0

Equations (A.3)—(A.6) combine to yield (A.2).
It is straightforward to adjust the above proof for the case where {Vt} is not

fourth order stationary. For example, in (A.2), E]VOVijVn - EVOVijan is replac-
ed by sup EIViVi, iVirmVisn = BViViyViemVignl -0

PROOF OF PROPOSITION 1: For the scalar V, case, part (a) is given by Thm. 5A of
Parzen (1957). For the vector case, Thm. 9 of Hannan (1970, p. 280) gives the asymptotic
covariance between any two elements of jT . The commutation—tensor product formula
of part (a) is obtained by observing that the asymptotic covariances between [jT]ij and
[jT]mn for i,j,m,n<p are of the same form as the covariances between Xin and
XpXp: where X =(X,, ..., Xp) ~ N(0,Z) (eg., see Muirhead (1982, p. 20)). By
Magnus and Neudecker (1979, Thm. 4.3(iv)), Var{vec XX‘) = Var(X e X)
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For the scalar V, case, part (b) of the Theorem is given by Thm. 5B of Parzen
(1957). For the vector case, it is given by Thm. 10 of Hannan (1970, p. 283). (Note that
the proofs of Hannan’s Thms. 9 and 10 go through even if k(-) is not continuous every-
where, as he assumes, but only at zero and all but a finite number of points.)

In part (c), T/Sp = S&3/(s337H/T) = S29/(7+ o(1)) . Thus,

1im MSE(T/S, Jp, W)

T-ow
(A'T) . 2q - r e . T -
= é:xur: St (EJp ~Jp) W(EJp - JT)/('y + o(1)) + '}‘:I:Jl SEU W Var(vec Jp) .

Part {c) now follows from parts (2) and (b). O
The following two simple lemmas are used in the proof of Theorem 1:
LEMMA Al If {{T} is a bounded sequence of rv's such that {p 2,0, then E{p- 0.

PROOF OF LEMMA Al: Convergence in probability to zero implies weak convergence 1o

zero. For bounded rv's, the latter implies convergence of expectations to zero by the defini-

tion of weak convergence. 0

LEMMA A2 Let {XT} be a sequence of non—negative rv's for which sup EX,}:-HS <wm

T>1
for some 6> 0. Then, lim lim(E min{Xy, h} — EXp)=0.

h=a T-am

PROOF OF LEMMA A2: The following establishes the Lemma

0¢lim lim E(Xp —min{Xy, h}) < lim lim EXp1{Xy > h)
h-o Too h-o T=ew
1/(146)
(A.8) ¢ lim 1im(EX1T9) P(Xyp > by é/(1+9)
h-o T-w
1/(1+6)
< (sup EX,}'HS) lim 1im(EXT/h)5/(1+6) =0.0D

T>1 h-o T-wm
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PROOF OF THEOREM 1: By definition of X; and Assumption A, k=0 and |£0)]
<o . Hence, under the assumptions of Theorem 1(a), Proposition 1(a) and (b) (with
g=0 in the latter) gives jT_‘IT = op(l). Similarly, under the assumptions of
Theorem 1(b), Proposition 1{c) yields yT/S(Jp—Jp)= Op(l). Thus, Theorem 1(a)
and (b) holds if the second result stated in each of these parts holds. The latter hold if and
only if they hold with Jp, —J replaced by b'Jb—bJb for arbitrary beRP. In
consequence, we suppose jT and jT are scalars without loss of generality. In addition,
We Suppose jT is defined without any degrees of freedom adjustment since this simplifies
the expressions without affecting the results.

We now show that (‘/T/ST)(jT - jT) = Op(l) provided Sq - and Assumption
B holds. This yields the second result of Theorem 1(a). Let Jp(f) denote the
"estimator" calculated using k(-), Sy, and {V.(6)}. A mean value expansion of
Jo(8) (=Jg) about 6, vields

£0p~37) = g gl (W - )

(A.9) 1 T-1 _ 8 = X
=57 Byt (J/ST)WP(J)i T )

for some @ on the line segment joining # and 80 . In addition, we have

8 _ T VOV, (B +V, (D) v(g)]“
??Iflm’r(” 0=7 §‘>’1”T |J|+1[ X A IO AR
(A.10) 1 VA o
52[’1121533 vio)] [Ttﬁl tup VoF] " =0,

where the second equality follows using Assumption B(ii) and (iii) by applying Markov’s

inequality to each of the terms in parentheses. This result, Assumption B(i), and the fact

T-1 @
that g= 3 |k(i/Sy)| _.J |k(x)|dx < o imply that the right-hand side of (A.9) is
T j=-T+1 -

Op( 1) and the proof of Theorem 1(a) is complete.
Next we show that /T ZST(jT - jT) = op(l) under the assumptions of Theorem



1(b). A two—term Taylor expansion gives

TS0 p) = [553 0817 (%%)%Jf(k%){%ﬁﬂmxm;

