

University of Wollongong Research Online

Australian Institute for Innovative Materials - Papers

Australian Institute for Innovative Materials

2018

Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review

Guoqiang Zhao University of Wollongong, gz815@uowmail.edu.au

Kun Rui University of Wollongong, krui@uow.edu.au

Shi Xue Dou University of Wollongong, shi@uow.edu.au

Wenping Sun University of Wollongong, wenping@uow.edu.au

Publication Details

Zhao, G., Rui, K., Dou, S. Xue. & Sun, W. (2018). Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review. Advanced Functional Materials, 28 (43), 1803291-1-1803291-26.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au

Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review

Abstract

Developing sustainable and renewable energy sources along with efficient energy storage and conversion technologies is vital to address environmental and energy challenges. Electrochemical water splitting coupling with grid-scale renewable energy harvesting technologies is becoming one of the most promising approaches. Besides, hydrogen with the highest mass-energy density of any fuel is regarded as the ultimate clean energy carrier. The realization of practical water splitting depends heavily on the development of low-cost, highly active, and durable catalysts for hydrogen evolution reactions (HERs) and oxygen evolution reactions (OERs). Recently, heterostructured catalysts, which are generally composed of electrochemical active materials and various functional additives, have demonstrated extraordinary electrocatalytic performance toward HER and OER, and particularly a number of precious-metal-free heterostructures delivered comparable activity with precious-metal-based catalysts. Herein, an overview is presented of recent research progress on heterostructured HER catalysts. It starts with summarizing the fundamentals of HER and approaches for evaluating HER activity. Then, the design and synthesis of heterostructures, electrochemical performance, and the related mechanisms for performance enhancement are discussed. Finally, the future opportunities and challenges are highlighted for the development of heterostructured HER catalysts from the points of view of both fundamental understandings and practical applications.

Disciplines

Engineering | Physical Sciences and Mathematics

Publication Details

Zhao, G., Rui, K., Dou, S. Xue. & Sun, W. (2018). Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review. Advanced Functional Materials, 28 (43), 1803291-1-1803291-26.

DOI: 10.1002/ ((please add manuscript number)) Article type: Review

Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review

Guoqiang Zhao, Kun Rui, Shi Xue Dou, Wenping Sun*

G. Q. Zhao, Dr. K. Rui, Prof. S. X. Dou, Dr. W. P. Sun Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, NSW 2522, Australia E-mail: wenping@uow.edu.au

Keywords: heterostructures, hydrogen evolution reaction, mechanism, water splitting, electrocatalysis

Abstract:

Developing sustainable and renewable energy sources along with efficient energy storage and conversion technologies is vital to address the environmental and energy challenges. Electrochemical water splitting coupling with grid-scale renewable energy harvesting technologies is becoming one of the most promising approaches. Besides, hydrogen with the highest mass-energy density of any fuel is regarded as the ultimate clean energy carrier. The realization of practical water splitting depends heavily on the development of low-cost, highly active, and durable catalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Recently, heterostructured catalysts, which are generally composed of electrochemical active materials and various functional additives, have demonstrated extraordinary electrocatalytic performance toward HER and OER, and particularly a number of precious metal-free heterostructures delivered comparable activity with precious metal-based catalysts. In this review, we present an overview of recent research progress on heterostructured HER catalysts. We start with summarizing the fundamentals of HER and approaches for evaluating HER activity. Then, the design and synthesis of heterostructures,

electrochemical performance, and the related mechanisms for performance enhancement are discussed. Finally, we highlight the future opportunities and challenges for the development of heterostructured HER catalysts from the points of view of both fundamental understandings and practical applications.

1. Introduction

Environmental pollution, global warming, and energy crisis caused by massive fossil fuel combustion have been the focus of world attention.^[11] According to a report from the International Energy Agency, the global energy demand will expand by 30% by 2040, and the CO₂ emissions will reach as large as 35.7 Gt per year in 2040.^[2] Therefore, establishing a global-scale clean and sustainable energy system is on the top challenges facing the humanity. To this end, countries from all over the world are taking steps to stimulating the development and application of renewable energies such as hydropower, solar, and wind energy, etc.^[3-4] However, the spatial and temporal discontinuities of these renewable energy resources result in low energy delivery efficiency. In addition to developing low-cost grid-scale energy storage systems, another promising solution is to convert these renewable energies into chemical fuels that can be easily stored and transported. Hydrogen (H₂), with the highest gravimetric energy density among all chemical fuels (142 MJ Kg⁻¹, upper heating value),^[5] is considered as the ultimate clean energy carrier, which would significantly mitigate the environmental concerns due to zero emission of carbonaceous species.

Photoelectrochemical and electrochemical water splitting are two possible strategies to realizing solar-to-hydrogen conversion. However, due to the limitation of the working current densities,^[6] photoelectrochemical water splitting devices require much larger electrode area

than electrochemical water splitting systems to generate the same amount of gas per unit time, resulting in restrictions in choosing viable catalysts and suitable construction locations.^[7-8] Moreover, other renewable energies are naturally excluded from the photoelectrochemical avenue. Therefore, despite of lower solar-to-hydrogen efficiency than the direct photoelectrochemical route, the electrochemical water splitting is more attractive due to the higher flexibility and applicability. Combining grid-scale renewable energy harvesting infrastructures with electrochemical water splitting devices can efficiently convert the intermittent electricity obtained from renewable energies into more valuable H₂ and thereby enhance the diversity of renewable energy utilization.^[9] Figure 1 shows a sustainable pathway for the circulation of hydrogen energy regarding the combination of renewable energy harvesting and electrochemical water splitting. This hydrogen production process is CO₂-free and requires only water and electricity, ^[10-11] in sharp contrast to the steam reforming reaction which is the primary hydrogen production approach in the industry and involves fossil fuels consumption and CO₂ emission.^[12-13] Besides, the electrochemical water splitting produces H₂ with a high purity that can directly be used as either an industrial feedstock or the fuel gas for householding. Furthermore, H₂ is the ideal fuel for proton-exchange membrane fuel cells (PEMFCs), which is a high efficient energy conversion device and is also a promising candidate for electric vehicle power systems. Therefore, it is pivotal to develop efficient water electrolysis systems and thus enable the non-polluting H₂ production for establishing the clean and sustainable energy system for the future.

In a typical water electrolysis system, H_2 and O_2 is produced at the cathode and the anode through the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER),

respectively, and an external current is applied to overcome the energy barrier of the reaction (237 kJ mol⁻¹). Although the water electrolysis theory is straightforward, the large-scale application of water splitting for H₂ production is still absent in reality today.^[14] The first commercial demonstration of water electrolysis dates back to as early as the 1890s. However, after more than 100 years of development, electrochemical water splitting contributes only 4% of H₂ supply worldwide,^[15] which is in great part due to the high cost and low efficiency. In practice, the energy conversion efficiency of a commercial electrolyzer system is about 56–73%.^[16] To address this issue, we must choose proper catalysts to improve the energy conversion efficiency. At present, noble-metal-based catalysts remain to be the most efficient catalysts for HER and OER, and Pt is the state-of-the-art catalyst for HER.^[17-20] Therefore, developing earth-abundant catalysts with high activity becomes one of the top priorities for the development of economic and efficient water electrolysis systems. To date, various earth-abundant catalysts with considerable catalytic activity towards OER and in particular HER have been reported.^[21-28] With regard to HER, transition metal dichalcogenides (TMDs),^[29-34] transition metal phosphides (TMPs),^[35-38] carbides,^[39-41] and nitrides,^[42-43] are extensively investigated. Recently, a variety of heterostructured catalysts stand out from the crowd, showing extraordinary catalytic performance towards electrochemical water splitting over their counterparts.^[44-48] For example, Gao et al. reported a MoS₂/CoSe₂ heterostructure catalyst by depositing MoS₂ on the surface of CoSe₂. The MoS₂/CoSe₂ heterostructure exhibited excellent HER performance in 0.5 M H₂SO₄ with an overpotential of 68 mV at 10 mA cm⁻², a Tafel slope of 36 mV dec⁻¹, and good performance durability.^[49] Chen et al. synthesized a three-dimensional (3D) core/shell catalyst composed of metallic Co cores and

amorphous Co_3O_4 shells, and the Co/Co₃O₄ heterostructure delivered 10 mA cm⁻² at a low overpotential of merely 90 mV in 1 M KOH.^[50]

