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1 Introduction

The spatial dependence among the disturbance terms of a spatial model is generally assumed to

take the form of a spatial autoregressive process. The spatial model that has a spatial lag in the

dependent variable and an autoregressive process in the disturbance term is known as the SARAR

model. The main characteristic of an autoregressive process is that the effect of a location-specific

shock transmits to all other locations with its effects gradually fading away for the higher order

neighbors. The spatial autoregressive process may not be appropriate if there is strong evidence of

localized transmission of shocks. That is, the autoregressive process is not the correct specification

when the effects of shocks are contained within a small region and are not transmitted to other

regions. An alternative to an autoregressive process is a spatial moving average process, where the

effect of shocks are more localized. Haining (1978), Anselin (1988) and more recently Hepple (2003)

and Fingleton (2008a,b) consider a spatial moving average process for the disturbance terms. The

spatial model that contains a spatial lag of the dependent variable and a spatial moving average

process for the disturbance term is known as the SARMA model.

In the literature, various estimation methods have been proposed (Das, Kelejian, and Prucha,

2003; Hepple, 1995a; Kelejian and Prucha, 1998, 1999, 2010; Lee, 2004, 2007a; Lee and Liu, 2010;

LeSage and Pace, 2009; Lesage, 1997; Liu, Lee, and Bollinger, 2010). The ML method is the best

known and most common estimator used in the literature for both SARAR and SARMA specifica-

tions. Lee (2004) shows the first order asymptotic properties of the MLE for the case of SARAR(1,0).

The generalized method of moment (GMM) estimators are also considered for the estimation of the

spatial models. Kelejian and Prucha (1998, 1999) suggest a two step GMM estimator for the

SARAR(1,1) specification. One disadvantage of the two-step GMME is that it is usually inefficient

relative to the MLE (Lee, 2007c; Liu, Lee, and Bollinger, 2010; Prucha, 2014).

To increase efficiency, Lee (2007a), Liu, Lee, and Bollinger (2010) and Lee and Liu (2010)

formulate one step GMMEs based on a set of moment functions involving linear and quadratic

moment functions. In this approach, the reduced form of spatial models motivates the formulation

of moment functions. The reduced equations indicate that the endogenous variable, i.e., the spatial

lag term, is a function of a stochastic and a non-stochastic term. The linear moment functions are

based on the orthogonality condition between the non-stochastic term and the disturbance term,

while the quadratic moment functions are formulated for the stochastic term. Then, the parameter

vector is estimated simultaneously with a one-step GMME. Lee (2007a) shows that the one-step

GMME can be asymptotically equivalent to the MLE when disturbance terms are i.i.d. normal. In

the case where disturbances are simply i.i.d., Liu, Lee, and Bollinger (2010) and Lee and Liu (2010)

suggest a one-step GMME that can be more efficient than the (quasi) MLE.

Fingleton (2008a,b) extends the two-step GMME suggested by Kelejian and Prucha (1998, 1999)

for spatial models that have a moving average process in the disturbance term, i.e., SARMA(1,1).

Baltagi and Liu (2011) modify the moment functions considered in Fingleton (2008a) in the manner

of Arnold and Wied (2010), and suggest a GMME for the case of SARMA(0,1). The spatial moving

average parameter in both Fingleton (2008a) and Baltagi and Liu (2011) is estimated by a non-
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linear least squares estimator (NLSE). The asymptotic distribution for the NLSE of the spatial

moving average parameter is not provided in either Fingleton (2008a) or Baltagi and Liu (2011).

Recently, Kelejian and Prucha (2010) and Drukker, Egger, and Prucha (2013) provide a basic

theorem regarding the asymptotic distribution of their estimator under fairly general conditions.

The estimation approach suggested in Kelejian and Prucha (2010) and Drukker, Egger, and Prucha

(2013) can easily be adapted for the estimation of the SARMA(1,1) and SARMA(0,1) models.

Finally, although the Kelejian and Prucha approach in Fingleton (2008a) and Baltagi and Liu

(2011) has computational advantages, it may be inefficient relative to the ML method.1

In the presence of an unknown form of heteroskedasticity, Lin and Lee (2010) show that the MLE

for the cases of SARAR(1,0) may not be consistent as the log-likelihood function is not maximized

at the true parameter vector. They suggest a robust GMME for the SARAR(1,0) specification by

modifying the moment functions considered in Lee (2007a). Likewise, Kelejian and Prucha (2010)

modify the moment functions of their previous two-step GMME to allow for an unknown form of

heteroskedasticity.

The spatial moving average model introduces a different interaction structure. Therefore, it is

of interest to investigate implications of a moving average process for estimation and testing issues.

In this paper, I investigate the effect of heteroskedasticy on the MLE for the case of SARMA(1,1)

and SARMA(0,1) along the lines of Lin and Lee (2010). The analytical results show that when

heteroskedasticity is not considered in the estimation, the necessary condition for the consistency

of the MLE is generally not satisfied for both SARMA(1,1) and SARMA(0,1) models. For the

SARMA(1,1) specification, I also show that the MLE of other parameters is also inconsistent, and I

determine its asymptotic bias. My simulation results indicate that the MLE imposes a substantial

amount of bias on spatial autoregressive and moving average parameters. However, the simulation

results also show that the MLE of other parameters reports a negligible amount of bias in large

samples.

The rest of this paper is organized as follows. In Section 2, I specify the SARMA(1,1) model

in more detail and list assumptions that are required for the asymptotic analysis. In Section 3, I

briefly discuss implications of spatial processes proposed for the disturbance term in the literature.

Section 4 investigates the necessary condition for the consistency of the MLE of autoregressive and

moving average parameters. Section 5 provides expressions for the asymptotic bias of the MLE of

parameters of the exogenous variables. Section 6 contains a small Monte Carlo simulation. Section 7

closes with concluding remarks.

2 Model Specification and Assumptions

In this study, the following first order SARMA(1,1) specification is considered:

Yn = �0WnYn +Xn�0 + un, un = "n � ⇢0Mn"n (2.1)

1Fingleton (2008a) and Baltagi and Liu (2011) do not compare the finite sample efficiency of their estimators with
the MLE.
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where Yn is an n ⇥ 1 vector of observations of the dependent variable, Xn is an n ⇥ k matrix of

non-stochastic exogenous variables, with an associated k ⇥ 1 vector of population coefficients �0,

Wn and Mn are n⇥ n spatial weight matrices of known constants with zero diagonal elements, and

"n is an n ⇥ 1 vector of disturbances. The variables WnYn and Mn"n are known as the spatial

lag of the dependent variable and the disturbance term, respectively. The spatial effect parameters

�0 and ⇢0 are known as the spatial autoregressive and moving average parameters, respectively.

As the spatial data is characterized with triangular arrays, the variables in (2.1) have subscript

n.2 The model specifications with �0 6= 0, ⇢0 6= 0, and �0 = 0, ⇢ 6= 0 are known, respectively, as

SARMA(1,1) and SARMA(0,1) in the literature. Let Θ be the parameter space of the model. In

order to distinguish the true parameter vector from other possible values in Θ, the model is stated

with the true parameter vector ✓0 =
⇣

�
0

0, �
0

0

⌘0

with �0 = (�0, ⇢0)
0

.

For notational simplicity, we denote Sn (�) = (In � �Wn), Rn(⇢) = (In � ⇢Mn), Gn(�) =

WnS
�1
n (�), Hn(⇢) = MnR

�1
n (⇢), Xn(⇢) = R�1

n (⇢)Xn, and Gn(�) = R�1
n (⇢)Gn(�)Rn(⇢). Also, at the

true parameter values (⇢0,�0), we denote Sn(�0) = Sn, Rn(⇢0) = Rn, Gn(�0) = Gn, Hn(⇢0) = Hn,

Xn(⇢0) = Xn, and Gn(�0) = Gn.

The model in (2.1) is considered under the following assumptions.

Assumption 1. The elements "ni of the disturbance term "n are distributed independently with

mean zero and variance �2ni, and E |"ni|
⌫ < 1 for some ⌫ > 4 for all n and i.

The elements of the disturbance term have moments higher than the fourth moment. The

existence moments condition is required for the application of the central limit theorem for the

quadratic form given in Kelejian and Prucha (2010). In addition, the variance of a quadratic form

in "n exists and is finite when the first four moments are finite. Finally, Liapunov’s inequality

guarantees that the moments less than ⌫ are also uniformly bounded for all n and i.

Assumption 2. The spatial weight matrices Mn and Wn are uniformly bounded in absolute value

in row and column sums. Moreover, S�1
n , S�1

n (�), R�1
n and R�1

n (⇢) exist and are uniformly bounded

in absolute value in row and column sums for all values of ⇢ and � in a compact parameter space.