(A.11)

ﬂ( b‘%)

= Ly p/T(8-6,) + E\/r (8-83) ' Lop/T(8-6,) ,

where L (€ RP) and Lot (€ RP*P) are defined implicitly and @ lies on the line seg-
ment joining # and 6, - Manipulations similar to those of (A.10) and Assumptions B(ii),
B(iii), and C(ii) yield

L ql/2 T=1 , T
Iopl < [rsg] X, IkGSpIT_ 1’31+105"WV (OV,_; (8
(A.12) [ST 2y
- ™ [S; jz_%ﬂlk(J/St)l}Op(l) = o(1)

(using Markov’s inequality to show that the sample averages that arise are Op(l) ).

To obtain Lip= op(l) , we use Assumption C(i) and apply Proposition 1(a) and
(b) to jT with the latter constructed using [V{, B%Vt - Ea%vt] " rather than Just
V.. The first row and column of offi—diagonal elements of this J; matrix (written as

t
column vectors) are

5 k(3/S ) s Vt[gﬁvt—l'l -—A] and
j=—T+1 t=j| !
(A.13) T—1 T
L k(/Sp)h S [V—A]V .
j=—T41 T 542100 Pl

where A= EB'EVt . By Proposition 1(a) and (b), these vectors are Op(l) . Lyp is equal
to the sum of the two expressions in (A.13) times 1/yS plus DpA, where
T disph 3 )57
(A.14) Do = T k{j/S X V.+ V.. :
TZ T VT e b T

In consequence, L;q = op(l) if Dp = op(l) . We have
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2L T3] T'z_1|(/s k(j/Sm) |2 5 gmvm
J
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(A.15) 5
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Since L;q and Lo are op(l) , 80 is the right—hand side of (A.11) and the proof of

ST
s

Theorem 1(b) is complete.

To establish the first equality of Theorem 1{c), we apply Lemma A1l with

tr = mn{g—lvec(jT ~Jg) Wop vee(Tp — I, h}
T

(A.16) (T N N
—mm{-SE]vec(JT —J3p)' W vee(Jp — Ig)], h} :
Since \/'IZST(jT - jT) = op(l) and JI]ST(jT —Jp) = Op(l) by Theorem' 1(b),
¢ P20, Also, |{T| <h. Hence, E&T - 0. Since this holds for all h, the first equal-
ity of Theorem 1(c) holds.

The second equality of Theorem 1(c) is obtained by showing that

(A.17) }11 i:il r_lr iT[MSEh(T/sT, Jp» Wip) = MSE, (T/S.p, I, W)} =0 and
(A.18) lim 1im MSEy(T/Sp, Jp, W) = lim MSE(T/S.p, Jp, W) .
h-o T-o T-o

Under Assumption D(ii), (A.17) holds by applying Lemma Al. Equation (A.18) holds by
applylng Lemma A2 with Xq= |(T/ST)vec(JT —Jp)W vec(J —JT)| We get

supEX < o, as required by Lemma A2, if E(/T/S[Jn—17J = 0O(1) Va,b<p,
T>1 T ( T[ T T]ab) (1) P

where [-]., denotes the (a,b) element of the matrix - . This fourth moment equals
Ky + 4”T3'{T1 + 3&%2 +6KT2P&%1 + ”‘%‘1 , Wwhere K denotes the j—th cumulant of
JT73¥[3T ~Jglyy, (eg., see Stuart and Ord (1987, p. 86)). Under Assumption D(i), Krs
and Ky 8re o(1) by the proof of Theorem 7.7.1 of Brillinger (1981, pp. 262, 441—444).
(Note that Brillinger’s Assumptions 2.6.2(1) and 7.7.1, which are assumed in his Theorem

7.7.1 but are not assumed here, are used in his proof only for the results concerning first
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and second order cumulants, and hence, are not needed here.) Also, K71 and Ko equal
the mean and variance of /T ZST[jT ~Jplyy, » and hence, are O(1) by Proposition 1(c).

In consequence, sup EX% < o and the second equality of Theorem 1(c) holds.
T>1

The third equality of Theorem 1(c) holds by Proposition 1(c). O
PROOF OF THEOREM 2: We apply Theorem 1(c) with the kernel k(-), the bandwidth
sequence {8} and q=2. Since S%k/T - v/(f 1{2(x)dx)5 and
T/Sp = (1//k*(x)dx)T/Sq, , Theorem 1(c) gives

}11 im r} im MSE, (T/Sr, Jp(Sy)s Wp)
=+ (p - m
(A.19)