The concept of heterostructure originates from semiconductor physics. According to the definition, heterostructures consist of abundant heterojunctions-the interfaces between different components, and heterostructures are semiconductor structures where the chemical composition changes with position.^[51] With the intercrossing and merging of knowledge network, the concept of heterostructure has gone beyond semiconductor physics. More generally, heterostructures may be defined as the composite structures that consist of interfaces formed by different solid-state materials, including conductors, insulators as well as semiconductors. The concept of heterostructure hereinafter in this review refers to this generalized definition. Accordingly, a heterostructured catalyst consists of two or more types of materials that are usually physically or chemically bonded together. From the perspective of the HER catalytic activity of the catalysts, the components in a heterostructure could be either active or non-active. Nevertheless, most heterostructured catalysts, including active/active and active/non-active types of heterostructures, exhibit higher HER activities than the single counterpart due to a variety of advantages that the heterostructured catalysts might possess, as illustrated in Figure 2. Firstly, constructing heterostructured HER catalysts is an efficient approach to increasing the number of active sites. Most of these heterostructured HER catalysts possess refined nanostructures with substantially exposed edges, which provide sufficient adsorption sites for the intermediates of HER.^[52-54] Secondly, in addition to further increasing the number of active sites and enhancing electrical conductivity, introducing macroscopic substrates such as nickel foam (NF), carbon cloth (CC)

into heterostructures can enable fast mass diffusion, which is vital to reducing overpotential at high current densities.^[55-57] Thirdly, the performance durability of the catalysts can be improved by constructing some well-defined nanostructures.^[53] Taking a core-shell structure as an example, the active but unstable species can be protected by a thin layer of stable species, which enables a long-life HER activity. Fourthly, the difference between the electronegativity of the different components in the heterostructured catalysts may induce electron transfer between different components, which usually can be revealed by the binding energy shift in XPS spectra. The electron redistribution will regulate the electronic structures or the band structures of the components, which is critical to the superior HER activity of some heterostructures.^[43, 58-59] Finally, the so-called synergistic effect also contributes significantly to the enhanced HER kinetics of the heterostructures.^[49, 60] Heterostructured catalysts are designed with specific attention on introducing additional water adsorption/dissociation sites for alkaline HER, and transition metal hydroxides/oxides are most extensively explored as water adsorption/dissociation promoters.^[61-63]

Although a variety of heterostructured catalysts exhibit decent HER activity over a wide pH range and/or show multifunctional activity for both HER and OER, they are not included in this review. Considering that conventional water electrolysis facilities generally work at either very high or very low pH,^[8] this review focuses on the recent development of the heterostructured catalysts that work in either acidic or alkaline solutions, and a brief summary of these heterostructures is presented in **Table 1** and **Table 2**. In this review, we mainly summarize the catalyst design and synthesis methodologies, and discuss the related mechanisms. We start with briefly reviewing the HER reaction mechanism and the general

approaches for evaluating catalytic performance. Then, we introduce the state-of-the-art heterostructured HER catalysts, with emphasis on the design and synthesis strategies as well as the mechanisms for the enhanced catalytic activity. Finally, we highlight the opportunities and challenges of the heterostructured catalysts and provide perspectives for the future research.

2. Mechanisms of electrochemical HER

Electrocatalytic HER is essentially an electrochemical process where redox reactions take place at the electrode/electrolyte interface. Depending on the pH value of the electrolyte, H_2 is generated via the reduction of either proton (H⁺) or H_2O , both of which involve a series of elementary steps.

2.1 HER in acidic media

It has generally been accepted that the HER at the surface of various catalysts involves two successive steps in acidic media.^[64-66] At the beginning of HER, a H⁺ adsorbs on the catalyst surface to form an adsorbed hydrogen atom (H^{*}), where * represents an active site on the catalyst surface. This process is called the Volmer step or the discharge step (equation 1). Then a H^{*} combines with a H⁺ and an electron (e⁻) to form a H₂ molecule, as described in equation 2, which is named as the Heyrovsky step or the electrochemical desorption step. Alternatively, H₂ could be formed via the Tafel step which is also known as the chemical desorption step, i.e. the combination of two H^{*} on the catalyst surface (equation 3). The overall reaction of HER is represented in equation 4, the standard electrode potential (E^o) of which is used as the reference for evaluating the standard electrode potential of electrochemical reactions.^[67]

$$H^+ + e^- \to H^* \tag{1}$$

$$H^* + H^+ + e^- \to H_2 \tag{2}$$

$$2H^* \to H_2 \tag{3}$$

$$2H^+ + 2e^- \to H_2 \tag{4}$$

According to the Sabatier principle,^[68] the HER kinetics strongly hinges on the interaction between the catalyst and H*.^[69] By plotting the reaction rate of the HER on various catalyst surface vs. the hydride formation energy, S. Trasatti constructed the first volcano curve for the HER.^[70] The hydride formation energy was used to describe the adsorption behavior due to the unavailability of neither experimental nor theoretical data for the hydrogen adsorption energy (ΔG°_{H}) at that time. In 2004, Nørskov's group collected experimental data of exchange current densities for HER on various metals, calculated the corresponding adsorption energies using the density functional theory (DFT), and presented the first modern volcano plots.^[71] The results perfectly elucidate the origin of the superior HER activity of Pt and provide an intuitive description for the dependence of HER activity on hydrogen binding energy. As a successful paradigm, the edge sites of MoS₂ were predicted to possess high HER activity based on a close-to-neutral ΔG°_{H} of MoS₂ edges,^[72] which afterwards were confirmed by experiments.^[73] Since then, attempts to expose more edges of MoS₂ have achieved dramatic success in developing advanced HER catalysts,^[74-75] which highlights the importance of combining theories and the practice in developing advanced HER catalysts. Thanks to DFT calculations which is an integral part of the modern catalysis science, ΔG°_{H} now can straightforward be obtained and has played an indispensable role in interpreting the intrinsic electrocatalytic activity of HER catalysts.^[76]

2.2 HER in alkaline media

As for the HER in alkaline media, ΔG°_{H} still works for describing the adsorption behavior of hydrogen on the surface of catalysts. It is interesting to note that the volcano plot in alkaline media shift only up and down rather than left or right comparing with that in acidic solution.^[77] Specifically, the exchange current densities of HER on most metal catalysts in alkaline solutions are two to three orders of magnitude smaller than in acidic electrolytes.^[62, 78] One of the most important reasons for this inferior catalytic activity is that the alkaline HER proceeds via a distinct pathway from that in acidic solutions. Due to the lack of H⁺, the HER in alkaline media starts from dissociating H₂O molecules to provide protons, which process is involved in both the Volmer step (equation 5 and the Heyrovsky step (equation 6) of alkaline HER, while the Tafel step remains the same with that in acid solutions. The overall reaction process is described in equation 7, and the E^o of this reaction vs. the standard hydrogen electrode (SHE) is -0.826 V.

$$H_2 O + e^- \to H^* + O H^- \tag{5}$$

$$H^* + H_2 O + e^- \rightarrow O H^- + H_2 \tag{6}$$

$$2H_2O + 2e^- \rightarrow 2OH^- + H_2 \tag{7}$$

As additional energy is required to generate protons in alkaline media, the HER kinetics on most catalysts is more sluggish in alkaline electrolytes. It has been reported that alkaline HER activity is controlled by a delicate balance between ΔG°_{H} and the energy required to dissociate H₂O.^[66] However, a variety of HER catalysts including MoS₂, Co₂P are not favored for water dissociation process.^[79-80] Consequently, promoting the water dissociation process while remaining a moderate hydrogen adsorption energy is a useful strategy to design

efficient catalysts toward alkaline HER.

3. General approaches for evaluating catalytic performance

3.1 Overpotential

Overpotential, the difference between the experimentally observed potential and the thermodynamically determined potential of an electrochemical reaction,^[65] is regarded as one of the most important values for evaluating a water splitting catalyst since it is the large overpotential that results in the low energy conversion efficiency of the electrochemical water electrolysis system.^[65] Linear sweep voltammetry (LSV) is commonly performed to obtain the overpotential, and small sweep rates (e.g., 2 mV s⁻¹, 5 mV s⁻¹) are usually employed to minimize the non-faradic current. The origin of the overpotential could be the activation of the reaction, the diffusion of charge carriers and the series resistance. To be more precise, the activation overpotential directly relates to the catalytic activity, whereas the overpotentials caused by the series resistance and diffusion of charge-carriers mostly stem from the water electrolysis system. Thus, the activation overpotential should be precisely evaluated to better assess the materials catalytic activity. Using a rotate disk electrode (RDE) system, where the electrode continuously rotates when recording linear sweep voltammetry (LSV) curves, can efficiently minimize the diffusion overpotential. Meanwhile, the resistance overpotential can be corrected by *IR* compensation (Equation 8), where *I* is the current flowing in the circuit and R_s is the series resistance.

$$E_{corrected} = E_{uncorrected} - IR_s \tag{8}$$

Conventionally, the overpotential at a current density of 10 mA cm⁻², corresponding to the working current density of the most cost-competitive photoelectrochemical water splitting

system, is introduced as a benchmark for evaluating catalyst performance.^[81-82] The current density is usually determined with respect to the geometric area of the electrode, which can also be calculated based on the specific geometric area of the catalyst, the electrochemical active specific area (ECSA) of the catalyst, or the catalyst mass.