The uniform boundedness of terms in Assumption 2 is motivated to control spatial autocorre-

lations in the model at a tractable level (Kelejian and Prucha, 1998).3 Assumption 2 also implies

that the model in (2.1) represents an equilibrium relation for the dependent variable. By this as-

sumption, the reduced form of the model becomes feasible as Yn = S�1
n Xn�0 + S�1

n Rn"n. The

uniform boundedness of S�1
n (�) and R�1

n (⇢) in Assumption 2 is only required for the MLE, not for

the GMME (Liu, Lee, and Bollinger, 2010). When Wn is row normalized, a closed subset of interval

(1/�min, 1), where �min is the smallest eigenvalue of Wn, can be considered as the parameter space

for �0. Analogously, a closed subset of (1/⇢min, 1), where ⇢min is the smallest eigenvalue of Mn, can

be the parameter space of ⇢0 (LeSage and Pace, 2009, p.128).4

The next assumption states the regularity conditions for the exogenous variables.

2See Kelejian and Prucha (2010).
3For a definition and some properties of uniform boundedness, see Kelejian and Prucha (2010).
4There are some other formulations for the parameter spaces in the literature. For details see Kelejian and Prucha
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Assumption 3. The matrix Xn is an n⇥k matrix consisting of constant elements that are uniformly

bounded. It has full column rank k. Moreover, limn!1
1
nX

0

nXn and limn!1
1
nX

0

n(⇢)Xn(⇢) exist and

are nonsingular for all values of ⇢ in a compact parameter space.

3 Spatial Processes for the Disturbance Term

In the literature, there are three main parametric processes to model spatial autocorrelation among

disturbance terms: (i) spatial autoregressive process (SAR), (ii) spatial moving average process

(SMA), and (iii) spatial error components model (SEC). The implied covariance structure is different

under each specification. In this section, I describe the transmission and the effect of shocks under

each specification. The SAR process is specified as

un = ⇢0Mnun + "n, (3.1)

where un is an n⇥ 1 vector of regression disturbances, and "n is an n⇥ 1 vector of i.i.d. innovations

with variance �20. Under the assumption of an equilibrium, i.e., Rn is invertible, the reduced from

of (3.1) is un = R�1
n "n with the covariance matrix of E

⇣

unu
0

n

⌘

= Ωn = �20R
�1
n R�10

n . Note that

even if the innovations are homoskedastic, the diagonal elements of Ωn are not equal suggesting

heteroskedasticity for the regression disturbances. An expansion of (In � ⇢0Mn)
�1 for |⇢0| < 1

yields (In � ⇢0Mn)
�1 =

P

1

j=0 ⇢
j
0M

j
n = In + ⇢0Mn + ⇢20M

2
n + · · · . Hence, the SAR specification

of the disturbance term implies that a shock at location i is transmitted to all other locations.

The first term In implies that the shock at location i directly affects location i, and through other

terms denoted by the powers of Mn affects higher order neighbors. Eventually, the shock feeds

back to location i through the interconnectedness of neighbors. Note that |⇢0| < 1 ensures that the

magnitude of the transmitted shock decreases for the higher orders of neighbors. As a result, the

SAR specification allows researchers to model global transmission of shocks where the full effect of

a shock to location i is the sum of initial shock and the feedback from other locations.

If a more localized spatial dependence is conjectured for an economic model, then a spatial

moving average process (SMA) specification is more suitable (Fingleton, 2008a,b; Haining, 1978;

Hepple, 2003). The SMA process is specified as

un = "n � ⇢0Mn"n, (3.2)

where ⇢0 is the spatial moving average parameter. The reduced form does not involve an inverse

of a square matrix. Hence, the transmission of a shock emanated from location i is limited to its

immediate neighbors given by the nonzero elements in the ith row of Mn. Under this specification,

the covariance matrix of un is Ωn = �20RnR
0

n = �20

⇣

In � ⇢0(Mn +M
0

n) + ⇢20MnM
0

n

⌘

. The spatial

(2010) and LeSage and Pace (2009). Note that the parameter spaces for β0 and σ2
0 are not required to be compact.

As shown in (4.3a) and (4.3b), the MLE of these parameters is an OLS type estimator, hence boundedness is enough
for the parameter spaces.
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covariance is limited to nonzero elements of
⇣

Mn +M
0

n

⌘

and MnM
0

n. In comparison with the SAR

specification, the range of covariance induced by the SMA model is much smaller.

Kelejian and Robinson (1993) suggest another specification which is called the spatial error

components (SEC) model. This specification is similar to the SMA process in the sense that the

implied covariance matrix does not involve a matrix inverse. Formally, the SEC model is given by

un = Mn"n+ ✏n, where "n is an n⇥1 vector of regional innovations, whereas ✏n is an n⇥1 vector of

locational innovations. Assuming that "n and ✏n are independent, the variance-covariance matrix

becomes Ωn = �2✏ In + �2"MnM
0

n, which indicates that the spatial correlation in a SEC specification

is even more localized.

There have been some direct attempts to parametrize the covariance matrix of un, rather than

defining a process for the disturbance term. For example, Besag (1974) considers a conditional

first-order autoregressive model (CAR(1)) such that the covariance matrix of un takes the form of

Ωn = �20(In�⇢0Mn)
�1, where Mn is assumed to be a symmetric contiguity matrix. This covariance

structure implies a process of un = (In � ⇢0Mn)
�1/2"n. As in the case of the SAR process, a

shock in a location is transmitted to all other locations, but now with a smaller amplitude. Another

example is Ωn = �20(In+⇢0Mn), where Mn is assumed to be symmetric (Hepple, 1995b; Richardson,

Guihenneuc, and Lasserre, 1992). In this case, the spatial correlation is restricted to first order

neighbors, i.e., non-zero elements of Mn.

The elements of Ωn can also be specified through a covariance generating function. For example,

in Ripley (2005), the covariance generating function is defined in terms of distance between two

locations in such a way that the resulting covariance is always non-negative definite. Let dij be the

distance between location i and j, and Ωij,n be the covariance between these two locations. Then,

the covariance generating function is defined by

Ωij,n =

8

>

<

>

:

�20
2
n



cos�1(
dij
2 )�

dij
2 (1�

d2ij
4 2 )

1/2

�

, if dij  2 

0, otherwise.

(3.3)

Intuitively, Ωij,n is proportional to the intersection area of two discs of common radius centered on

locations i and j. The covariance generating function in (3.3) depends on the single parameter  ,

and has a fairly linear negative relationship with dij (Richardson, Guihenneuc, and Lasserre, 1992;

Ripley, 2005). Another covariance generating function family, first introduced by Whittle in 1954,

is a two parameter functions defined in terms of Gamma and Bessel functions. This family has the

following specification:

Ωij,n = �20
⇥

2⌫�1
Γ(⌫)

⇤�1
(�dij)

⌫K⌫(�dij), (3.4)

where K⌫(·) is the modified Bessel function, and Γ(·) is the standard Gamma function. The pa-

rameters ⌫ > 0 and � > 0 are respectively known as a shape parameter and a spatial parameter.

The spatial parameter � determines how far the spatial correlation will stretch. For the special
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case, where ⌫ = 1
2 , this covariance generating function gives an exponential decaying spatial corre-

lations (Richardson, Guihenneuc, and Lasserre, 1992). There is also a more general exponential

covariance generating function that depends on two parameters. This function is specified by

Ωij,n = �20� exp(�dij), where � and � are parameters need to be estimated. This function also

exhibits exponential decay for the spatial correlations.

In the literature, there are some other covariance generating function families. However, the

majority of these functions do not necessarily ensure that Ωn is a positive definite matrix (Haining,

1987; Richardson, Guihenneuc, and Lasserre, 1992). The formal properties of the MLE for spatial

models that have a covariance structure determined by a parametric function are investigated in an

early study by Mardia and Marshall (1984). In this study, the authors state conditions under which

the MLE is consistent and has asymptotic normal distribution.

In this study, the spatial model specified in (2.1) is considered. The interaction between the

spatial autoregressive process and the moving average process for this model induces a compli-

cated pattern for the transmission of a location specific shock. Under Assumption 2, the reduced

form of the model is given by Yn = S�1
n Xn�0 + S�1

n Rn"n. The last term in the reduced form

can be written as S�1
n Rn"n = "n � ⇢0Mn"n +

P

1

l=1 �
l
0W

l
n"n � ⇢0Mn

P

1

l=1 �
l
0W

l
n"n. In this rep-

resentation, the higher power of Wn does not have zero diagonal elements, which in turn implies

that the total effect of a region specific shock also contains the feedback effects passed through

other locations. The corresponding expression in the case of SARAR(1,1) specification is given by

S�1
n R�1

n "n =
P

1

l=0 �
l
0W

l
n

P

1

k=0 ⇢
k
0M

k
n"n. Again, the induced pattern involves the interaction of two

weight matrices and two parameters.

Following Fingleton (2008a), I illustrate the transmission pattern for a shock under each speci-

fication by using a rook weight matrix over a 15⇥ 15 lattice. Figure 1 shows the impact of a shock

emanated from the unit located at the center of lattice.5 In the case of SAR and SARAR(1,1), the

effect of shock is more vigorous over the whole lattice. For the SMA specification, the shock is only

transmitted to the immediate units as shown in Figure 1(b). In contrast, the effect of the shock

gradually dies out under the SARMA(1,1) model.