= 472 [kg(!kg(x)dx)4(vec f(z))’W vec f(z)/'y + tr W(I + Kpp)f e f]
provided k2 <mw. Since jkés(x)dx-—- 1, this yields the equality in the result of
Theorem 2. If k2 = o, then the left—hand side of (A.19) equals infinity since the bias
term is unbounded. This can be proved along the lines of Andrews (1988, Lemma 2).
Let K(-) and KQS(-) denote the spectral window generators of k{-) and

kQS(-) respectively (as defined at the end of Section 2). By standard calculations, we

have k, =Jm AZK(N)dA, k(0) =r K())d\, and r

- —m —0

2 [ 2
k“(x)dx = | K“(A)dA. Thus,
—®

(A.20) ky(/x%(x)ax)? 2 kg forall () €Ky

if and only if KQS(-) minimizes

(A.21) Jm A2K(2)dr Um K?(,\)d,\]2

subject 1o (a) r K(\)dA=1, (b) K(A)20 YAcR, and (c) K(A)=K(-A) VA€R,

—©

5 2,2 .
where KQS(A) = B?(l —Afc®) for |X]| <c¢ and KQS(A) = 0 otherwise for ¢ = 67/5 .
The minimization problem (A.21) is the same as that which arises in a result of
Priestley (1981, p. 570) who considers a maximum (over different frequencies) relative

MSE criterion. Using a calculus of variations argument, Priestley shows that KQS(-)
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solves (A.21). Hence, (A.20) holds and combined with {A.19) this establishes the inequal-
ity in the result of the theorem. If k{x) ¢ kQS(x) with positive Lebesgue measure, then

(A.20) holds with a strict inequality and so does the result of the Theorem. o

PROOF OF COROLLARY 1: By Theorem 1(c) and the fact that T2%/(2a+1)

1/(2q+1)

= (s29+Ym) /s = (/3 4 oa))1/S, we get

o 2q/(2a+1) ;3
lim 1im MSE (T A/(2a+1) 5 (5.), W)
~m 1o

(A.22)

= A1/(20+1)4,2 [ki(vec £0)' W vec {9/ + 1(x)dx tr WI+K e f} .
It is straightforward to show that the last line above is uniquely minimized over 7€ (0,x)
by = qua(q)/fkg(x)dx (provided 0 < o(q) < w and W is psd) and that a sequence
{Sq} satisfies S%QH/T ~9* ifand only if Sy =53 + o(TI/(2q+1)) . O
PROOF OF THEOREM 3: First we establish Theorem 3(b). By Theorem 1(b),
‘/”SET(JT(S{I‘)"JT) = Op(l). Hence, it suffices to establish the second result of
Theorem 3(b). Without loss of generality, assume V, is a scalar rv and no degrees of
freedom correction is made to jT . Let v be a constant in the interval
(max{l + 1/(2b-2), q/(m~1)}, 1 + q/2) and let 1{T)= [(S§T)v] , where [-] denotes

the integer part of - . We have

Tq/(2q+1)(jT(éT) _ jT(S{T)) - 2TQ/(2Q+1) I)ET)(k(J/ST) _ k(}/S'ET))f‘(J)

=1
A.23 p1a/(a+1) TP s vne oraf(2at)  Tgh L s
(A2) 4+ r By KUSDIG) 2T o By M50
= Myp + 2Mgp — 2Mgp -

We show M, ~2.40 as follows: Using the Lipschitz condition on k( Y,



(T . )
M, | ¢ T9/(at) rjziczn/sT —1/Sp il G)]

¢ cyTja()/arh) _ o} (Gatl)| g(q)a 71/ (Ratt)p—8/(4a+2) Egn F(j)|

(A.24)

for some constant C < o. By Assumption F and the delta method, it suffices to show

that G1T+ G2T+G —P,0, where
r(T) . i(T)
G, = T8/(4a+2) 7 ITG-TG)  Gyp = T-3/(4a+2) JITQ-T ()], and
j=1 =1
(A.25) (1)
—3/(4q+2
G3TET [(4a+2) E JlFT(J)[
=1
By a mean value expansion, we have
_3/(4q+2)-1/2., L) [ g
G, ¢ T3/(4a+2) /()JEHBT a]ﬂe 91

(A.26)
¢ or(=3H2a+1)+4v)/(4a+2)g
j)l

a0, |vrie- ol 20,

since v<1+g/2, JT|0—6,)=0_(1) by Assumption B(i), and sup”a l:‘(j)’ _H
0 P P10 g

= Op(l) by (A.10) and Assumption B(ii) and (iii), where £ is on the line segment joining
f and 6‘0.
We have
(A.27) EGgT < 7-3/(2a+1)-1 r4(T)sup T Var(T'(j)) < cr—3/(2a+1)-1+4v/(2q+1) | 0
21

for some C < w, since sup T Var(['(j)) = O(1) by Hannan (1970, eqn. (3.3), p. 209) and
1

v <14 q/2. Also, using Assumption G,

o

¢18/tavd)e, § fmm g
J_

(A.28) Gy

el

since m > 2 implies that X jl'—m < o . Equations (A.24)—(A.28) imply M1T P,
=1

We show M, B0 as follows: M2T = AlT + A2T + AST , where
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_paf2atl)  TFh peoe (R fo
Ajp=T (D) KOG,