3.2 Tafel slope and exchange current density

Tafel slope is the slope of the linear region of a Tafel plot (overpotential vs. log |current density|), which can be obtained by replotting the corresponding LSV curve. Notably, Tafel slope can provide insights into the reaction mechanism of HER on the catalyst surface. The theoretical Tafel slope for the Volmer step, the Heyrovsky step and the Tafel step in HER is 120, 40 and 30 mV dec⁻¹, respectively.^[64, 83] For example, the HER on the surface of the commercial Pt in 0.5 M H₂SO₄ is close to 30 mV dec⁻¹, indicating that the reaction proceeds via the Volmer-Tafel process and the rate-determining step (RDS) for the reaction is the Tafel step.^[74] Generally, an extreme coverage of H* ($\theta \approx 0$ or ≈ 1) is assumed when using the Tafel slope to evaluate the RDS of HER. However, the Tafel slope is coverage-dependent in practice. Over-simplified interpretation of Tafel slope will lead to an inaccurate description of the reaction.^[84]

The exchange current density of a reaction is the current density at the equilibrium potential where the cathodic current equals the anodic current.^[65] It can be read out from the intersection of the extrapolated linear part of Tafel plots and the X-axis. Essentially, exchange current density reflects the intrinsic activity of charge transfer between electrode and electrolyte, and to catalyze a reaction is to promote the exchange current density.^[85] The exchange current density tends to be larger on the surface of catalysts with higher catalytic

activity. For instance, the current density of HER on the surface of Pt, Ti, and Hg in 0.5 M H_2SO_4 is about 1, 10⁻⁵, 10⁻⁹ mA cm⁻², respectively, representing the variations in their intrinsic activity.^[86]

3.3 Turnover frequency

The turnover frequency (TOF) is the number of the product molecule generated per active site in unit time (equation 10).^[87-88] According to the definition, H₂ should be collected to evaluate the number of the H₂ molecules. Assuming the Faradic efficiency of 100%, the theoretical number of H₂ can be calculated from the charge flowing through the circuit based on the Faraday's laws of electrolysis (equation 11), where n is the amount of substance (mol), I is current (A), z is electron number transferred per molecule, and F is the Faraday constant (96485 C mol⁻¹). Then a TOF vs. overpotential curve can be achieved (equation 12) according to equation 10 together with Equation 11. Consequently, calculating TOF largely hinge on determining the number of active sites, which can be evaluated by various methods including the copper underpotential deposition method,^[29] calculating the number of molecules on the exposed surface,^[89-91] or quantifying from CV tests,^[92-94]. Apparently, to achieve a reasonable TOF or TOF-overpotential curve depends on how to define and evaluate the number of active sites. It is noteworthy that the overpotential value should always be indicated when reporting the TOF values since TOF increases with increasing overpotentials.

$$TOF = \frac{molecule number of product}{number of active sites} \times \frac{1}{unit time}$$
(10)

$$n = \frac{lt}{zF} \tag{11}$$

$$TOF = \frac{I \times N_A}{zF \times number \ of \ active \ sites}$$
(12)

3.4 Stability

Stability, or durability, is an important descriptor of a catalyst in view of practical application, demonstrating the ability to maintain the original activity of a catalyst over a long range of time. The stability can be evaluated by recording the variation of the overpotential at a certain current density or recording the change of cathodic current density at an applied overpotential, over a period of time. It can also be evaluated by continuous cyclic voltammetry (CV) cycling. As LSV curves are usually recorded before and after the stability test, there will be an evident increase in the overpotential if the catalyst loses its activity quickly. It should be mentioned that the present approaches are focused on evaluating the stability under working conditions, and there lacks of effective approaches for stability evaluation under idle conditions.

4. Heterostructured catalysts for HER

Growing nanostructured catalysts on supportive substrates is one of the most effective approaches to alleviating the agglomeration of the active materials. The most commonly used substrates include NF, CC, titanium mesh (TM), carbon nanotubes (CNTs), graphene-based materials, 2D TMDs, and graphitic carbon nitride (g-CN), and so forth. These substrates can be divided into two categories: macroscopic substrates (e.g., CC, NF, TM) and nanostructured substrates (e.g., CNTs, graphene, TMDs, g-CN). The macroscopic substrates possess 3D reticular structures which can efficiently maximize the exposure of active sites, and these substrates can also act as good current collectors during electrochemical testing. However, it is not easy to evaluate the intrinsic activity of the catalysts since neither the mass loading nor the geometric area of active materials can be precisely determined. In this review, we will

mostly focus on the progress of nanostructured substrate-supported heterostructures and will not discuss those macroscopic substrate-supported heterostructures. Considering the difference of the HER mechanisms, we discuss the heterostructured catalysts in acidic and alkaline solutions separately.

4.1 Heterostructured catalysts for HER in acidic media

4.1.1 Carbonaceous material-supported heterostructures

In 2005, the MoS₂ (100) edges were found to bear a resemblance close to the active sites of hydrogenase enzymes, possessing a ΔG°_{H} of 0.08 eV at 50% hydrogen coverage.^[72] Therefore, exposing more edge sites of MoS₂ has been recognized as a valid strategy toward increasing the HER catalytic activity of MoS₂.^[95] In 2011, Li et al. prepared a MoS₂/RGO hybrid catalyst with MoS₂ nanoparticles grown on RGO nanosheets.^[74] As revealed by the scanning electron microscopy (SEM) image (Figure 3a) and the transmission electron microscopy (TEM) image (inset in Figure 3a), nano-sized MoS₂ particles disperse evenly on the surface of RGO. The high-resolution TEM (HRTEM) image (Figure 3b) shows that MoS₂ nanoparticles lay flat on the RGO nanosheet, with highly exposed edges. The authors claimed that the strong chemical and electronic coupling between MoS₂ particles and RGO sheets is the key to the formation of highly dispersed, few-layered MoS₂ on RGO. Meanwhile, RGO not only acts as the supporting substrate but also affords a more rapid electron transport. Even though RGO is electrochemically inert, the substantially increased active edges and the high electrical conductivity of the MoS₂/RGO heterostructure eventually grant the superior catalytic activity (Figure 3c). In addition, the Tafel slope of the MoS₂/RGO heterostructure (41 mV dec^{-1}) was the smallest reported among MoS₂-based catalysts at that time (Figure 3d).

Similarly, mesoporous graphene foams (MGFs) were introduced for growing highly dispersed MoS₂ nanoparticles,^[75] and MGFs served as nucleation sites and enabled the formation of ultrafine MoS₂ nanoparticles with an average size of 2 nm. Owing to the high specific surface area and interconnected conductive skeleton of MGFs, the obtained MoS₂/MGF heterostructure acquired high edge exposure, displaying a high apparent cathodic current density of 100 mA cm⁻² at an overpotential of 200 mV. Additionally, anchoring heterostructures on macroscopic conductive substrates can further increase the exposure of active sites and facilitate mass transfer. For example, Cai et al. deposited Ni₂P nanosheets and graphene sheets on the surface of NF.^[96] Benefiting from largely increased number of active sites and accelerated mass transfer, 3D Ni₂P/graphene/NF merely required a low overpotential of 75 mV to achieve a current density of 10 mA cm⁻².

Constructing heterostructures can also improve the stability of the catalyst, which is vital to the practical application of water electrolysis devices. For example, transition-metal-based catalysts are potential substitutes for noble metals, but most of these transition metals are prone to be corroded in acidic media. Deng et al. encapsulated Fe, Co, and FeCo alloy into N-doped CNTs (NCNTs) as shown in Figure 3e and f, and the FeCo@NCNTs heterostructure showed the highest HER activity (Figure 3g).^[97] In addition, by increasing the amount of nitrogen in NCNTs, the obtained FeCo@NCNTs-NH heterostructure exhibited further promoted HER activity with an overpotential of ~280 mV at 10 mA cm⁻². The origins of the enhanced HER activity were investigated by DFT calculations, which proved that the introduction of metal and nitrogen could synergistically modulate the electronic structure of the CNTs and thus regulate the ΔG°_{H} of CNTs. Moreover, the FeCo@NCNTs heterostructure

acquired extraordinary stability in 0.1 M H₂SO₄ over 10000 CV cycles due to the protection of the carbon walls to these metal nanoparticles (Figure 3h). Later, few-layered graphene encapsulated transition metals were found to display similar behavior.^[98] As illustrated in Figure 3i, the CoNi alloy particles were encapsulated in few layered graphene-spheres (CoNi@NC), which granted the CoNi@NC heterostructure long-term stability in 0.1 M H₂SO₄. Also, the heterostructure exhibited highly catalytic performance toward HER with an overpotential of 224 mV at 10 mA cm⁻². DFT calculations demonstrated that the electron of a CoNi cluster can penetrate through three graphene layers (Figure 3j), and this electron density redistribution together with the nitrogen dopants synergistically increase the electron density on the graphene surface, resulting in a higher proton affinity and the subsequent superior HER activity of the graphene shells.

Owing to the unique 2D nanostructure and high conductivity, graphene-based substrates (e.g., graphene, GO, and RGO) can serve as excellent supports for nanostructured HER catalysts. Hybridization with graphene-based supports has been proved to be extremely effective for a variety of highly active HER catalysts, such as FeP nanoparticles grown on graphene sheets,^[37] MoSe₂ nanosheets on RGO sheets,^[99] 2D WS₂ sheets on RGO,^[100] W_xMo_{1-x}S₂/Graphene,^[101] phosphorous-modified WN/RGO, ^[43] vertical-oriented WS₂ nanosheets on RGO,^[102] N, S co-doped GO sheets decorated with CoP,^[103] etc. Meanwhile, other carbonaceous substrates including CNTs,^[55, 92, 104-106] activated carbon,^[35, 107] are also employed to support advanced HER catalysts. In these carbonaceous material-supported heterostructures, the carbonaceous substrates may play a confinement role in the formation of well-dispersed nanostructures and the exposure of sufficient active sites for the HER. Besides,

these highly conductive carbonaceous supports easily afford fast electron transport, which is pivotal to achieving high catalytic activity. Moreover, other components in the heterostructures or the presence of heteroatom dopants may modulate the electronic structure of the carbonaceous supports, and thus activate their HER activity. As a result, growing active materials on carbonaceous supports is an effective approach to synthesizing advanced HER catalysts.