5For easy comparison, we set λ0 = 0.9 for SAR, ρ0 = −0.9 for SMA, (λ0, ρ0) = (0.5, 0.9) for SARAR(1,1) and
(λ0, ρ0) = (0.5,−0.9) for SARMA(1,1). The disturbance of the unit located at the center of the lattice is increased
by 3.
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Figure 1: The Effect of a Shock
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(a) The effect of a shock: SAR
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(b) The effect of a shock: SMA
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(c) The effect of a shock: SARAR(1,1)
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(d) The effect of a shock: SARMA(1,1)
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4 The MLE of λ0 and ρ0

The log-likelihood function for the model in (2.1) under the assumption that the disturbance terms

of the model are i.i.d. normal with mean zero and variance �20 can be written as

lnLn(⇣) = �
n

2
ln(2⇡)�

n

2
ln(�2) + ln |Sn(�)|� ln |Rn(⇢)|

�
1

2�2
(Sn(�)Yn �Xn�)

0

R
0
�1
n (⇢)R�1

n (⇢) (Sn(�)Yn �Xn�) , (4.1)

where ⇣ =
⇣

✓
0

, �2
⌘0

. The first order conditions with respect to � and �2 are respectively given by

@ lnLn(⇣)

@�
=

1

�2
X

0

n(⇢)R
�1
n (⇢) (Sn(�)Yn �Xn�) , (4.2a)

@ lnLn(⇣)

@�2
=

�n

2�2
+

1

2�4
"
0

n(✓)"n(✓), (4.2b)

where "n(✓) = R�1
n (⇢) (Sn(�)Yn �Xn�). The solutions of the first order conditions for a given �

yield the MLE of �0 and �20:

�̂n(�) =
⇣

X
0

n(⇢)Xn(⇢)
⌘

�1
X

0

n(⇢)R
�1
n (⇢)Sn(�)Yn, (4.3a)

�̂2n(✓) =
1

n
"
0

n(✓)"n(✓). (4.3b)

Concentrating the log-likelihood function by eliminating �2 gives the following equation:

lnLn(✓) = �
n

2
ln(2⇡)�

1

2
�

n

2
ln

 

"
0

n(✓)"n(✓)

|Sn(�)|
2
n |Rn(⇢)|

�
2
n

!

(4.4)

The above representation is useful for exploring the role of the Jacobian terms |Sn(�)| and |Rn(⇢)|

in the ML estimation. The MLE of ✓ is the extremum estimator obtained from the maximization

of (4.4). In an equivalent way, the MLE of ✓0 can be defined by

✓̂n = argmin✓2Θ

(

"
0

n(✓)"n(✓)

|Sn(�)|
2
n |Rn(⇢)|

�
2
n

)

(4.5)

In the special case, where |Sn(�)| = |Rn(⇢)| = 1, the MLE is the NLSE obtained from the mini-

mization of "
0

n(✓)"n(✓), i.e., ✓̂NLSE,n = argmin✓2Θ "
0

n(✓)"n(✓). It is clear that the Jacobian terms

|Sn(�)| and |Rn(⇢)| play a role of a weight (or a penalty) on "
0

n(✓)"n(✓). The penalty is a func-

tion of the autoregressive parameters and the spatial weight matrices, which can be defined as

f (�, ⇢,Wn,Mn) = |Sn(�)|
2
n |Rn(⇢)|

�
2
n . For the SARAR(1,1) specification, the last term in (4.4) is

given by �n
2 ln

✓

"
0

n(✓)"n(✓)

|Sn(�)|
2
n |Rn(⇢)|

2
n

◆

, where "n(✓) = Rn(⇢) (Sn(�)Yn �Xn�). Therefore, in the case

9



of SARAR(1,1), the MLE of ✓0 is given by

✓̂n = argmin✓2Θ

(

"
0

n(✓)"n(✓)

|Sn(�)|
2
n |Rn(⇢)|

2
n

)

(4.6)

It is hard to make any general statement about the effects and magnitudes of the penalty functions

in both cases. Hepple (1976) illustrates that the Jacobian term imposes a substantial penalty for the

SARAR(0,1) specification. To illustrate the effect of penalty functions for the case of SARMA(1,1)

and SARAR(1,1), I use a distance based weight matrix for a sample of 91 countries such that each

country is connected to every other country. The elements of the weight matrices are specified by

wij = mij =

8

<

:

0 if i = j,
d�2
ijP91

j=1 d
�2
ij

if i 6= j,
(4.7)

where dij between countries i and j is measured by the great-circle distance between country capi-

tals.6 Figure 2 shows the surface plots of penalty functions over a grid of spatial parameters.

Figure 2: The penalty functions for the dense weight matrix

(a) The penalty function for SARMA(1,1) (b) The penalty function for SARAR(1,1)

For the SARAR(1,1) specification, the value of the penalty function decreases as the parameter

combination (�, ⇢) moves away from (0, 0) in any direction as shown in Figure 2(b).7 On the

6dij = R0 × arccos
�

cos
�

|longitudei − longitudej |
�

cos(latitudei) cos(latitudej) + sin(latitudei) sin(latitudej)
�

,
where R0 is the Earth’s radius.

7For SARAR(1,1), the penalty function is f(λ, ρ,Wn,Mn) = |Sn(λ)|
2

n |Rn(ρ)|
2

n .

10



other hand, there is no such monotonic decrease in the penalty function under the SARMA(1,1)

specification as illustrated in Figure 2(a). The penalty function of SARMA(1,1) obtains relatively

larger values when there is strong spatial dependence in the disturbance term, i.e., when ⇢ is near 1

or �1. In contrast, the penalty function has smaller values when there is strong spatial dependence

in the dependent variable. This pattern indicates that the sum "
0

n(✓)"n(✓) is penalized as ⇢ moves

toward to either 1 or �1. In the case of SARAR(1,1), this sum gets larger as (�, ⇢) moves toward

(±1,±1) in any direction, suggesting that the solution of the minimization problem is restricted

to the region (�1,�1) ⇥ (+1,+1). Finally, in a small neighborhood of (0, 0), the surface plots in

Figure 2 indicate that the penalty functions take values around 1, suggesting that the parameter

estimates from the MLE can be similar to those from the NLSE under both specifications.

Next, I investigate the effect of heteroskedasticity on the MLE for the case of SARMA(1,1). I

assume that the true data generating process is characterized by Assumption 1. More explicitly,

the MLE �̂2n(�) can be written as

�̂2n(�) =
1

n
Y

0

nS
0

n(�)R
0
�1
n (⇢)Mn(⇢)R

�1
n (⇢)Sn(�)Yn, (4.8)

where Mn(⇢) = (In � Pn(⇢)) is a projection type matrix with Pn(⇢) =

Xn(⇢)
⇣

X
0

n(⇢)Xn(⇢)
⌘

�1
X

0

n(⇢). Substituting R�1
n (⇢)Sn(�)Yn = R�1

n (⇢)Xn� + "n into �̂2n(�)

and using the fact that X
0

n(⇢)Mn(⇢) = 0k⇥n and Mn(⇢)Xn(⇢) = 0n⇥k, the MLE �̂2n(�) can be

written as

�̂2n(�) =
1

n
"
0

nMn(⇢)"n. (4.9)

At �0, the probability limit of �̂2n(�0) is

plim
n!1

�̂2n(�0) = plim
n!1

1

n
"
0

n"n � plim
n!1

1

n2
"nXn

✓

1

n
X

0

nXn

◆

�1

X
0

n"n. (4.10)

For the first term on the right hand side, we have 1
n"

0

n"n = 1
n

Pn
i=1 �

2
ni+op(1) by Chebyshev’s Weak

Law of Large Numbers. The second term vanishes by virtue of Lemma 1(4) in Appendix 8.1, and

Assumption 3. Therefore, we have

�̂2n(�0) =
1

n

n
X

i=1

�2ni + op(1). (4.11)

The result in (4.11) indicates that the average of the individual variances is asymptotically equivalent

to �̂2n(�0).