L= 1) TS 48 TG - Ty, and

A. A
(4.29) =r(T)+1

2
T-—1 .
Agp = TQI(2q+l)j=r(,§)+1k(j/ST)FT(j) _

By a mean value expansion and the definition of K3 ,

Ayl ¢ TV (2351172 5y CLUA™| [3 )] 9._.7;]‘”(@_ )|

j=1(T)
(A.30) _ 74/(29+1)~1/2+b/(2q+1) g j—b 0. (1)
j=x(T) | P

T(2q—2q—1~+—2b—2v(b—1))/(4q+2)0p(1) P9,

where the first equality uses (A.10) and Assumption B, and the convergence to zero uses

v > (2b-1)/(2b—2) . Again by the definition of ks,

T-1 , )
Ayl ¢ TV 78" ¢ (578070 1F() - I p(i))
(A.31) =T .
= Cyfakgaa) /IS 5 TETIG) - Pr(] and

T o) -]
j=r(T)J VTIT() — Tp(d)|

£ | p(26-1)/(40+2)

F o 2
"5 T vt 2(1"’(3'))]

(A.32) ¢ 7(2b-1)/(2a+1)
J=1(T)

. 2
¢ T(gb_l)/(2q+1) E ~b o(1) = T(2b—1—2v(b—1))/(2q+1)0(1) -0,

= (1)

since v> 1+ 1/(2b-2) and sup T Var(I'(j)) = O(1) as above. Equations (A.31) and
21
(A.32) combine to yield Ay 40, since a(q) = 0, (1) -
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Using Assumption G and |k(-}| <1, we obtain
T-1
(A.33) [Aqm| < 79/(20+1) 57 @ g opla—v(m—1))/(2q+1) ~v(m—1)/(2q+1) _ 4
3T - 3 §
j=1(T)
for some constant C < », since v > gf(m~1) and ag > 0.

Equations (A.20)—(A.33) combine to give My, 2. 0. An analogous argument
yields Mg P, 0. Combined with M;T P, 0 and (A.23), these results complete the
proof of Theorem 3(b).

Next we prove Theorem 3(a). For arbitrary a € (0,0), jT(SfT) —Jp = op(l)
by Theorem 1(a) (since q > 1/2 implies S%/T—'O). Hence, it suffices to show
jT(ST) _jT(SET) = op(l). This result differs from the result of Theorem 3(b) only
because the scale factor qu (2q+1) does not appear, Assumption ¥ is replaced by
Assumption E, Assumption G is not imposed, and g > 1/2. The proof of Theorem 3(b)
goes through with the following changes: v € (1 —(2q-1)/(2b~2), 1} ; TQ/(QQ'H) is
deleted in (A.23) and (A.24); |@&(q)/(2a+D) _ ai./ (2a+1))(3(q)a,)/(20t1) - 0,(1) in
(A.24) by Assumption E; T—3/(49%2) i replaced by T~/ (24+1) i5 (4.25), (A.26), and
(a.28), T3/(20+D) g replaced by T72/(29t1) in (A.28); (A.26) and (A.27) hold
provided v < 3/4 + gf2; (A.28) is replaced by

1(T) u: _
(aat) T HED g e ) 1ty 3 jr(g)) = er(D/aHD L

j=1 j=1
since v<1; Tq/(2q+1) is deleted in (A.29)—A.31) and (A.33); (A.30) holds since
v> 1—(20-1)/(2b-2) ; TED/(4042) 5 reniaced by T(20-20-1)/(4a+2) iy (4 39),
(A.32) holds since v >1-(2g-1)/(2b-2); (A.31), (A.32), and the assumption
a(q) = Op(l) yield Ay L2, 0; (A.33)is replaced by
(4.35) T wisprg0) < 5ol
A.35 T k(] I'mti)] € ¢y -0,

(T4 (T

which concludes the proof of Theorem 1(a).

The first equality of Theorem 3(c) holds by applying Lemma Al in the same way as
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in the proof of the first equality of Theorem 1(c) (with the reference to Theorem 1(b)

changed to Theorem 3(b)). The second equality of Theorem 3{c} holds by Thecrem 1(c). O

PROOF OF COROLLARY 2: By (7.3) and Theorem 3(c), the left—hand side of the result
of the Corollary equals

(A36) Lim Lim MSE, (T°/(20+1) 5, (5,),w.p) - MSE, (T%Y/ (2q+1),3T(SET),WT)] .