4.1.2 TMD/TMD heterostructures

Recently, earth-abundant TMDs have drawn considerable attention in electrochemical water splitting, including 2D layered TMDs (e.g. MoS₂, MoSe₂, WS₂, etc.) and cubic pyrite-type or orthorhombic marcasite-type TMDs (e.g. CoS₂, CoSe₂, NiS₂, FeS₂, etc.).^[36, 108-112] Owing to the moderate hydrogen binding energy or the partially filled E_g band, these TMDs materials usually display high intrinsic HER activity. Interestingly, heterostructures formed by hybridizing different TMDs may exhibit even higher HER activities than their single counterparts.

Gao et al. prepared a highly active $MoS_2/CoSe_2$ heterostructure by coating the quasi-amorphous MoS_2 on the surface of $CoSe_2/DETA$ nanobelts.^[49] Figure 4a shows the evenly distributed MoS_2 nanosheets over the surface of $CoSe_2/DETA$ nanobelts. The noble-metal-free heterostructure exhibits a substantial enhanced HER activity over $CoSe_2$ and MoS_2 in 0.5 M H₂SO₄, with a low overpotential of ~75 mV at 10 mA cm⁻² (Figure 4b). The small Tafel slope of 36 mV dec⁻¹ is comparable to the commercial Pt/C catalyst (30 mV dec⁻¹), suggesting a Tafel-step-determined Volmer-Tafel mechanism for the HER on the surface of the $MoS_2/CoSe_2$ heterostructure. DFT calculations based on Volmer-Tafel route further reveal

an activation barrier of 1.13 eV for the Tafel step on the MoS₂/CoSe₂ heterostructure (Figure 4c), approaching to that on Pt (111) electrode. The chemical binding between MoS₂ and CoSe₂ and the substantially increased number of active sites jointly account for the high intrinsic activity. Moreover, the CoSe2/DETA nanobelts possess high conductivity and superior electrocatalytic activity, making CoSe₂/DETA nanobelt excellent support for growing TMD nanomaterials. A similar $CoS_2/CoSe_2$ heterostructure with well-dispersed CoS_2 nanoparticles distributed on the surface of CoSe₂/DETA was reported (Figure 4d),^[113] exhibiting substantially improved HER activity (Figure 4e). X-ray photoelectron spectroscopy (XPS) spectra was employed to investigate the possible enhancement mechanism. As shown in Figure 4f and g, compared with their counterparts, the S 2p and Se 3d spectra of CoS₂/CoSe₂ heterostructures shift toward lower and higher binding energy, respectively. Generally, these variations in binding energies are interpreted as an indicator for electron transfer and/or chemical binding between different components of heterostructures.^[113-115] However, deeper explanations regarding how the electron transfer affects HER activity are usually overlooked.

Zhou et al. reported a vertical MoSe₂/NiSe heterostructure and explored the XPS binding energy shift within the heterostructure.^[58] Figure 4h demonstrates the epitaxial structure with well-defined interfaces along the vertical direction. In the XPS spectra (Figure 4i), the Mo 3d binding energy of the MoSe₂/NiSe heterostructure shift negatively compared with that of MoSe₂. As usual, an electron transfer from NiSe to MoSe₂ was proposed, which was further verified by electron energy loss spectroscopy (EELS) analysis. Moreover, ultraviolet photoelectron spectroscopy (UPS) spectra were obtained to calculate the valence band (E_v)

and the work function (ϕ) of MoSe₂ and NiSe. Figure 4j shows the schematic diagram of energy band alignment at the interface between MoSe₂ and NiSe deduced from the UPS results. The higher Fermi level of NiSe facilitates the electron injection form metallic NiSe into MoSe₂ (Figure 4k), which increases the conductivity of the MoSe₂/NiSe heterostructure.

Similar to carbonaceous material-supported heterostructures, these TMD/TMD heterostructures usually maintain plenty of active sites due to the well-established nanostructures.^[49, 116] Besides, the synergistic effect and electron transfers between the different TMD components also contribute to the high HER activity.^[58, 115, 117] Moreover, the HER activity of these TMD/TMD heterostructures can be further promoted by hybridizing with CNT, RGO, and CC, etc,^[114, 118-119] which will not only further increase the number of active sites and the electrical conductivity but also enable rapid mass transportation.^[120]

4.1.3 TMP-based heterostructures

In transition metal phosphides (TMPs), electrons tend to transfer from metal atoms to the more electronegative P atoms; thus, the negatively charged P atoms can efficiently trap protons during the HER process.^[13] In 2005, Liu and Rodriguez employed DFT calculations to evaluate the HER on Ni₂P surfaces, and the results suggested that the energy variation of the HER on Ni₂P(001) surface was close to that on Pt(111) surface. The presence of P decreases the number of Ni sites and hence leads to a moderate binding of H* on the surface, making Ni₂P an excellent HER catalyst.^[121] As expected, hybridizing TMPs with conductive supports is beneficial for increasing active sites and enhancing electrical conductivity,^[122-123] and heteroatom doping may further promote the electrocatalytic performance.^[124] Likewise, some TMP/TMP heterostructures are also reported.^[125-126] Wang et al. constructed a 3D

self-supported Ni₅P₄-Ni₂P nanosheet arrays on NF via the direct phosphorization of commercially available NF using P vapor.^[126] As shown in Figure 5a, the NF substrate affords a 3D porous skeleton for growing the Ni₅P₄-Ni₂P nanosheet arrays (Ni₅P₄-Ni₂P-NS), which not only increases the number of active sites but also facilitates the mass diffusion process. Due to the highly positively charged Ni and the strong ensemble effect of P, the Ni₅P₄ species acquire superior electrocatalytic activity. Further promoted by the synergistic effect between Ni₅P₄ and Ni₂P phases, the Ni₅P₄-Ni₂P-NS heterostructure merely require an overpotential of 120, 140, and 200 mV to drive a cathodic current density of 10, 20, 100 mA cm⁻², respectively (Figure 5b). The stability of the Ni₅P₄-Ni₂P-NF electrode was evaluated based on an accelerated degradation test (CV, -200~60 mV vs. RHE, 50 mV s⁻¹). After the accelerated degradation test, the overpotential only increases by 18 and 21 mV to achieve a current density of 10 and 100 mA cm⁻², respectively (Figure 5c). Further, the sheet-like morphology is preserved after the stability test, and only Ni and P exist in the cycled electrode. Tang et al. proposed a generally applicable synthesis routine for preparing heterostructures of phosphides, sulfides and selenides (Figure 5d).^[127] Taking phosphides as an example, the Ni₂P/CoP/CC heterostructure that is composed of Ni₂P nanosheets on CoP nanowires supported on CC preserves well-constructed 3D architecture (Figure 5e), which facilitates the release of hydrogen gas and ensures sufficient active sites. The synergistic effect between Ni₂P and CoP further promotes the HER activity, resulting in a low overpotential of 55 mV at a current density of 10 mA cm⁻² and a small Tafel slope of 48 mV dec⁻¹.

Alternatively, TMP-based heterostructures can be constructed by hybridizing TMPs with TMDs or carbides.^[128-130] A CoP/MoS₂-CNTs hybrid catalyst was achieved via the *in situ*

growth of CoP on the surface of MoS₂-CNTs (Figure 5f).^[131] The introduction of CNTs substantially increased the specific surface area and improved the electrical conductivity of the catalyst, both of which are crucial for the HER. The CoP/MoS₂-CNTs heterostructure displays an almost identical LSV curve to 20% Pt/C in 0.5 M H₂SO₄. Regmi et al. deposited phosphides of Ni, Fe, and Co on Mo₂C to generate nanocrystalline heterostructures.^[132] The obtained phosphide/carbide composites exhibited both high HER catalytic activity and long-term stability. Detailed investigations on the used catalyst revealed that the lattice mismatch between the two components contributed to the improved electrochemical stability, and the FeP/Mo₂C with the lowest degree of lattice mismatch displayed the optimal stability.

In acidic solutions, the coordinated water molecules in hydronium ions will reduce the positive charge density of H⁺ and hamper H⁺ to receive electrons from the cathode,^[133] resulting in large overpotential of HER on non-noble metal catalysts. Feng et al. reported a CF-supported polyaniline (PANI) nanodots (NDs)-decorated CoP hybrid nanowires (HNWs) heterostructure (PANI/CoP HNWs-CFs), as illustrated in Figure 5g, which exhibited Pt-like HER performance.^[134] The amine groups in PANI can easily capture the H⁺ in hydronium ions and thus eliminate the negative influence of hydronium ions caused by the binding water molecules. As a result, the PANI/CoP HNWs-CFs heterostructures demonstrate higher HER current density than commercial 20% Pt/C at relatively high overpotential (Figure 5h), where the dynamics behavior of H⁺ capture is the key factor.