Concentrating out � and �2 from the log-likelihood function in (4.1) yields

lnLn(�) = �
n

2
(ln(2⇡) + 1)�

n

2
ln �̂2n(�) + ln |Sn(�)|� ln |Rn(⇢)| . (4.12)
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The MLE �̂n and ⇢̂n are extremum estimators obtained from the maximization of (4.12). The first

order conditions of (4.12) with respect to ⇢ and � are8

@ lnLn(�)

@�
= �

n

2�̂2n(�)

@�̂2n(�)

@�
� tr (Gn(�)) (4.13a)

@ lnLn(�)

@⇢
= �

n

2�̂2n(�)

@�̂2n(�)

@⇢
+ tr (Hn(⇢)) , (4.13b)

where Gn(�) = WnS
�1
n (�) and Hn(⇢) = MnR

�1
n (⇢). For the consistency of �̂n and ⇢̂n, the necessary

condition is plimn!1

1
n
@ lnLn(�0)

@�
= 0. Below, I investigate the probability limit of the following

expression:

1

n

@ lnLn(�0)

@�
=

0

B

B

B

B

@

1
n

✓

� n
2
n
"
0

nMn"n

@�̂2
n(�0)
@�

◆

� 1
n tr (Gn)

1
n

✓

� n
2
n
"
0

nMn"n

@�̂2
n(�0)
@⇢

◆

+ 1
n tr (Hn)

1

C

C

C

C

A

. (4.14)

Under Assumption 2, both Hn and Gn are uniformly bounded in absolute value in row and column

sums. Therefore, 1
n tr (Hn) and 1

n tr (Gn) in (4.14) are of order O(1). With these results for 1
n tr (Hn)

and 1
n tr (Gn), a convenient result for the probability limit of (4.14) can be obtained, which is stated

in the following proposition.

Proposition 1. Under Assumptions 1 through 3, we have

1

n

@ lnLn(�0)

@�
=

0

B

B

B

B

@

Cov(Gn,ii, �
2
ni)

�2 + op(1)

�
Cov(Hn,ii, �

2
ni)

�2 + op(1)

1

C

C

C

C

A

, (4.15)

where Cov
�

Gn,ii, �
2
ni

�

is the covariance between the diagonal elements of Gn,

{Gn,11, Gn,22, . . . , Gn,nn}, and the individual variances {�2n1,�
2
n2, . . . ,�

2
nn}. Similarly,

Cov
�

Hn,ii, �
2
ni

�

denotes the covariance between diagonal elements of Hn, {Hn,11, Hn,22, . . . , Hn,nn},

and the individual variances {�2n1,�
2
n2, . . . ,�

2
nn}.

Proof. See Appendix 8.2.

The above proposition indicates that the MLE of the spatial autoregressive and moving average

parameters is not consistent as long as the covariance terms in (4.15) are not zero. Notice that, when

the disturbance terms are homoskedastic, the covariance terms in (8.11) are zero. In the special

case where Wn = Mn and �0 = ⇢0, we have Sn = Rn and Gn = Hn so that Gn = R�1
n GnRn =

8For these results, we use the derivative rule given by ∂ ln |Rn(ρ)|
∂ρ

= tr
⇣

R�1
n (ρ)× ∂Rn(ρ)

∂ρ

⌘

. For a proof, see Abadir

and Magnus (2005, p.372). Also note the commutative property of R�1
n (ρ)Mn = MnR

�1
n (ρ) = Hn(ρ).

12



R�1
n HnRn = R�1

n MnR
�1
n Rn = Hn. Hence, the necessary condition for the consistency of �̂n is

identical to the one for ⇢̂n.

The result in Proposition 1 indicates that the consistency of the MLE depends on the specifi-

cation of weight matrices. It is of interest to investigate specifications that yield zero covariances.

An obvious case is when there is no variation in the diagonal elements of Gn and Hn. Then, the

necessary condition for the consistency of �̂n and ⇢̂n is not violated, even if the disturbances are

heteroskedastic. For example, there is no variations in the diagonal elements of Gn and Hn when

Wn and Mn are block-diagonal matrices with an identical sub-matrix in the diagonal blocks and

zeros elsewhere. This type of block diagonal weight matrix can be seen in social interaction scenarios

where a block represents a group in which each individual is equally affected by the members of

the group (Lee, 2007b; Lee, Liu, and Lin, 2010). Suppose that there are R groups each of which

has m members so that n = mR. If we assign equal weight to each member of a group, then

Wn = Mn = IR ⌦ Bm, where Bm = 1
m�1

⇣

lml
0

m � Im

⌘

, and lm is an m-dimensional column vector

of ones. For this set up, there is no variation in the diagonal elements of Gn and Hn, therefore

Cov
�

Gn,ii, �
2
ni

�

= Cov
�

Hn,ii, �
2
ni

�

= 0.

There is also no variation in the diagonal elements of Gn and Hn when the circular world weight

matrices considered in Kelejian and Prucha (1999) are employed. In these weight matrices, the

order of observations is important since the observations are related to some units in front and

to some in back. As an example consider a “1 ahead and 1 behind” weight matrix where each

observation is related to the one immediately after and immediately before it. For this scenario,

we also have Cov
�

Gn,ii, �
2
ni

�

= Cov
�

Hn,ii, �
2
ni

�

= 0. The circular world weight matrices can be

adjusted to create some variation in the diagonal elements of Gn and Hn. For example, Kelejian and

Prucha (2007) construct a different version in which the first and the last one third of the sample

observations have 5 neighbors in front and 5 in back, while the middle third only has 1 neighbor in

front and 1 in back. Under this scenario, the Monte Carlo results in Kelejian and Prucha (2007)

show that the MLE is significantly biased for the case of SARAR(1,1).

5 The MLE of β0

In the previous section, I showed that the consistency of the MLE of the spatial autoregressive and

moving average parameters is not ensured. In this section, I investigate the consistency of the MLE

of �0. The result in (4.3a) indicates that the MLE �̂n(�̂n) is also inconsistent, since it is based on the

inconsistent estimators �̂n and ⇢̂n. The asymptotic bias of �̂n(�̂n) can be determined from (4.3a).

By using Sn(�) = Sn + (�0 � �)Wn, the MLE �̂n(�) can be written as

�̂n(�) =�0 +
⇣

X
0

n(⇢)Xn(⇢)
⌘

�1
X

0

n(⇢)R
�1
n (⇢)Rn"n

+ (�0 � �)
⇣

X
0

n(⇢)Xn(⇢)
⌘

�1
X

0

n(⇢)R
�1
n (⇢)GnXn�0

+ (�0 � �)
⇣

X
0

n(⇢)Xn(⇢)
⌘

�1
X

0

n(⇢)R
�1
n (⇢)GnRn"n, (5.1)
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Under Assumption 3, the term
⇣

1
nX

0

n(⇢)Xn(⇢)
⌘

�1
is uniformly bounded in absolute value in row

and column sums. By Lemma 1(5) of Appendix 8.1, terms involving "n in (5.1) vanish in probability.

Thus,

�̂n(�) = �0 + (�0 � �)
⇣

X
0

n(⇢)Xn(⇢)
⌘

�1
X

0

n(⇢)R
�1
n (⇢)GnXn�0 + op(1) (5.2)

The asymptotic bias of �̂n(�̂n) follows from (5.2), which is given by
⇣

�0 � �̂n

⌘⇣

X
0

n(⇢̂n)Xn(⇢̂n)
⌘

�1
X

0

n(⇢̂n)R
�1
n (⇢̂n)GnXn�0. This result shows that the asymp-

totic bias of �̂n(�̂n) depends on weight matrices and the regressors matrix, and is not zero unless

spatial parameters are consistent. Note that the bias is the OLS estimator obtained from the

artificial regression of R�1
n (⇢̂n)GnXn�0 on X

0

n(⇢̂n). For the special case of �̂n = �0+ op(1), we have

�̂n(�) = �0 + op(1). In this case, there is no asymptotic bias and the inconsistency of ⇢̂n has no

effect on �̂n(�̂n).

The specification with �0 = 0 in (2.1) is called the spatial moving average model (SARMA(0,1)

or SMA). For the SARMA(0,1) specification, the log-likelihood function simplifies to

lnLn(⇣) = �
n

2
ln(2⇡)�

n

2
ln(�2)� ln |Rn(⇢)|�

1

2�2
(Yn �Xn�)

0

R
0
�1
n (⇢)R�1

n (⇢) (Yn �Xn�) ,

(5.3)

where ⇣ =
⇣

✓
0

,�2
⌘0

with ✓ =
⇣

⇢,�
0

⌘0

. For a given value of ⇢, the first order conditions yield

�̂n(⇢) =
⇣

X
0

n(⇢)Xn(⇢)
⌘

�1
X

0

n(⇢)R
�1
n (⇢)Yn

�̂2n(⇢) =
1

n
"
0

n(✓)"n(✓),

where "n(✓) = R�1
n Yn � Xn�. The necessary condition for the consistency of the MLE ⇢̂n can be

obtained from (4.15). From the second row of (4.15), we have 1
n
@ lnLn(⇢0)

@⇢
= �

Cov(Hn,ii, �
2
ni)

�2 + op(1),

which implies that the MLE ⇢̂n is inconsistent. Substitution of Yn = Xn�0+Rn"n into �̂n(⇢) yields

�̂n(⇢) = �0 +
⇣

X
0

n(⇢)Xn(⇢)
⌘

�1
X

0

n(⇢)R
�1
n (⇢)"n. (5.4)

The variance of
⇣

X
0

n(⇢)Xn(⇢)
⌘

�1
X

0

n(⇢)D
�1
n (⇢)"n in (5.4) has an order of O( 1n) by Lemma 1(5) of

Appendix 8.1. Then, Chebyshev’s inequality implies that �̂n(⇢) = �0 + op(1). Hence, �̂n(⇢̂n) has

no asymptotic bias even though ⇢̂n is inconsistent.