Since, ap = a(q) implies S{T = §% , Corollary 1 implies that the expression in (A.36) is
> 0 with the inequality being strict unless Sq =S + o(T1/(2Q+1)) . D
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2Cousistency proofs require that the lag truncation parameters diverge to infinity at
a bounded rate as the sample size T goes to infinity. This bounded rate typically is an
artifact of the method of proof, however, and is not necessarily optimal in any respect.
Furthermore, it is not sufficient to determine an optimal rate of divergence; one needs a
particular sequence of lag truncation or bandwidth values.

N
SIn particular, the estimand Jo is given by Var [Vé' > Wn] in Hansen (1982), by
n=1
0

Tn()\g) and Sn()\g) in Gallant (1987, pp. 549 and 570), by B_ in Gallant and White

(1988, p. 100), and by Var(T mr(f;, 7)) in Andrews and Fair (1988).

4The lag truncation parameters of White (1984, p. 152), White and Domowitz
1984), Newey and West (1987), Gallant (1987, pp. 533, 551, 573), and Gallant and White
1988, p. 97), viz., £, {, m, #n), and m respectively, are equal to S —1 in our

notation when ST is an integer. The aforementioned authors consider only integer valued

lag truncation parameters, but there is no reason to restrict the estimators in this way and
our formulae below for optimal ST values yield real valued parameters.

For example, Newey and West (1987) define their weights as 1 —j/(m+1) for
j<m and 0 otherwise, where m is an integer. In our notation, their weights are
1 —j/ST for j<Sq and 0 otherwise, where Sp is real—valued. If S is an integer,

then these weights are equivalent when S = m+1.
5By construction, a renormalized kernel k(-) satisfies jfmfc2(x)dx =1. The
renormalized kernels of (2.7) are given by f(a(x) =k a((:ax) for a = TR, BT, PR, and TH,
2
where ¢, = ]ka(x)dx , SR =2 ST = 2/3, cpp = 539285, and cpp = 3/4. The
QS kernel satisfies | k2(x)dx =1, and hence, does not need to be renormalized.

SKernels in Ko generate psd estimates because estimators of the form (2.5) are

weighted averages of the periodogram matrix at different frequencies A with weights given
by K(A) (e.g., see Priestley (1981, pp. 580-581)). Since the periodogram is psd, so is an

estimator jT provided K(A)>0 VA€R.
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7

That is, STy is such that 111 :1;1 %1 121 MSE, (T/Sn, jQST(sT)
- Bl ogr(Sp) + I W) = lim 1im MSE(T/S, Jp(Spy) - Edq(Sqy) + Ip, W),

-0 T-o
where the subscript QS denotes the estimator is based on the QS kernel.

870 see this, note that k2 = jfm)\2K(A)dA/2 . Since kq <o for q> 2 implies
ky =0, this implies that K()) must be negative for some X € R. The discussiorn follow-
ing (2.9) now establishes the assertion.

9§T is not given in (6.2) for the truncated kernel, because the formula (5.2) for S;
does not apply with this kernel. Monte Carlo results, however, show that the formula
§7 = .6611(&(2)T)/® works quite well for the truncated kernel. This formula is obtained
by treating the truncated kernel as though its value of ko is finite and equal to the corres-

ponding value for the QS kernel (i.e., k, = 1:2(‘-’28/(.[1c2(x)dx)2 = .3553 ).

10See footnote 4 for the relation between the bandwidth parameters ST and ST
used here and the lag truncation parameters as defined by White (1984), Newey and West
(1987), Gallant (1987), and Gallant and White (1988).

10 linear regression models, the latter choice of weights has the advantage that it
yields a scale invariant HAC estimator of the covariance matrix of the LS estimator, pro-
vided the estimator a{q) (defined below) is scale invariant.

127he expressions given here and below for &{q) are obtained by straightforward,
but somewhat tedious, algebraic calculations.

"3The ARMA(1,1) model is parameterized as V,, = p,V,, 1+ €y + %6,
with Va:(eat) = ai . The MA(m) mode! considered below is parameterized as
Vo = uzoqbaueat_u with ¢, =1 and Var(eat) =0, .

14 Kpp is the p2 x p2 commutation matrix, see Magnus and Neudecker (1979).

15 he programming for the Monte Carlo results was done by Chris Monahan. The
computations were carried out on the twenty—plus IBM—AT PC’s at the Yale University
Statistics Laboratory using the GAUSS normal random number generator.

16T]{le truncated estimator p, rather than ;‘JLS, is used to construct PARA
because we do not want the performance of PARA to be dominated by a few observations
for which bLS is near or greater than one. Since bLS has a large downward bias when p
is large (say .9 or .95), the truncation at .97 occurs seldomly even when p is large.
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17 The nominal 100(1—a)% Cls are based on an asymptotic normal approximation.
For the INID, IID, and PARA ‘estimators, this normal approximation is not valid asymp-
totically in some of the scenarios under consideration.