4.1.4 Transition-metal-oxide (TMO)-based heterostructures

In general, most TMOs are not favored for HER in acidic media because of the lack of adsorption sites for H* (e.g. TiO_2 , MoO_3 , WO_3 , NiO, etc.),^[68] and some TMOs may be

corroded in acidic solutions (e.g. CuO, Fe₂O₃, MoO₃, etc.). However, a few TMO-based heterostructures show attractive HER performance in acidic solutions. For example, vertically oriented MoO₃/MoS₂ nanowires were prepared via sulfuration at various temperatures,^[135] and the core-shell structure is demonstrated in Figure 6a. Despite of the corrosion tendency of MoO₃ in 0.5 M H₂SO₄, the MoO₃/MoS₂ heterostructure exhibits an overpotential of ~250 mV at an current density of 10 mA cm^{-2} and remains good performance stability over 10000 CV cycles (Figure 6b). The MoO₃ nanowires served as a high aspect ratio substrate for growing MoS₂ and enabled facile charge transport. In the meantime, the MoS₂ shell prevented the MoO₃ core from the direct contact with the corrosive electrolyte. The HRTEM image in Figure 6c demonstrates the well-preserved core-shell structure, ensuring the excellent stability of the MoO₃/MoS₂ heterostructure in acidic media. Likewise, Yang et al. reported a MoS₂/MoO₂ heterostructure obtained by sulfuration treatment of porous and highly conductive MoO₂.^[53] The catalyst showed an overpotential of 240 mV at 10 mA cm⁻², a Tafel slope of 76.1 mV dec⁻¹, and robust durability. The high electrical conductivity promotes the rapid electron transport while the porous structures facilitate fast mass diffusion. There are a variety of TMO-based heterostructures reported as electrocatalysts for acidic HER.^[63, 136-139] Most of them possess core-shell structures with a TMO core and a HER-active shell (Figure 6d~i), in which the active shell will shield the TMO core from corrosion, resulting in improved durability. On the other hand, many reports ascribe the enhanced HER activity to the high electrical conductivity of the TMO core. For example, the typical electrical conductivity of MoS₂ is $10^{-4} \sim 10^{-5}$ S cm⁻¹ while the electrical conductivity of MoO₂ can reach as high as $10^2 \sim 10^3$ S cm⁻¹.^[140-141] The highly conductive MoO₂ core enables fast electron

transport in the MoS₂/MoO₂ heterostructure, and hence a higher HER activity. However, many TMOs (e.g., MoO₃, SnO₂) are not good conductive material, yet the high HER activity of these TMO-based heterostructures are still ascribed to the "highly conductive TMO core". Moreover, the electric conductivity is related to the dimension and morphology.^[142-143] Hence, it is highly desirable to provide sufficient supporting evidence when discussing the electrical conductivity.

4.1.5 Noble-metal-based heterostructures

To date, noble metals such (e.g., Pt, Pd) and their alloys are still the most active HER catalysts, but the elemental scarcity of the noble metals severely increases the catalyst cost. Therefore, intensive research attention is focused on developing low-cost alternatives to noble metal-based catalysts. There is also an argument that the elemental scarcity of Pt is not so severe as it is supposed to be.^[144] Instead, many noble metal-free catalysts such as cobalt-based and molybdenum-based materials might be even more scarce since much higher catalyst loading is required to achieve the same current density with that of using Pt. Nevertheless, constructing noble-metal-based heterostructures could further explore the activity limit of noble metals and make noble-metal-based catalysts more affordable.

Sengeni et al. anchored ultrafine Pt particles on DNA molecules,^[145] with Pt particles uniformly distributed on the surface of DNA molecules, as demonstrated in **Figure 7**a. The high electrochemical stability and the excellent adhesion of DNA molecules to GC electrode enable them as excellent supports for Pt nanoparticle. As a result, the Pt/DNA heterostructure with Pt content of as low as 15 μ g cm⁻², shows superior HER activity than the commercial 10% Pt/C catalyst in 0.5 M H₂SO₄. Meanwhile, the Pt/DNA heterostructure without binder

delivered stable electrocatalytic performance over 5000 CV cycles (Figure 7b). Moreover, the stability of the Pt/DNA catalyst was further checked by soaking the electrode in H₂ saturated 0.5 M H₂SO₄ solution for more than 10 days. Remarkably, the ultrafine Pt particles still show evident lattice fringe after the aging test (Figure 7c), highlighting the durability of the Pt/DNA heterostructure. Similar to Pt, metallic Rh is also an excellent HER catalyst. Hybridizing metallic Rh with HER-active MoS₂ nanosheets highly enhanced the HER activity of Rh.^[146] Figure 7d displayed that the Rh nanoparticles have an average particle size of ~6 nm and dispersed evenly on the surface of MoS₂. The mass loading of Rh is as low as 5.2 wt% in the Rh-MoS₂ heterostructure, but the catalyst show a HER activity comparable to the 20 wt% Pt/C electrode (Figure 7e). On the other hand, the 5.2 wt% Rh-MoS₂ hybrid catalyst exhibits extraordinary mass activity of 13.87 A mg_{metal}⁻¹ at an overpotential of 250 mV, which is four times as large as that of the commercial 20 wt% Pt/C catalyst. The superior performance was ascribed to the synergistic effect between Rh and MoS₂. As illustrated in Figure 7f, H₃O⁺ are fast captured by the strong H⁻ adsorbed component Rh to become the adsorbed H atoms, which subsequently migrate to the surface of quick H2-desorbed MoS2 and finally released as hydrogen gas.

To date, various types of noble-metal-based heterostructures have been reported (Figure 7g-j), but the most active ones are still based on Pt or Pd, which possess the optimal binding energy to hydrogen.^[147-153] The concept here is to make the full use of noble metals and taking advantage of the synergistic effect between the counterparts. Moreover, owing to the superior electrochemical stability of noble metals as well as the well-designed nanostructures, these noble-metal-based heterostructured catalysts are more likely to show long-term stability.

4.1.6 Other heterostructured catalysts

During the pursuit of highly active, cost-effective, and long-lasting catalysts for HER, transition metal carbides (TMCs) and transition metal nitrides (TMNs) also draw much attention due to their elemental abundance and catalytic properties.^[154-155] It has been disclosed that introducing carbon into the lattices of non-noble metals will endow them with a higher d-band electronic density of states (DOS) at the Fermi level, and hence high catalytic activities.^[154, 156] Tungsten carbides including WC and WC₂ have been explored as promising electrocatalysts.^[157] However, most of the reported HER activities of tungsten-carbide-based catalysts are still much inferior to noble metals. An important reason is that the carbides are conventionally prepared by the reduction of metal precursors at high temperature, which easily results in uncontrollable morphology. Wang et al. synthesized a Ravenala leaf-like W_xC/WS_2 heterostructure with W_xC "leaves" attached to the WS₂ tubes via in situ carbonizing WS₂ nanotubes.^[59] The hybrid electrode composed of W_xC@WS₂ heterostructure on carbon fibers shows an overpotential of 146 mV at 10 mA cm⁻² and a Tafel slope of 61 mV dec⁻¹, outperforming either the bare WS_2 nanotubes or the W_xC counterpart (Figure 8a). Figure 8b shows the free energy diagrams of catalysts under different H* coverage along the reaction coordinate, and the results demonstrate that W_xC species bind H atoms too tightly while WS₂ bind H atoms too weakly. Interestingly, DFT calculations revealed an apparent electron transfer from the outmost W of W₂C to WS₂ (Figure 8c). This electron redistribution subsequently modified the d-band electronic DOS around the Fermi level, leading to a more close-to-neutral ΔG°_{H} for the $W_x C@WS_2$ heterostructure. Another challenge for tungsten carbides is the lack of methods to selectively synthesize different phases. Gong et al.

developed a two-step approach and successfully prepared the pure phase W_2C on multi-walled CNTs (MWNTs).^[105] The ultrasmall W_2C nanoparticles are anchored on the outer walls of the MWNTs (Figure 8d), achieving a current density of 10 mA cm⁻² at an overpotential of 123 mV (Figure 8e). Meanwhile, owing to the structural and electrochemical robustness, the heterostructure exhibited excellent stability with less than 10 mV increase in the overpotential at 10 mA cm⁻² after 10000 continuous CV cycles (Figure 8f).

TMNs are also potential substitutes for noble metals. Yan et al. prepared a P-modified WN/RGO (P-WN/RGO) heterostructure via the phosphorization of WN/GO heterostructure.^[43] Figure 8g shows that WN particles are evenly distributed on RGO surface. XPS revealed an electron transfer from P to WN, and the charge redistribution increased the electron density of the catalyst surface which subsequently promoted the HER activity. Kumar et al. hybridized γ -Mo₂N with β -Mo₂C on a carbon support. Figure 8h clearly shows the interface between γ -Mo₂N and β -Mo₂C. Interestingly, theoretical calculations demonstrated that the electron redistribution between the carbon supports and the active materials (γ -Mo₂N, β -Mo₂C) yielded active catalytic sites on the carbon layers. Also, the free energy profile of the HER on the heterostructure was demonstrated to be close to that on commercial Pt/C electrode (Figure 8i). As a result, the required overpotential to drive a current density of 10 $mA cm^{-2}$ was only 96 mV.