For the spatial autoregressive model, where ⇢0 = 0 in (2.1), the result in (4.15) simplifies

to 1
n
@ lnLn(�0)

@�
=

Cov(Gn,ii, �
2
ni)

�2 + op(1). The term
⇣

X
0

n(⇢)Xn(⇢)
⌘

�1
X

0

n(⇢)R
�1
n (⇢)GnXn�0 in (5.2)
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simplifies to
⇣

X
0

nXn

⌘

�1
X

0

GnXn�0 so that

�̂n(�) = �0 + (�0 � �)
⇣

X
0

nXn

⌘

�1
X

0

GnXn�0 + op(1), (5.5)

The result in (5.5) is the exact result stated in Lin and Lee (2010) for the case of SARAR(1,0).

I collect the above results for the MLE of �0 in the following proposition.

Proposition 2. Consider the model in (2.1) under Assumptions 1 through 3, then

1. For the SARMA(1,1) model, we have

�̂n(�) = �0 + (�0 � �)
⇣

X
0

n(⇢)Xn(⇢)
⌘

�1
X

0

n(⇢)R
�1
n (⇢)GnXn�0 + op(1). (5.6)

2. For the SARMA(0,1) model, where �0 = 0, we have �̂n(⇢) = �0 + op(1).

3. For the SARMA(1,0) model, where ⇢0 = 0, we have

�̂n(�) = �0 + (�0 � �)
⇣

X
0

nXn

⌘

�1
X

0

GnXn�0 + op(1). (5.7)

In Section 4 and 5, I showed that the MLE of �0 and �0 is generally inconsistent when het-

eroskedasticity is present in the model. Besides its computational burden, the consistency of MLE

is not ensured. In the next section, I confirm these large sample results through a Monte Carlo

simulation.

6 Monte Carlo Simulation

In this section, the finite sample properties of the MLE are investigated through a Monte Carlo

experiment for the cases of (i) SARMA(0,1), and (ii) SARMA(1,1). For both models, we assume

heteroskedastic innovations in the data generating processes.

6.1 Design

There are two regressors and no intercept term such that Xn = [xn,1, xn,2] and �0 = (�10,�20)
0, where

xn,1 and xn,2 are n⇥1 independent random vectors that are generated from a Normal(0,1). We con-

sider n = 100, 500, 1000 and let Wn = Mn and set �0 = (1, 1)
0

for all experiments. For the spatial au-

toregressive parameters (�0, ⇢0), we employ combinations from the set B = (�0.6, �0.3, 0, 0.3, 0.6)

to allow for weak and strong spatial interactions.

The row normalized spatial weight matrix is based on the small group interaction scenario

described in Lin and Lee (2010). In this scenario, the weight matrix is a block diagonal matrix

where each block represents a group interaction. The size of each block is determined by the group

size, which are determined by a random draw from Uniform(15,50). Let {g1, . . . , gG} be the set of
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groups, where G is the total number of groups. Denote the size of each group by mi for i = 1, . . . , G.

Then, the block for group i is given by Bi =
1

mi�1

⇣

lmi
l
0

mi
� Imi

⌘

, where lmi
is the mi ⇥ 1 vector of

ones. Then, Wn = Mn = Diag (B1, . . . , BG).
9

The observations in a group have the same variance, and I use the group size to create het-

eroskedasticity. If the group size is greater than 35, we set the variance of that group equal to its

size raised to 0.4 power; otherwise we let the variance be the square of the inverse of the group size.

Then, the i-th element of the innovation vector "n is generated according to "ni = �ni⇠ni, where �ni

is the standard error for the i-th observation and ⇠ni’s are i.i.d. Normal(0,1).

I use the following expressions to measure the level of signal-to-noise in our step up (Pace,

LeSage, and Zhu, 2012):

R2
SARMA(1,1) = 1�

tr
⇣

R
0

nS
�10
n S�1

n RnΣn

⌘

�
0

0X
0

nS
�10
n S�1

n Xn�0 + tr
⇣

R0

nS
�10
n S�1

n RnΣn

⌘ , (6.1)

R2
SARMA(0,1) = 1�

tr
⇣

R
0

nRnΣn

⌘

�
0

0X
0

nXn�0 + tr (R0

nRnΣn)
, (6.2)

where Σn is the diagonal n⇥n covariance matrix of the disturbance terms. This set-up yields an R2

value close to 0.55. For each specification, the Monte Carlo experiment is based on 1000 repetitions.

6.2 Simulation Results

The simulation results are presented in Appendix 8.3 and 8.4. In each table, the empirical mean

(Mean), the bias (Bias), the empirical standard error (Std.), and the root mean square error (RMSE)

of parameter estimates are presented next to each other.

First, we consider the simulation results for the SARMA (0,1) model. The simulation results are

presented in Table 1 of Appendix 8.3. The MLE imposes almost no bias on �10 and �20 in all cases.

The moving average parameter ⇢0 has substantial amount of bias when n = 100, but the amount

of bias decreases as the sample size increases. Despite this, the MLE imposes significant amount of

bias on ⇢0 when n = 500 and n = 1000 in cases where the true value of ⇢0 is nonzero. Overall, the

simulation results are consistent with our large sample results. That is, the MLE of �10 and �20 is

consistent, while the MLE of ⇢0 is inconsistent in the presence of heteroskedasticity.

Now, we turn to the simulation results for the case of SARMA(1,1). First, we consider the

simulation results for �0 and ⇢0. Table 2 shows the estimation results for n = 100. The MLE

imposes substantial amount of bias on both parameters in all cases. The amount of bias for �0 is

relatively larger when there exists a strong negative spatial dependence in the dependent variable.

There is a similar pattern for ⇢0, where the amount of bias and RMSE is, in general, larger for the

9Here, Diag (B1, . . . , BG) denotes the block diagonal matrix in which the diagonal blocks are mi × mi matrices
Bis.
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cases of high negative spatial dependence in both dependent variable and disturbance term. The

pattern that we see for �0 and ⇢0 shows itself for the estimation results of �10 and �20. That is,

the reported biases and RMSEs are relatively larger for �10 and �20, when there are strong spatial

dependence in the model.

Table 3 contains the simulation results when n = 500. The same pattern that I described for

�0 and ⇢0 is also prevalent in Table 3. The MLE still imposes substantial amount of bias on �0

and ⇢0. The noticeable improvement in the estimation results for �10 and �20 suggests that these

parameters are less affected by the inconsistency of the MLE of �0 and ⇢0, when the sample size

is moderately large. The estimation results in Table 4 for �10 and �20 are also consistent with this

claim. That is, when the sample size is large , i.e., n = 1000, the MLE imposes trivial bias on �10

and �20 in most cases. On the other hand, the estimation results in Table 4 show that the MLE

imposes significant bias on �0 and ⇢0, which in turn implies the inconsistency of the MLE for these

parameters.

I now evaluate the finite sample efficiency measured by RMSE of the MLE through the surface

plots given in Appendix 8.5. Figure 3 shows the surface plots of RMSEs for �10 and �20. It is clear

from the surface plots that the MLE has higher RMSEs when strong spatial dependence exists in

the model. The surface plots in Figure 4 are for �0 and ⇢0. These surface plots indicate that the

MLE of these parameters has higher RMSEs when there exists strong negative spatial dependence

in both the dependent variable and disturbance term.

7 Conclusion

In this study, I show that the MLE of the spatial autoregressive and moving average parameters

for the SARMA(1,1) specification is generally inconsistent in the presence of heteroskedastic distur-

bances. The analytical results indicate that the concentrated log-likelihood function is not maxi-

mized at the true parameter values when heteroskedasticity is not considered in the estimation. The

necessary condition for the consistency of the MLE depends on the specification of spatial weight

matrices. We also show that the MLE of the parameters of the exogenous variables is inconsistent,

and we state the expression for the corresponding asymptotic bias.