18The transformation used is described as follows. Let X denote the T = 4 matrix
of pre-transformed, randomly generated, AR(1) regressor variables. Let X denote X

with its column means subtracted off. Let x = i[%i’i] . Define the T x5 matrix
of transformed regressors to be X = [1T - x] . By construction, XX = TI, .

Since Ex =0 and EX'%=1,, this transformation should be close to the identity

map. With this transformation, the estimand and the estimators simplify and the compu-
sational burden is reduced considerably. The estimand becomes just the product of the
second diagonal elements of the three 5 x 5 matrices multiplied together in (2.1). Two of
these diagonal elements are known—only one has to be estimated, viz., the second diagon-
al element of the J T matrix. Without the transformation, one has to compute all twenty-

five elements of the estimated Jp, matrix, rather than a single element, in order to
compute the performance criteria described above.

19When the regressor transformation map is the identity map, the errors in the
AR(1)-HET1 and AR{1)-HET2 models are mean zero, variance one, AR(1) sequences

with AR parameter p“ and innovations that are uncorrelated (unconditionally and condi-
tionally on {X,}) but not independent. Hence, the errors have an AR(1) correlation

structure even after the introduction of heteroskedasticity.
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Asymptotically Optimal Lag Truncation/Bandwidth Values S% for the

TABLE 1

Bartlett, Parzen, Tukey—Hanning, and QS Estimators for

4The given values of St

AR(1) {V,} Processes with Parameter na,b
S,} for S,’f for
Bartlett Estimator Parzen Estimator
T P ) 3.5 T 0T 95 .2 .3 5 T 971 .65
7 .04 .09| .25} .49 .81 .90/ .04, .09} .25] .49} .81 .90
32 71 1.2] 2.4 4.3110.2116.61 2.00 2.9] 5.1 9.0124.443.4
64 9t 1.51 3.0] 5.4112.9(20.9f 2.3] 3.3 5.8110.4128.0(49.9
128 1.1] 1.8] 3.8] 6.8(16.2|26.3|f 2.6] 3.8 6.7(11.9{32.2|57.3
256 1.4 2.3 4.8| 8.6/20.4[33.1)| 3.0| 4.4| 7.7|13.7136.9(65.8
512 1.7f 2.9 6.0110.9125.7[41.7|| 3.5 5.0 8.8|15.8(42.4(75.6
1,024 2.1 3.7 7.6113.7132.4152.6{| 4.0 5.8[{10.2|18.1[48B.7|R6.8
S,’f for S,i\ for
Tukey-Hanning Estimator Quadratic Spectral Estimator
TP ) 3 . i .91 88 .27 .3 .5 1 .7 .9 .95
i .04| .08 .25| .49 .81( .90) .04| .09| .25] .49 .81 .80
32 1.3| 1.9} 3.3| 5.9({16.0{28.5|| 1.0| 1.4 2.5| 4.5|12.1|21.6
64 1.5 2.2} 3.8 6.8{18 .4{32.7|l 1.1 1.6 2.9| 5.2|13.9|24.8
128 1.7 2.5 4.4 7.8(21.1{37.6/{f 1.3/ 1.9 3.3| 5.9|16.0|28.5
256 | 2.0| 2.1 5.0| 9.0(24.2|43.2{| 1.5{ 2.2| 3.8| 6.8{18.4{32.7
512 2.31 3.3] 5.8/10.3|27 .8149.6) 1.7| 2.5 4.4| 7.8121.1|37.5
1,024 2.6 3.8! 6.7/11.9(32.0157.00 2.0| 2.9] 5.0 9.0124.2|43.1

are optimal for an iid linear regression model with AR(1)
regressors and errors each with AR parameter p. This corresponds to {V,} (= {UtX )

being AR(1) with parameter 7 = p2 .

b

The truncation parameters m and

{n) of Newey and West (1987) (Bartlett estimator)

and Gallant (1987, pp. 533, 551, 573) (Parzen estimator), respectively, correspond to
ST-—l see footnote 5.



Ratio of MSE of Truncated, Bartlett, Parzen,
and Tukey—Hanning Estimators to MSE of QS Estimator

TABLE 2

Using Finite Sample Optimal ST Values — T = 128

P
Model Estimator
0 3 5 7 9 95 -3 —5
‘TRUNC 100 109 .93 .93 .95 .97 109 .94
BART 100 100 105 1.09 106 104 1.01 1.0
AR(1)-HOMO{paR7 100 101 10l 1.02 101 101 1.01 1.01
TUK 100 100 1.00 101 100 1.0 101 1.0
"TRUNC 1.00 1.03 .98 97 .87 .98 1.02 113
BART 100 100 102 104 103 102 1.02 113
AR(1)-HET1 {paR7 100 100 101 1.01 101 1.01 1.02 113
TUK 100 100 100 100 100 100 1.02 113
'TRUNC 1.00 1.00 1.07 .98 .96 .98 100 1.09
BART 100 100 100 103 104 1.03 1.00 1.00
AR(1)-HET2 {paARz 100 100 1.00 100 1.01 1.01 1.00 1.00
TUK 100 100 1.00 100 100 1.00 100 1.00
("
3 5 7 9 -3 -7
TRUNC 104 102 99 99 102 .98
BART 99 .99 104 105 .99  1.02
MA(1)-HOMO{paARZ 99 99 1.0l 1.02 .99  1.00
TUK ‘5o o7 160 100 .99 .99