4.2 Heterostructured catalysts for HER in alkaline media

4.2.1 Carbonaceous material-supported heterostructures

Not surprisingly, anchoring HER active materials on carbonaceous substrates also works for synthesizing efficient catalysts for the alkaline HER. By simultaneously depositing Ni

nanoparticles and RGO sheets on NF,^[158] the obtained Ni-based catalyst required only 36 mV to achieve a current density of 10 mA cm⁻² in 1 M NaOH. The high conductivity of both RGO and NF jointly contribute to fast electron transport. Meanwhile, the 3D architecture of NF can accelerate the mass transportation and increase the surface area of the electrode. In addition, the introduction of RGO sheets strengthened the exposure of (111) crystal planes of Ni, which granted the high intrinsic activity. The carbonaceous supports can also protect the active material from the alkaline solutions. For instance, carbides usually exhibited poor stability in neutral or higher pH solutions.^[159] However, a carbon-protected bimetallic Co-W carbide catalyst kept stable at a large current density (> 30 mA cm⁻²) in 1 M KOH for as long as 18 h.^[160] Su et al. encapsulated Ru and Co bimetallic nanoalloy within N-doped graphene layers (RuCo/NC) through a one-step process by annealing Ru-doped Prussian blue analogues.^[161] The amount of Ru in the catalyst was only 3.5 wt %, yet the catalyst delivered highly active HER performance in 1 M KOH with an overpotential of 28 and 218mV at 10 and 100 mA cm^{-2} , respectively. Due to the protection of the graphene layers to the metal nanoalloy, the RuCo/NC heterostructure maintained high activity over 10000 CV cycles.

Similar to the cases in acidic media, the enhanced alkaline HER activity of these carbonaceous material-based heterostructures may originate from the high conductivity, fully exposed active sites, as well as synergistic effects between counterparts. Therefore, many carbonaceous material-supported heterostructures are more likely to show high HER activity in both alkaline media as well as acidic solutions.^[162-163] Although the water dissociation process is the dominating issue for alkaline HER, few reports claim that the water dissociation step is accelerated in carbonaceous material-supported heterostructures. The reason might be

that carbonaceous materials are usually not favored by water adsorption. DFT calculations showed that the water adsorption energy is 0.35 eV on MWCNT,^[164] -0.1 eV on graphite,^[165] and ~0.1eV on graphene.^[166]

4.2.2 Transition-metal-hydroxide-based heterostructures

As described in previous sections, promoting the water dissociation step is a fruitful approach to designing advanced catalyst for alkaline HER. Recently, some studies have demonstrated that transition metal hydroxides such as $Ni(OH)_2$, $Co(OH)_2$, and $Ni_xFe_y(OH)_2$ were effective promoters for water dissociation.

Subbaraman et al. modified Pt electrode with Ni(OH)₂ nanoclusters and studied the promotion effect of Ni(OH)₂ on HER activity.^[61] Scanning tunneling microscopy (STM) image in **Figure 9**a shows the surface morphology of the Ni(OH)₂ nanocluster-modified Pt(111)/Pt-islands (ad-islands) electrode. The presence of Pt-islands increases the active sites. After the modification with Ni(OH)₂, the Pt(111)/Ni(OH)₂ electrode exhibits further enhanced HER activity (Figure 9b). The authors believed that the water adsorption process was accelerated by the simultaneous interaction of O atoms with Ni(OH)₂ and H atoms with Pt at the boundary between Ni(OH)₂ and Pt domains. Therefore, with the accelerated water dissociation by Ni(OH)₂ nanoclusters, the generated hydrogen intermediates were subsequently adsorbed on the nearby Pt surfaces and finally recombined into H₂ (Figure 9c). Moreover, introducing Li⁺ further enhanced the generation of the hydrogen intermediates due to the destabilization effect of Li⁺ on the HO-H bond. Soon later, Danilovic et al. systematically studied the HER performance of a variety of Ni(OH)₂ can faciliate HER on

the surface of almost all metals. The promotion was ascribed to a synergistic effect between $Ni(OH)_2$ and metals where $Ni(OH)_2$ facilitate the water dissociation, and the generated hydrogens were subsequently adsorbed and associated on metal surfaces. In 2017, Yu et al. studied the relationship between the promoted alkaline HER activity and the structure of $Ni(OH)_2$ by loading α -Ni(OH)₂ and β -Ni(OH)₂ on Pt electrode.^[167] Both experimental and theoretical results proved that β -Ni(OH)₂ was a better promoter for the alkaline HER on Pt due to the higher water dissociation ability and stronger interactions between β -Ni(OH)₂ and Pt.

Transition metal hydroxides were also found to be able to enhance alkaline HER kinetics on various type of catalysts including TMDs, TMPs, and nitrides. For example, Zhang et al. reported a 3D Ni(OH)₂/MoS₂/CC heterostructure with nano-sized Ni(OH)₂ particles are anchored on the surface of MoS₂ (Figure 9e).^[168] The Ni(OH)₂/MoS₂/CC heterostructures achieve an substantial enhanced HER activity in 1 M KOH with an overpotential of 80 mV at 10 mA cm⁻² (Figure 9f). DFT calculations revealed the H_2O adsorption energy is 0.05 eV for the heterostructures, in sharp contrast to 1.17 eV for MoS₂. The free energy diagrams of the HER process on the surface of Ni(OH)₂, MoS₂ and the heterostructure obtained from DFT calculation are displayed in Figure 9g. The results proved a large decrease in the free energy of both water dissociation and hydrogen adsorption on the surface of the Ni(OH)₂/MoS₂. heterostructure. Chen et al. reported a Ni(OH)₂/CoS₂/CC nanowire array with substantially enhanced HER activity (Figure 9h).^[60] DFT calculations revealed a similar decrease in the free energy of the Ni(OH)₂ modified electrode. HER on the Other transition-metal-hydroxide-based heterostructures for the alkaline HER include

NiCo-LDH/MoS₂,^[169] Ni(OH)₂/1T-MoS₂,^[170] Ni(OH)₂/CuS core-shell heterostructures,^[171] Ni(OH)₂/Ni3N/TM nanoarrays,^[172] Ni(OH)₂-Fe₂P/TM,^[173] Ni(OH)₂-PtO₂/TM^[174], etc. Also, transition metal hydroxides can be used as a substrate for growing alkaline HER catalysts. Xing et al. designed CC supported Co(OH)₂ nanosheets array as a 3D substrate for electrodepositing ultrafine Pt nanoparticles (Figure 9i, j).^[175] Yin et al. synthesized ultrathin Pt nanowires (NWs) on single-layered (SL) Ni(OH)₂ (Figure 9k, 1).^[176] Both of these heterostructures showed superior HER performance over the commercial Pt/C electrode due to the accelerated water dissociation process. These results proved the ability of transition metal hydroxides in accelerating water adsorption and water dissociation process, which would be effective in designing advanced alkaline HER catalysts.

4.2.3 TMO-based heterostructures

The superior HER performance of transition-metal-hydroxide-based heterostructures has demonstrated the efficiency of regulating water dissociation sites for constructing advanced alkaline HER catalysts. According to several relevant studies,^[177-179] strong interactions between the adsorbed H₂O species and oxide surfaces are expected, which may grant TMOs the ability to promote the water dissociation step in alkaline HER. For example, Gong et al. reported a nanoscale NiO/Ni-CNT heterostructure with a substantially enhanced alkaline HER activity due to the promotion of NiO species to the water dissociation step. The NiO/Ni-CNT heterostructure was synthesized by annealing Ni(OH)₂ precursor bonded on CNT sidewalls at 300 °C in Ar flow.^[180] The HRTEM image in **Figure 10**a and the corresponding EDX mapping image in Figure 10b clearly reveal the core-shell structure with a NiO shell over Ni particle core. The obtained NiO/Ni-CNT heterostructure exhibited superior HER activity than

both NiO/CNT and Ni/CNT (Figure 10c). The high HER activity was believed to be originated form the synergistic effect between NiO and Ni species, and the exposed NiO/Ni interfaces at the discontinuity of the NiO shell were believed to be the synergistically active sites. The activity of the pure Ni surface is low in alkaline media because OH⁻ could occupy the sites for H adsorption; while the NiO surface is not active for the HER because of the lack of H adsorption sites. However, in the NiO/Ni-CNT heterostructure, OH⁻ could preferentially attach to NiO site at the heterojunction because of the strong electrostatic attraction of Ni²⁺ to OH⁻; meanwhile, H⁺ can adsorb at a nearby Ni site. Besides, the presence of CNT can prevent the agglomeration of nanoparticles as well as ensure a good electrical conductivity. Consequently, the introduction of CNT and the synergistic effect between NiO and Ni endow the NiO/Ni-CNT heterostructure a substantially enhanced HER activity in alkaline solution.