The Monte Carlo results show that the MLE imposes substantial amount of bias on the spatial

autoregressive and moving average parameters in all cases for all sample sizes when the spatial

weight matrix has non-identical blocks on the diagonals. The simulation results also show that the

inconsistency of the spatial autoregressive and moving average parameters has almost no effect on

the estimates of parameters of the exogenous variables for cases where the sample size is large.
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8 Appendix

8.1 Some Useful Lemmas

Lemma 1. Let An, Bn and Cn be n ⇥ n matrices with (i, j)th elements respectively denoted by

an,ij, bn,ij and cn,ij. Assume that An and Bn have zero diagonal elements, and Cn has uniformly

bounded row and column sums in absolute value. Let qn be n ⇥ 1 vector with uniformly bounded

elements in absolute value. Assume that "n satisfies Assumption 1 with covariance matrix denoted

by Σn=Diag{�2n1, . . . ,�
2
nn}. Then,

(1) E
⇣

"
0

nAn"n · "
0

nBn"n

⌘

=
n
X

i=1

n
X

j=1

an,ij (bn,ij + bn,ji)�
2
ni�

2
nj = tr

⇣

ΣnAn

⇣

B
0

nΣn + ΣnBn

⌘⌘

(2) E ("nCn"n)
2 =

n
X

i=1

c2n,ii
⇥

E
�

"4ni
�

� 3�4ni
⇤

+

 

n
X

i=1

cn,ii�
2
ni

!2

+

n
X

i=1

n
X

j=1

cn,ij (cn,ij + cn,ji)�
2
ni�

2
nj

=
n
X

i=1

c2n,ii
⇥

E
�

"4ni
�

� 3�4ni
⇤

+ tr2 (ΣnCn) + tr
⇣

ΣnCnC
0

nΣn + ΣnCnΣnCn

⌘

,

(3) Var ("nCn"n) =

n
X

i=1

c2n,ii
⇥

E("4ni)� 3�4ni
⇤

+

n
X

i=1

n
X

j=1

cn,ij(cn,ij + cn,ji)�
2
ni�

2
nj

=
n
X

i=1

c2n,ii
⇥

E("4ni)� 3�4ni
⇤

+ tr
⇣

ΣnCnC
0

nΣn + ΣnCnΣnCn

⌘

.

(4) E
⇣

"
0

nCn"n

⌘

= O(n), Var
⇣

"
0

nCn"n

⌘

= O(n), "
0

nCn"n = Op(n).

(5) E (Cn"n) = 0, Var (Cn"n) = O(n), Cn"n = Op(n), Var
⇣

q
0

nCn"n

⌘

= O(n), q
0

nCn"n = Op(n).

Proof. For (1), (2), (3), (4) and (5) see Lemmas A.1 through A.4 in Lin and Lee (2010) and Lemma

2 in Dogan and Suleyman (2013).

Lemma 2. Consider Mn = (In � Pn), where Pn = Xn(X
0

nXn)
�1X

0

n under Assumption 3. Assume

that "n satisfies Assumption 1 with covariance matrix denoted by Σn=Diag{�2n1, . . . ,�
2
nn}. Then,

(1) Mn and Pn are uniformly bounded in absolute value in both row and column sums.

(2) Var (Pn"n) = O

✓

1

n

◆

, Pn"n = op(1), Var ("nPn"n) = O

✓

1

n

◆

, "nPn"n = Op(1).

(3) Elements of Pn are O

✓

1

n

◆

.

Proof. The proof is similar to the proof of Lemma 3 in Dogan and Suleyman (2013). Hence, it is
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omitted.

8.2 Proof of Proposition 1

For the probability limit of terms in (4.14), the partial derivatives @�̂2
n(�)
@⇢

, @�̂2
n(�)
@�

and @Mn(⇢)
@⇢

are

required, which are given by

(1)
@Mn(⇢)

@⇢
= �



R�1
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�1
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.

(3)
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2

n
Y

0

nS
0

n(�)R
0
�1
n (⇢)Mn(⇢)R

�1
n (⇢)WnYn

�

.

First, the probability limit of the first row in (4.14) is investigated:

plim
n!1

1

n

 

�
n

2
n"

0

nMn"n

@�̂2n(�0)
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!

= plim
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1
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0

nMnGn"n
1
n"

0
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+ plim

n!1

1
n"

0

nMnGnXn�0
1
n"

0

nMn"n
, (8.1)

where we use X
0

nMn = 0k⇥n. For the second term on the r.h.s. of (8.1), we have

plim
n!1

1
n"

0

nMnR
�1
n GnXn�0

1
n"

0

nMn"n
= 0, (8.2)

since the numerator converges in probability to zero by Lemma 1(5) and Lemma 2(1), and for the

term in the denominator we have 1
n"

0

nMn"n = 1
n

Pn
i=1 �

2
ni + op(1) as shown in (4.11). The overall

result is zero since 1
n

Pn
i=1 �

2
ni is uniformly bounded for all n by Assumption 1. As for the first term

on the r.h.s of (8.1), we have

plim
n!1

1
n"

0

nMnGn"n
1
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0

nMn"n
= plim

n!1

1
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1
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0
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⌘

�1
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0

nGn"n

1
n"

0

nMn"n
. (8.3)

We first evaluate the last term in (8.3). The numerator of this term tends to zero in probability

as n goes to infinity by Lemma 1(4) and Assumption 3. Hence, the last term in (8.3) vanishes.

19



Now, we return to the first term in the r.h.s. of (8.3). By Lemma 1(4),

Var
⇣

1
n"

0

nGn"n

⌘

= O
�

1
n

�

= o(1). Then, the Chebyshev inequality implies that
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⇣
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⌘
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2
ni
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These results imply the following one:
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Now, we return to the first term in the second row of (4.14):
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Each term is handled separately below by using R�1
n SnYn = Xn�0 + "n, SnYn = Xn�0 + Rn"n,

X
0

nMn = 0k⇥n and MnXn = 0n⇥k. Note that 1
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0
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0
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nMn"n. By Lemma 1(5) and Lemma 2(1), 1
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and Assumption 3, we have 1
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nPnHn"n = op(1). For the remaining term, by Lemma 2, we have
1
n"nPnH

0

nMn"n = op(1). Hence, the second term on the r.h.s. of (8.6) vanishes.

The first term on r.h.s. of (8.6) can be written as
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Substituting Mn = In �Xn
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By Lemma 1(5) and (4.11), the second term on the r.h.s of (8.8) vanishes. The third term vanishes by

Lemma 1(4) and (4.11). The probability limit of the remaining term can be found by the Chebyshev

inequality. By Lemma 1(4), we have Var
⇣

1
n"

0

nHn"n
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= O( 1n) = o(1). Hence, plimn!1
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= 0. Combining these results, we get the
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following result for the first term in the first row of (4.14):
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By combining the results in (8.5) and (8.9), we obtain:
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For the notational simplification, denote H⇤
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10Note that 1
n
tr(Gn −Gn) = 0.
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8.3 Simulation Results for SARMA(0,1)

Table 1: Simulation Results for SARMA(0,1)

n = 100 β1 β2 ρ

ρ (Mean)[Bias](Std.)[RMSE] (Mean)[Bias](Std.)[RMSE] (Mean)[Bias](Std.)[RMSE]

-0.6 (0.987)[-0.013](0.209)[0.209] (1.009)[0.009](0.218)[0.218] (-0.405)[0.195](0.618)[0.648]

-0.3 (1.000)[-0.000](0.211)[0.211] (0.998)[-0.002](0.203)[0.203] (-0.205)[0.095](0.630)[0.637]

0.0 (1.001)[0.001](0.214)[0.214] (1.008)[0.008](0.229)[0.229] (0.101)[0.101](0.565)[0.574]

0.3 (1.000)[0.000](0.217)[0.217] (0.993)[-0.007](0.222)[0.222] (0.434)[0.134](0.386)[0.409]

0.6 (0.996)[-0.004](0.212)[0.212] (0.998)[-0.002](0.210)[0.210] (0.710)[0.110](0.204)[0.232]

n = 500

-0.6 (1.006)[0.006](0.083)[0.083] (0.995)[-0.005](0.082)[0.082] (-0.652)[-0.052](0.377)[0.380]

-0.3 (1.001)[0.001](0.083)[0.083] (1.002)[0.002](0.084)[0.084] (-0.354)[-0.054](0.388)[0.392]

0.0 (0.998)[-0.002](0.084)[0.084] (1.002)[0.002](0.082)[0.082] (0.007)[0.007](0.293)[0.293]

0.3 (1.005)[0.005](0.085)[0.085] (0.998)[-0.002](0.080)[0.080] (0.346)[0.046](0.189)[0.194]

0.6 (0.997)[-0.003](0.078)[0.078] (1.002)[0.002](0.081)[0.081] (0.652)[0.052](0.095)[0.108]

n = 1000

-0.6 (1.000)[-0.000](0.058)[0.058] (1.000)[0.000](0.059)[0.059] (-0.682)[-0.082](0.284)[0.296]

-0.3 (0.999)[-0.001](0.059)[0.059] (0.998)[-0.002](0.058)[0.058] (-0.342)[-0.042](0.274)[0.277]

0.0 (1.000)[-0.000](0.057)[0.057] (1.004)[0.004](0.059)[0.059] (0.010)[0.010](0.191)[0.191]

0.3 (0.998)[-0.002](0.058)[0.058] (1.000)[0.000](0.058)[0.058] (0.330)[0.030](0.125)[0.128]

0.6 (1.002)[0.002](0.057)[0.057] (0.999)[-0.001](0.057)[0.057] (0.630)[0.030](0.072)[0.078]
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8.4 Simulation Results for SARMA(1,1)