TABLE 3

Ratio of MSE of QS Estimator Using
First Order Asymptotically Optimal S Value, S,‘f , to
MSE of QS Estimator Using Finite Sample Optimal ST Value

Model T

64 1.00 1.05 1.04 1.03 1.07 1.11 1.06 1.06
AR(1)-HOMO < 128 1.00 1.05 1.05 1.02 1.04 1.07 1.07 1.03
256 1.00 1.03 1.01 1.03 1.03 1.04 1.04 1.02

64 1.00 1.01 1.03 1.01 1.03 1.04 1.23 2.83
AR(1)-HET1 128 1.00 1.01 1.01 1.00 1.02 1.03 1.42 3.97
256 1.00 1.00 1.00 1.00 1.01 1.02

64 1.00 1.06 1.07 1.03 1.08 1.15 111 1.15
AR(1)-HET2 128 1.00 1.12 1.13 1.03 1.08 1.08 1.09 1.14
256 1.00 1.18 1.05 1.11 1.03 1.05 1.10 1.15

.3 5 q 99 =3 -5

64 1. 1 1.06 110 1.01 1.08
MA(1)-HOMO {128  1.01 110 117 116 100 1.12
256 1 22 124 123 105  1.29




T—4

TABLE 4

Ratio of MSE of QS Estimator Using Automatic Sy Value, ST . t0
MSE of QS Estimator Using Finite Sample Optimal ST Value

p
Model T

64 1.09 1.16 1.07 1.02 1.01 7T 1.09
AR(1)-HOMO < 128 1.05 1.14 1.14 1.05 1.01 1.01 1.23 112
256 1.06 1.10 .06 1.01 4 1.07

64 1.12 1.02 1.00 1.01 1.01 1.01 145 3.05

AR(1)-HET1 128 1.10 1.02 1.02 1.02 1.01 1.01 1.68 4.18
256 1.01 1.03 1.03 1.04 1.03 1.01 1.93 5.17

64 1.06 1.13 1.07 1.02 1.01 1.01 1.20 1.34

AR(1)-HET2 128 1.05 1.16 1.17 1.04 1.03 1.01 118 1.10
256 1.07 1.23 1.07 1.12 1.01 1.02 1.22 1.22

(4
3 5 T 99 -3 -7

64 1. 05 112 114 115  1.23
MA(1)-HOMO {128  1.02 116 117 132 111 121
256 1 21 128 147 106  1.29




Bias, Variance, and MSE of QS Estimator with Automatic ST Value,

ST’

TABLE 5

and True Confidence Levels of Nominal 99%, 95%, and 90%

Confidence Intervals Constructed Using the QS Estimator with
Automatic S; Value for the AR(1)-HOMO Model — T = 128

p gg{‘ll;agé Estimator Bias Variance MSE 99%  95%  90%

Qs 050 045 047 982 939  88.0

) 100 JINID  —o048 043 045 981 938 883

: 11D 0040 016 016 985 045  89.4

PARA 0045 017 017 985 945 895

Qs _15 088 11 977 915 855

5 18 JINID -2 044 10 974 908 830

: : 11D —19 018 56 978 920 864
PARA  —032 037 038 989 940 889

QS 31 25 34 972 897  83.3

5 Lso |INID  —68 050 51 945 846  76.8

: : 11D —62 026 41 953 862 789
PARA  —095 .14 15 988 941 875

Qs _ 88 66 144 946 865 794

. 0 65 JINID  -181 057 332 846 735 644

: : 11D —1.74 037 307 857 750 664
PARA  —43 56 75 971 912 848

Qs 394 343 190 850 749 659

o 641 JINID =579 071 336 562 442  38.0

: 41 11D —5.72 059 328 60.1 472 397
PARA  -296 423 130 928 827 757

QS 652 331 458 743 631 558

o5 5 62 JINID 818 059 67.0 438 335 219
: : IID  -813 065 661 471 356 208
PARA  -55 501 361 831 722 650




Bias and MSE of QS Estimator with Automatic Sy Value, éT ,
and True Confidence Level of Nominal 95% Confidence Interval
Constructed Using the QS Estimator with Automatic S Value