A similar 3D Co/Co₃O₄ core-shell heterostructure was achieved by reducing *in situ* grown Co₃O₄ nanosheets at 200 °C in a hydrogen atmosphere.^[50] Figure 10d demonstrates the well-preserved nanosheets morphology, and the core-shell structure with an amorphous Co₃O₄ shell over the metallic Co core can be revealed by the TEM image in Figure 10e. A low overpotential of ~90 mV at 10 mA cm⁻² is achieved in 1 M KOH (Figure 10f). The amorphous Co₃O₄ shell was believed to facilitate the dissociation of water by promoting the activation of Lewis basic H₂O through Lewis acid-base interaction. Besides, oxygen vacancies also play a significant role in enhancing the adsorption of water since the oxygen-vacancy-bearing oxide possesses a more positive potential on the surface. Further, the well-constructed 3D structure facilitates the mass transportation and the highly conductive metallic Co core grants the fast electron transfer process. Weng et al. reported a Ni/CeO₂ heterostructure on the surface of

CNTs.^[181] The interfaces between Ni and CeO₂ nanoparticles are clearly displayed in Figure 10g. As demonstrated by DFT calculations, the Ni/CeO₂ interfaces not only facilitates the dissociation of water molecules but also lowers ΔG°_{H} to the same level of Pt (Figure 10h). Further, a CoP/CeO₂ heterostructure on TM (Figure 10i, j),^[182] a CeO₂/Cu₃P nanoarray supported on N,^[183] were reported with a remarkable HER activity in 1 M KOH. DFT calculations suggested the heterostructure possesses a lower water dissociation free energy and a more optimal hydrogen adsorption free energy than their counterparts. Other TMOs including MoO₃ (Figure 10k, 1),^[184] PtO₂,^[185] TiO₂,^[186] etc., were also reported towards promoting the alkaline HER activity. As previously mentioned, TMOs are usually used in acidic media as the conductive core in core/shell structures and are protected by other HER-active components. In contrast, TMOs can directly contact with alkaline solutions, either anchoring on the surface of other components or serving as shells or substrates. The principal objective here is to accelerate the water dissociation process by the incorporation of TMO species.

4.2.4 Metal-based heterostructures

Compared to that in acidic media, most transition metals are relatively stable in alkaline solutions, acting as potential alkaline HER catalysts. For example, nickel is a popular choice for alkaline water electrolysis due to low cost, high activity, and excellent resistance to corrosion in concentrated alkaline solutions.^[187-188] After the first report in the early 1900s, tremendous efforts have been devoted to understanding the catalytic mechanism of Ni.^[158, 189-191] Zhang et al. reported Ag/Ni core-shell heterostructures (**Figure 11**a) which showed substantially improved HER activity over the bare Ni or Ag (Figure 11b) in 0.1 M KOH.^[192]

As the best conductive metal, silver provides super-fast electron transportation pathway in the heterostructures. However, adding too much nickel will block the Ag nanowires and decrease the number of bimetallic interfaces, resulting in a decreased HER performance. Hence, the synergistic effect between Ni and Ag was crucial for the enhanced HER activity. Deng et al. engineered the catalyst/electrolyte interface by introducing Pd during the formation of Ni@Ni(OH)₂ heterostructure. SEM image in Figure 11c shows that Ni@Ni(OH)₂ particles are freely grown on RGO surface with an average diameter of 200 nm. As displayed in Figure 11d, the presence of Pd seeds substantially facilitate the grain refinement and the dispersion of the homogeneous-sized Ni@Ni(OH)₂/Pd particles (~10 nm). Thus, significantly enhanced HER activity over the Ni@Ni(OH)₂/RGO without Pd can be achieved by the Ni@Ni(OH)₂/Pd/RGO heterostructures (Figure 11e).

Although Pt exhibits inferior HER performance in alkaline media comparing with acidic solutions, it still maintains a competitive edge due to its high intrinsic activity. Interestingly, introducing Pt into the heterostructures can modify the catalyst/electrolyte interface. For instance, a 3D Ni electrode with a Pt-modified surface showed substantial enhancement in HER activity.^[193] The Pt loading was as low as 0.5 mg cm⁻² and 50 μ g cm⁻² based on the geometric surface area and the specific surface area, respectively. Also, constructing heterostructures also helps to achieve a high exposure of Pt. He et al. deposited Pt particles on the surface of RuO₂-TiO₂ (RTO), as shown in Figure 11f. Due to the confinement effect of the RTO substrate, the Pt particles display an average particle size of 6 nm. Although the commercial Pt/C catalyst has a smaller particle size (~ 2.5 nm), the Pt/RTO heterostructure exhibited higher HER activity with an exchange current density of 2.31±0.06 mA cm⁻²_{pt} in

0.1 M KOH, which is five times that of the 46.5% Pt/C catalyst.^[194] The reason for this dramatic enhancement could be ascribed to the presence of oxygen vacancies in RuO₂, which promoted the water dissociation step and thus largely reduced the activation energy for the HER process. Further, the Pt/RTO catalyst was employed in a solid-alkaline water electrolyzer. The results showed the Pt/RTO cathode was more efficient than 46.5% Pt/C for hydrogen production, and a reduction of 100 ~ 200 mV in the overpotential was observed across the entire current density range when compared with commercial Pt/C.

4.2.5 Other heterostructured catalysts

There are also TMD/TMD heterostructures reported for alkaline HER, including interlaced NiS₂/MoS₂ nanoflake-nanowires,^[195] heteromorphic NiCo₂S₄/Ni₃S₂/NF,^[196] NiMo₃S₄/Ni₃S₂,^[197] 3D MoSe₂@Ni_{0.85}Se nanowire networks,^[198] and most of these research ascribe the enhanced HER activity to the massive exposed active sites, interfacial interactions, and the 3D porous conductive substrates. In addition to LDHs and TMOs, some TMDs are also favored for water adsorption process, which could be used as water adsorption/dissociation promoters. DFT calculations demonstrated that the water adsorption energy on the surface of orthorhombic-phase CoSe₂ (o-CoSe₂) and cubic-phase CoSe₂ (c-CoSe₂) are -0.106 and -0.163 eV, respectively.^[199] Inspired by the unique water adsorption capability, Zhao et al. synthesized CoSe₂/MoSe₂ heterostructures with c-CoSe₂ quantum dots anchored on MoSe₂ nanosheets (Figure 12a), which exhibited much higher HER activity than bare MoSe₂ nanosheets in 1 M KOH.^[200] Figure 12b displays the LSV polarization curves of the catalysts. For the CoSe₂/MoSe₂ heterostructures, the optimal overpotential required to reach a current density of 10 mA cm⁻² is merely 218 mV, more than 100mV lower than MoSe₂.

Meanwhile, as shown in Figure 12c, the TOF of CoSe₂/MoSe₂ heterostructures increased dramatically, demonstrating the substantial increment of the intrinsic activity which is originated from the synergistic effect between CoSe₂ and MoSe₂.

Besides, some heterostructured carbides, nitrides and phosphides materials also demonstrated excellent HER activity in alkaline media.^[201-203] Xing et al. reported a self-standing Ni-WN heterostructure nanowire arrays supported on CC, and corresponding TEM and HRTEM images of the heterostructure are shown in in Figure 12d-f.^[204] As a hydrogen-evolving cathode in 1.0 M KOH, this Ni-WN/CC electrode exhibited a lower overpotential than either WN/CC or Ni/CC due to the electrocatalytic synergistic effect of Ni and WN.

5. Conclusions and perspectives

Electrochemical water splitting driven by sustainable energies plays an indispensable role in making a hydrogen economy become a reality, and developing cost-effective catalysts with high activity and long-term durability is crucial for realizing economic hydrogen production. In this review, we summarized the state-of-the-art research progress on heterostructured catalysts for HER in acidic and alkaline media, with focuses on material design and synthesis strategies, electrochemical performance as well as the related mechanisms of activity enhancement. In general, the superior HER catalytic performance of the heterostructured catalysts can be attributed to the increased number of active sites, the improved intrinsic activity, or the accelerated mass and charge transfer process, all of which are more or less closely associated with the surface/interface tuning, the electronic structure modulation, the synergistic effect between the components, and so forth.

Electrochemical water splitting is a very appealing research area, and there have been enormous research advances regarding new catalyst development recently. When we look at the ever-increasing research progress, it can be found that the catalytic performance of the catalysts varies very significantly even for catalysts with similar composition and nanostructures. The electrochemical testing and performance description protocols should be unified, and sufficient details should be provided when discussing catalytic performance to avoid delivering ambiguous or inexact information. For example, the non-Faradic current should be subtracted when using macroscopic porous substrates, and the corresponding overpotential as well as the method for evaluating active sites should be indicated when discussing TOFs. With regard to the practical application of electrochemical HER catalysts, the scale-up synthesis of catalysts is a big obstacle and most synthesis processes are still restricted to laboratory level, although many heterostructured catalysts show exceptional activity and meet the performance demand of practical applications. Therefore, developing cost-effective and scalable synthesis strategies is one of the top challenges for practical heterostructured catalysts. Meanwhile, the performance stability is another crucial aspect. Despite of the high catalytic activities they may achieve, the catalytic activity of many heterostructured catalysts degrade quickly and the inferior performance stability severely restricted their application in water electrolysis devices. Besides, most reports merely investigate the performance durability under working conditions, but the performance degradation mechanisms are rarely studied. Therefore, more specific efforts should be devoted to establishing effective approaches to unravel the intrinsic reasons for activity degradation. Developing in-situ/operando high-resolution characterization methodologies is

vital to gain in-depth understanding of the degradation mechanism and the structure-composition-performance relationship, and this will provide new advanced knowledge for rational design of robust catalysts. Another challenging topic is about "synergistic effect", which is very frequently mentioned to interpret the superior catalytic activity of heterostructured catalysts. However, it has to be noted that the real synergistic effect in various heterostructured catalysts is not yet fully understood and should be further explored in the future work. More solid evidences should be acquired to clarify what the real synergistic effect is and how it works to make the catalysts deliver enhanced catalytic activity. In addition, a combination of theoretical and experimental work is also of great significance to gain more fundamental insights and to achieve intelligent design of heterostructured catalysts. Overall, we believe that, constructing well-defined heterostructures is one very promising and challenging strategy to design highly efficient catalysts for electrochemical water splitting, and the rapid development of renewable energy-drived electrochemical water electrolysis will light up the future of hydrogen economy.