Table 2: Simulation Results for SARMA(1,1): n = 100

λ β1 β2 ρ

λ ρ (Mean)[Bias](Std.)[RMSE] (Mean)[Bias](Std.)[RMSE] (Mean)[Bias](Std.)[RMSE] (Mean)[Bias](Std.)[RMSE]

-0.6 -0.6 (-1.583)[-0.983](4.262)[4.374] (0.874)[-0.126](0.342)[0.364] (0.898)[-0.102](0.350)[0.365] (-0.273)[0.327](0.981)[1.034]

-0.6 -0.3 (-1.790)[-1.190](4.346)[4.506] (0.848)[-0.152](0.371)[0.401] (0.847)[-0.153](0.361)[0.392] (-0.178)[0.122](0.997)[1.004]

-0.6 0.0 (-1.794)[-1.194](4.355)[4.516] (0.867)[-0.133](0.357)[0.381] (0.865)[-0.135](0.353)[0.378] (0.021)[0.021](0.934)[0.934]

-0.6 0.3 (-1.404)[-0.804](3.687)[3.773] (0.839)[-0.161](0.379)[0.412] (0.851)[-0.149](0.382)[0.410] (0.264)[-0.036](0.709)[0.710]

-0.6 0.6 (-0.591)[0.009](1.108)[1.108] (0.760)[-0.240](0.455)[0.515] (0.760)[-0.240](0.455)[0.515] (0.470)[-0.130](0.342)[0.366]

-0.3 -0.6 (-0.907)[-0.607](3.275)[3.331] (0.912)[-0.088](0.325)[0.337] (0.907)[-0.093](0.324)[0.337] (-0.259)[0.341](0.822)[0.890]

-0.3 -0.3 (-1.132)[-0.832](3.497)[3.594] (0.882)[-0.118](0.351)[0.370] (0.881)[-0.119](0.362)[0.381] (-0.136)[0.164](0.906)[0.920]

-0.3 0.0 (-1.335)[-1.035](3.840)[3.977] (0.857)[-0.143](0.361)[0.388] (0.861)[-0.139](0.367)[0.393] (-0.005)[-0.005](0.861)[0.861]

-0.3 0.3 (-1.045)[-0.745](3.364)[3.445] (0.840)[-0.160](0.399)[0.430] (0.835)[-0.165](0.400)[0.433] (0.220)[-0.080](0.709)[0.714]

-0.3 0.6 (-0.574)[-0.274](1.873)[1.893] (0.768)[-0.232](0.466)[0.521] (0.758)[-0.242](0.459)[0.519] (0.436)[-0.164](0.390)[0.423]

0.0 -0.6 (-0.452)[-0.452](2.570)[2.609] (0.904)[-0.096](0.354)[0.367] (0.898)[-0.102](0.350)[0.365] (-0.292)[0.308](0.721)[0.784]

0.0 -0.3 (-0.690)[-0.690](3.123)[3.199] (0.903)[-0.097](0.337)[0.350] (0.889)[-0.111](0.340)[0.358] (-0.208)[0.092](0.772)[0.778]

0.0 0.0 (-0.834)[-0.834](3.174)[3.282] (0.841)[-0.159](0.383)[0.415] (0.857)[-0.143](0.391)[0.416] (-0.079)[-0.079](0.804)[0.808]

0.0 0.3 (-0.450)[-0.450](2.131)[2.178] (0.839)[-0.161](0.407)[0.438] (0.838)[-0.162](0.412)[0.442] (0.238)[-0.062](0.590)[0.593]

0.0 0.6 (-0.278)[-0.278](1.068)[1.104] (0.768)[-0.232](0.469)[0.523] (0.763)[-0.237](0.463)[0.521] (0.411)[-0.189](0.349)[0.397]

0.3 -0.6 (0.068)[-0.232](1.429)[1.448] (0.938)[-0.062](0.311)[0.317] (0.951)[-0.049](0.307)[0.311] (-0.384)[0.216](0.543)[0.585]

0.3 -0.3 (-0.157)[-0.457](2.174)[2.221] (0.903)[-0.097](0.344)[0.358] (0.902)[-0.098](0.345)[0.359] (-0.279)[0.021](0.623)[0.623]

0.3 0.0 (-0.211)[-0.511](2.030)[2.094] (0.867)[-0.133](0.376)[0.399] (0.864)[-0.136](0.381)[0.404] (-0.161)[-0.161](0.660)[0.679]

0.3 0.3 (-0.203)[-0.503](2.007)[2.069] (0.819)[-0.181](0.437)[0.473] (0.813)[-0.187](0.432)[0.471] (0.095)[-0.205](0.621)[0.654]

0.3 0.6 (-0.022)[-0.322](0.735)[0.802] (0.659)[-0.341](0.508)[0.612] (0.657)[-0.343](0.503)[0.609] (0.329)[-0.271](0.381)[0.468]

0.6 -0.6 (0.422)[-0.178](0.712)[0.733] (0.981)[-0.019](0.231)[0.232] (0.981)[-0.019](0.230)[0.231] (-0.584)[0.016](0.346)[0.346]

0.6 -0.3 (0.376)[-0.224](0.580)[0.621] (0.976)[-0.024](0.253)[0.254] (0.965)[-0.035](0.255)[0.257] (-0.511)[-0.211](0.329)[0.391]

0.6 0.0 (0.270)[-0.330](0.842)[0.905] (0.961)[-0.039](0.294)[0.296] (0.945)[-0.055](0.292)[0.297] (-0.412)[-0.412](0.386)[0.564]

0.6 0.3 (0.152)[-0.448](1.345)[1.418] (0.921)[-0.079](0.326)[0.335] (0.920)[-0.080](0.335)[0.344] (-0.286)[-0.586](0.415)[0.719]

0.6 0.6 (0.159)[-0.441](0.767)[0.884] (0.802)[-0.198](0.436)[0.479] (0.800)[-0.200](0.432)[0.476] (-0.059)[-0.659](0.414)[0.779]

23



Table 3: Simulation Results for SARMA(1,1): n = 500

λ β1 β2 ρ

λ ρ (Mean)[Bias](Std.)[RMSE] (Mean)[Bias](Std.)[RMSE] (Mean)[Bias](Std.)[RMSE] (Mean)[Bias](Std.)[RMSE]

-0.6 -0.6 (-3.051)[-2.451](7.286)[7.687] (0.914)[-0.086](0.257)[0.271] (0.911)[-0.089](0.256)[0.271] (-1.040)[-0.440](1.921)[1.970]

-0.6 -0.3 (-2.905)[-2.305](7.213)[7.572] (0.916)[-0.084](0.253)[0.267] (0.918)[-0.082](0.254)[0.267] (-0.725)[-0.425](1.913)[1.960]

-0.6 0.0 (-1.771)[-1.171](5.677)[5.797] (0.953)[-0.047](0.203)[0.208] (0.949)[-0.051](0.204)[0.210] (-0.123)[-0.123](1.427)[1.432]

-0.6 0.3 (-0.977)[-0.377](3.577)[3.597] (0.985)[-0.015](0.142)[0.143] (0.982)[-0.018](0.140)[0.141] (0.303)[0.003](0.814)[0.814]

-0.6 0.6 (-0.667)[-0.067](0.139)[0.154] (1.003)[0.003](0.088)[0.088] (1.006)[0.006](0.085)[0.085] (0.609)[0.009](0.087)[0.087]

-0.3 -0.6 (-0.985)[-0.685](4.189)[4.244] (0.979)[-0.021](0.163)[0.165] (0.975)[-0.025](0.162)[0.164] (-0.608)[-0.008](1.201)[1.201]

-0.3 -0.3 (-1.513)[-1.213](5.164)[5.304] (0.953)[-0.047](0.187)[0.193] (0.960)[-0.040](0.189)[0.193] (-0.577)[-0.277](1.472)[1.498]

-0.3 0.0 (-1.196)[-0.896](4.602)[4.689] (0.972)[-0.028](0.174)[0.177] (0.968)[-0.032](0.171)[0.174] (-0.155)[-0.155](1.284)[1.293]

-0.3 0.3 (-0.457)[-0.157](1.797)[1.804] (0.996)[-0.004](0.103)[0.103] (0.994)[-0.006](0.102)[0.102] (0.312)[0.012](0.449)[0.449]

-0.3 0.6 (-0.460)[-0.160](0.212)[0.266] (1.000)[-0.000](0.082)[0.082] (1.006)[0.006](0.082)[0.082] (0.557)[-0.043](0.132)[0.139]

0.0 -0.6 (0.040)[0.040](1.086)[1.087] (0.998)[-0.002](0.090)[0.090] (0.998)[-0.002](0.086)[0.086] (-0.371)[0.229](0.468)[0.521]

0.0 -0.3 (-0.220)[-0.220](2.089)[2.100] (0.994)[-0.006](0.103)[0.103] (0.994)[-0.006](0.109)[0.109] (-0.333)[-0.033](0.703)[0.704]