TABLE 6

for the AR{1)-HET1, AR(1)-HET?2, and MA(1)-HOMO Models — T = 128

T—6

Model/Estimator Bias MSE 95% [[Model/Estimator Bias MSE 95%
AR(1)-HET1{QS -—.32 135 928 [|AR(1)-HET1(QS -1.1 2.9 890
0 INID —.33 123 929 _ 4 INID -12 29 88.0

p = , |IID -1.95 386 754 p=- 11D 29 85 69.6
(2.94) PARA -1.95 3.86 750 | (3.89) PARA -28 8.0 711
AR(1)-HET1[QS —2.0 7.5 874 |[AR(1)-HET1{QS —18. 352. 60.5
_ s INID -27 9.0 826 _ 9 INID —22. 478. 388
p= I1ID —44 190 3587 2T~ 11D —23. 515. 277
(5.31) [PARA —4.0 166 647 || (28.4) PARA  -21. 442 46.2
AR(1)-HET2{QS —15 .34 915 |AR(1)-HET2(QS —923 59 91.0
_'g INID -15 .32 916 _ 4 INID -—-32 .50 90.4
F= IID —-490 28 886 | P = - 11D -70 .54 86.7
(1.47) [PARA —49 .29 885 | (1.67) PARA —61 .44 873
AR(1)-HET2(QS ~52 117 89.5 |AR(1)-HET2{QS —45 265 713
_ s INID -85 100 858 ~ 9 INID -6.3 405 48.7

pF =" IID -1.19 147 813 | ? = 11D 6.5 42.1 456
(2.15) [PARA -.88 .91 876 || (7.18) PARA —46 253 722
MA(1)-HOMO[QS —2¢ .16 913 |[MA(1)-HOMO[QS —22 .27 9L0
6= .5 INID-37 18 892/ , _ g INID —55 .35 855
= I1ID —.32 .13 912 = IID —-49 27 884
(1.31) PARA-.049 .058 93.7 (1.48) PARA —064 .080 04.4

4The numbers in parentheses in columns 1 and 6 are the values of the estimand.



Bias and MSE of QS Estimator with Automatic Sy Value, St
and True Confidence Level of Nominal 95% Confidence Interval
Constructed Using the QS Estimator with Automatic ST Value

TABLE 7

for the AR(1)-HOMO, AR(1)-HET1, AR(1)-HET?2, and MA(1)-HOMO
Models — T = 256

Model /Estimator Bias MSE 95% ||Model/Estimator Bias MSE 95%
AR(1)-HOMO([QS —.036 .025 93.7 |AR(1)-HOMO QS —11 062 93.0
_0 INID—.034 .024 93.7 = 3 INID —23 076 0912

p = . IID —003 .0008 945 | 7 = - IID -20 .049 92.2
(1.00) |[PARA—.003 .0098 94.5 || (1.19) PARA —019 .022 §5.0
AR(1)-HOMO[QS —24 - .19 921 |[AR(1)-HOMO(QS -64 1.04 90.5
_ s INID—-68 .49 875 - 7 INID —1.85 346 172.6

p = 11D —64 43 884 | 7 = - I1ID -1.81 331 742
(1.63) |[PARA—048 .078 95.1 | (2.76) PARA -26 .49 940
AR(1)-HOMO([QS -3.5¢ 19.0 810 ||AR(1)-HOMO[QS 82 79. 709
_ g INID-6.96 485 454 _ ¢s INID -12.3 152. 32.7

pF = 1ID —6.90 47.6 466 || 7 = - IID -—12.3 150. 34.3
(7.72) PARA-223 11.6 888 || (12.9) [PARA 63 54 794
AR(1)-HET1(QS$ -81 1.73 922 |AR(1)-HET1({QS -1.7 5.3 89.7
_ 4 INID —1.11 1.890 904 _ s INID -27 81 834
pF=- IID —292 B854 T10 | P = - 11D -4.5 20.0 59.3
(3.92) [PARA —2.80 7.91 743 || (5.44) [PARA 4.1 168 66.9
AR(1)-HET2(QS —~14 .38 93.3 ||AR(1)-HET2({QS -36 .61 919
_ 4 INID —-26 .31 922 _ s INID -82 .8 87.6

P = 11D —71 .53 848 || P = - IID —1.24 157 803
(1.70) PARA —60 .40 87.0 | (2.22) [PARA  -87 .83 874
MA(1)-HOMO[QS —.17 .089 92.7 [[MA(1)-HOMO[QS —.08 .17 933
b= 5 INID-34 .140 90.4 b= .99 INID —53 .31 879
= 1ID —32 .110 90.1 = 1ID —-50 .26 88.8
(1.31) PARA-026 .026 052 (1.49) PARA —039 .043 94.4

8The numbers in parentheses in columns 1 and 6 are the values of the estimand.
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FIGURE 1. Comparison of Kernels®

These kernels have been renormalized as described in the text above equation (2.8).
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FIGURE 2 - Mean Squared Error as a Function of ST for
the QS Estimator in the AR(1)-HOMO Model with p=0.0- .95,
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