0.0 0.0 (-0.205)[-0.205](1.807)[1.819] (0.996)[-0.004](0.101)[0.101] (0.995)[-0.005](0.101)[0.101] (-0.075)[-0.075](0.681)[0.685]

0.0 0.3 (-0.077)[-0.077](0.731)[0.735] (0.996)[-0.004](0.085)[0.085] (0.998)[-0.002](0.087)[0.087] (0.298)[-0.002](0.328)[0.328]

0.0 0.6 (-0.153)[-0.153](0.253)[0.296] (0.987)[-0.013](0.136)[0.137] (0.989)[-0.011](0.135)[0.136] (0.521)[-0.079](0.197)[0.213]

0.3 -0.6 (0.317)[0.017](0.140)[0.141] (1.003)[0.003](0.084)[0.084] (1.000)[0.000](0.082)[0.082] (-0.430)[0.170](0.201)[0.263]

0.3 -0.3 (0.228)[-0.072](0.173)[0.188] (1.003)[0.003](0.086)[0.086] (0.998)[-0.002](0.083)[0.083] (-0.323)[-0.023](0.272)[0.273]

0.3 0.0 (0.137)[-0.163](0.715)[0.734] (0.998)[-0.002](0.086)[0.087] (0.997)[-0.003](0.086)[0.086] (-0.174)[-0.174](0.408)[0.444]

0.3 0.3 (0.199)[-0.101](0.211)[0.234] (0.996)[-0.004](0.100)[0.100] (0.996)[-0.004](0.100)[0.100] (0.216)[-0.084](0.362)[0.372]

0.3 0.6 (0.245)[-0.055](0.194)[0.202] (0.961)[-0.039](0.211)[0.214] (0.958)[-0.042](0.209)[0.213] (0.587)[-0.013](0.205)[0.205]

0.6 -0.6 (0.545)[-0.055](0.086)[0.102] (0.998)[-0.002](0.082)[0.082] (1.000)[-0.000](0.084)[0.084] (-0.652)[-0.052](0.102)[0.115]

0.6 -0.3 (0.486)[-0.114](0.082)[0.141] (0.998)[-0.002](0.082)[0.082] (1.001)[0.001](0.081)[0.081] (-0.583)[-0.283](0.103)[0.301]

0.6 0.0 (0.411)[-0.189](0.091)[0.209] (1.000)[0.000](0.083)[0.083] (0.997)[-0.003](0.081)[0.081] (-0.490)[-0.490](0.124)[0.505]

0.6 0.3 (0.324)[-0.276](0.088)[0.290] (1.007)[0.007](0.089)[0.090] (1.003)[0.003](0.092)[0.092] (-0.344)[-0.644](0.200)[0.674]

0.6 0.6 (0.288)[-0.312](0.159)[0.350] (0.943)[-0.057](0.253)[0.259] (0.941)[-0.059](0.253)[0.260] (-0.070)[-0.670](0.387)[0.774]
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Table 4: Simulation Results for SARMA(1,1): n = 1000

λ β1 β2 ρ

λ ρ (Mean)[Bias](Std.)[RMSE] (Mean)[Bias](Std.)[RMSE] (Mean)[Bias](Std.)[RMSE] (Mean)[Bias](Std.)[RMSE]

-0.6 -0.6 (-3.449)[-2.849](8.618)[9.077] (0.907)[-0.093](0.283)[0.298] (0.906)[-0.094](0.282)[0.297] (-1.323)[-0.723](2.487)[2.590]

-0.6 -0.3 (-4.151)[-3.551](9.648)[10.280] (0.877)[-0.123](0.311)[0.334] (0.880)[-0.120](0.312)[0.335] (-1.135)[-0.835](2.798)[2.920]

-0.6 0.0 (-1.675)[-1.075](6.110)[6.204] (0.957)[-0.043](0.201)[0.205] (0.958)[-0.042](0.199)[0.204] (-0.148)[-0.148](1.666)[1.672]

-0.6 0.3 (-0.650)[-0.050](2.400)[2.401] (0.991)[-0.009](0.092)[0.093] (0.991)[-0.009](0.093)[0.093] (0.352)[0.052](0.568)[0.570]

-0.6 0.6 (-0.682)[-0.082](0.095)[0.126] (1.007)[0.007](0.059)[0.060] (1.007)[0.007](0.057)[0.058] (0.595)[-0.005](0.054)[0.055]

-0.3 -0.6 (-0.698)[-0.398](3.631)[3.653] (0.983)[-0.017](0.128)[0.129] (0.985)[-0.015](0.129)[0.129] (-0.624)[-0.024](1.152)[1.153]

-0.3 -0.3 (-1.691)[-1.391](6.083)[6.240] (0.952)[-0.048](0.204)[0.210] (0.954)[-0.046](0.204)[0.209] (-0.704)[-0.404](1.839)[1.883]

-0.3 0.0 (-0.829)[-0.529](4.086)[4.120] (0.981)[-0.019](0.141)[0.143] (0.982)[-0.018](0.142)[0.143] (-0.103)[-0.103](1.241)[1.245]

-0.3 0.3 (-0.385)[-0.085](1.415)[1.418] (1.000)[-0.000](0.073)[0.073] (0.999)[-0.001](0.074)[0.074] (0.300)[-0.000](0.335)[0.335]

-0.3 0.6 (-0.476)[-0.176](0.169)[0.244] (1.005)[0.005](0.058)[0.058] (1.007)[0.007](0.058)[0.058] (0.524)[-0.076](0.105)[0.130]

0.0 -0.6 (0.090)[0.090](0.866)[0.870] (0.998)[-0.002](0.064)[0.064] (1.000)[-0.000](0.067)[0.067] (-0.361)[0.239](0.373)[0.443]

0.0 -0.3 (-0.096)[-0.096](1.508)[1.511] (0.996)[-0.004](0.083)[0.083] (0.995)[-0.005](0.078)[0.078] (-0.323)[-0.023](0.575)[0.575]

0.0 0.0 (-0.111)[-0.111](1.287)[1.291] (0.997)[-0.003](0.071)[0.071] (0.994)[-0.006](0.070)[0.070] (-0.063)[-0.063](0.525)[0.529]

0.0 0.3 (-0.074)[-0.074](0.181)[0.195] (0.997)[-0.003](0.060)[0.060] (0.999)[-0.001](0.060)[0.060] (0.260)[-0.040](0.169)[0.174]

0.0 -0.6 (0.068)[-0.232](1.429)[1.448] (0.938)[-0.062](0.311)[0.317] (0.951)[-0.049](0.307)[0.311] (-0.384)[0.216](0.543)[0.585]

0.3 -0.6 (0.342)[0.042](0.090)[0.099] (1.000)[0.000](0.060)[0.060] (1.001)[0.001](0.059)[0.059] (-0.429)[0.171](0.118)[0.208]

0.3 -0.3 (0.251)[-0.049](0.111)[0.121] (1.000)[-0.000](0.063)[0.063] (1.004)[0.004](0.060)[0.061] (-0.338)[-0.038](0.152)[0.157]

0.3 0.0 (0.174)[-0.126](0.125)[0.178] (1.001)[0.001](0.058)[0.058] (0.998)[-0.002](0.059)[0.059] (-0.188)[-0.188](0.229)[0.296]

0.3 0.3 (0.225)[-0.075](0.145)[0.163] (0.999)[-0.001](0.061)[0.061] (0.999)[-0.001](0.058)[0.058] (0.223)[-0.077](0.271)[0.281]

0.3 0.6 (0.274)[-0.026](0.147)[0.149] (0.996)[-0.004](0.097)[0.097] (0.992)[-0.008](0.097)[0.097] (0.609)[0.009](0.148)[0.148]

0.6 -0.6 (0.562)[-0.038](0.055)[0.067] (1.002)[0.002](0.059)[0.059] (1.000)[0.000](0.059)[0.059] (-0.668)[-0.068](0.066)[0.095]

0.6 -0.3 (0.496)[-0.104](0.058)[0.119] (1.002)[0.002](0.059)[0.059] (1.000)[0.000](0.058)[0.058] (-0.590)[-0.290](0.071)[0.299]

0.6 0.0 (0.417)[-0.183](0.058)[0.192] (0.998)[-0.002](0.062)[0.062] (1.000)[0.000](0.061)[0.061] (-0.495)[-0.495](0.072)[0.501]

0.6 0.3 (0.324)[-0.276](0.061)[0.282] (1.004)[0.004](0.060)[0.060] (1.002)[0.002](0.060)[0.060] (-0.372)[-0.672](0.114)[0.682]

0.6 0.6 (0.320)[-0.280](0.176)[0.331] (0.977)[-0.023](0.175)[0.177] (0.975)[-0.025](0.176)[0.177] (0.007)[-0.593](0.416)[0.725]
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8.5 Surface Plots of RMSEs for SARMA(1,1)

Figure 3: RMSE of �1 and �2
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Figure 4: RMSE of � and ⇢
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