Acknowledgements

This work was financially supported by the Australian Research Council (ARC) DECRA Grant (DE160100596) and AIIM FOR GOLD Grant (2017, 2018).

Received: ((will be filled in by the editorial staff)) Revised: ((will be filled in by the editorial staff)) Published online: ((will be filled in by the editorial staff))

- [1] S. Chu, A. Majumdar, *Nature* **2012**, *488*, 294.
- [2] International Energy Agency, World Energy Outlook 2017,

https://webstore.iea.org/world- energy-outlook-2017, accessed: May, 2018

- [3] Q. Cheng, H. Yi, Renewable Sustainable Energy Rev. 2017, 67, 683.
- [4] C. Binz, J. Gosens, T. Hansen, U. E. Hansen, World Development 2017, 96, 418.
- [5] L. Schlapbach, A. Züttel, *Nature* **2001**, *414*, 353.
- [6] C. C. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters, T. F. Jaramillo, *J. Am. Chem. Soc.* **2015**, *137*, 4347.
- [7] M. Carmo, D. L. Fritz, J. Mergel, D. Stolten, Int. J. Hydrogen Energy 2013, 38, 4901.
- [8] I. Roger, M. A. Shipman, M. D. Symes, Nat. Rev. Chem. 2017, 1, 0003.
- [9] G. W. Crabtree, M. S. Dresselhaus, M. V. Buchanan, Physics Today 2004, 57, 39.
- [10] W. Kreuter, H. Hofmann, Int. J. Hydrogen Energy 1998, 23, 661.
- [11]C. A. Grimes, O. K. Varghese, S. Ranjan, *Light, water, hydrogen: the solar generation of hydrogen by water photoelectrolysis*, Springer **2008**
- [12] J. A. Turner, Science 2004, 305, 972.
- [13] Y. Shi, B. Zhang, Chem. Soc. Rev. 2016, 45, 1529.
- [14]S. Y. Tee, K. Y. Win, W. S. Teo, L. D. Koh, S. Liu, C. P. Teng, M. Y. Han, Adv Sci (Weinh)2017, 4, 1600337.
- [15] A. Konieczny, K. Mondal, T. Wiltowski, P. Dydo, Int. J. Hydrogen Energy 2008, 33, 264.
- [16] J. Turner, G. Sverdrup, M. K. Mann, P. C. Maness, B. Kroposki, M. Ghirardi, R. J. Evans,
- D. Blake, Int. J. Energy Res. 2008, 32, 379.
- [17] P. Wang, X. Zhang, J. Zhang, S. Wan, S. Guo, G. Lu, J. Yao, X. Huang, Nat. Commun

2017, *8*, 14580.

- [18]J. Lim, D. Park, S. S. Jeon, C.-W. Roh, J. Choi, D. Yoon, M. Park, H. Jung, H. Lee, Adv. Funct. Mater. 2018, 28, 1704796.
- [19] J. Ying, G. Jiang, Z. P. Cano, L. Han, X.-Y. Yang, Z. Chen, Nano Energy 2017, 40, 88.
- [20]L. Zhang, L. Han, H. Liu, X. Liu, J. Luo, Angew. Chem. Int. Ed. 2017, 56, 13694.
- [21]Y. Zhang, Q. Zhou, J. Zhu, Q. Yan, S. X. Dou, W. Sun, Adv. Funct. Mater. 2017, 27, 1702317.
- [22]H. Fan, H. Yu, Y. Zhang, Y. Zheng, Y. Luo, Z. Dai, B. Li, Y. Zong, Q. Yan, *Angew. Chem.***2017**, *129*, 12740.
- [23] J. X. Feng, L. X. Ding, S. H. Ye, X. J. He, H. Xu, Y. X. Tong, G. R. Li, Adv. Mater. 2015, 27, 7051.
- [24] H. Cheng, C.-Y. Su, Z.-Y. Tan, S.-Z. Tai, Z.-Q. Liu, J. Power Sources 2017, 357, 1.
- [25]G. F. Chen, T. Y. Ma, Z. Q. Liu, N. Li, Y. Z. Su, K. Davey, S. Z. Qiao, Adv. Funct. Mater.2016, 26, 3314.
- [26]H. Cheng, Y.-Z. Su, P.-Y. Kuang, G.-F. Chen, Z.-Q. Liu, J. Mater. Chem. A 2015, 3, 19314.
- [27] D. Yan, Y. Li, J. Huo, R. Chen, L. Dai, S. Wang, Adv. Mater. 2017, 29, 1606459.
- [28] A.-L. Wang, H. Xu, G.-R. Li, ACS Energy Lett. 2016, 1, 445.
- [29]D. Voiry, H. Yamaguchi, J. Li, R. Silva, D. C. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, *Nat. Mater* 2013, *12*, 850.
- [30] Y. Kim, D. H. Jackson, D. Lee, M. Choi, T. W. Kim, S. Y. Jeong, H. J. Chae, H. W. Kim,
- N. Park, H. Chang, Adv. Funct. Mater. 2017, 27, 1701825.

- [31]C. Xu, S. Peng, C. Tan, H. Ang, H. Tan, H. Zhang, Q. Yan, J. Mater. Chem. A 2014, 2, 5597.
- [32]C. Ouyang, X. Wang, S. Wang, Chem. Commun. 2015, 51, 14160.
- [33] L. Tao, X. Duan, C. Wang, X. Duan, S. Wang, Chem. Commun. 2015, 51, 7470.
- [34] J.-X. Feng, J.-Q. Wu, Y.-X. Tong, G.-R. Li, J. Am. Chem. Soc. 2018, 140, 610.
- [35]D. Y. Chung, S. W. Jun, G. Yoon, H. Kim, J. M. Yoo, K. S. Lee, T. Kim, H. Shin, A. K.
- Sinha, S. G. Kwon, K. Kang, T. Hyeon, Y. E. Sung, J. Am. Chem. Soc. 2017, 139, 6669.
- [36]J. Zhang, T. Wang, P. Liu, S. Liu, R. Dong, X. Zhuang, M. Chen, X. Feng, *Energy Environ. Sci.* 2016, *9*, 2789.
- [37]Z. Zhang, B. Lu, J. Hao, W. Yang, J. Tang, Chem Commun (Camb) 2014, 50, 11554.
- [38] A.-L. Wang, J. Lin, H. Xu, Y.-X. Tong, G.-R. Li, J. Mater. Chem. A 2016, 4, 16992.
- [39]C. Wan, Y. N. Regmi, B. M. Leonard, Angew. Chem. 2014, 126, 6525.
- [40]H. Ang, H. T. Tan, Z. M. Luo, Y. Zhang, Y. Y. Guo, G. Guo, H. Zhang, Q. Yan, Small2015, 11, 6278.
- [41]H. Ang, H. Wang, B. Li, Y. Zong, X. Wang, Q. Yan, Small 2016, 12, 2859.
- [42] W. F. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic, J. T. Muckerman, Y. Zhu, R.R. Adzic, *Angew. Chem. Int. Ed.* 2012, *51*, 6131.
- [43]H. Yan, C. Tian, L. Wang, A. Wu, M. Meng, L. Zhao, H. Fu, Angew. Chem. Int. Ed. 2015, 54, 6325.
- [44] H. Lin, Z. Shi, S. He, X. Yu, S. Wang, Q. Gao, Y. Tang, Chem. Sci. 2016, 7, 3399.
- [45] D. Wang, Q. Li, C. Han, Z. Xing, X. Yang, ACS Cent. Sci. 2017, 4, 112.
- [46] K. Rui, G. Zhao, Y. Chen, Y. Lin, Q. Zhou, J. Chen, J. Zhu, W. Sun, W. Huang, S. X. Dou,

Adv. Funct. Mater. 1801554.

- [47] S. Dou, J. Wu, L. Tao, A. Shen, J. Huo, S. Wang, Nanotechnology 2015, 27, 045402.
- [48] Y. Chen, Q. Zhou, G. Zhao, Z. Yu, X. Wang, S. X. Dou, W. Sun, Adv. Funct. Mater. 2018, 28, 1705583.
- [49] M. R. Gao, J. X. Liang, Y. R. Zheng, Y. F. Xu, J. Jiang, Q. Gao, J. Li, S. H. Yu, Nat. Commun. 2015, 6, 5982.
- [50] X. Yan, L. Tian, M. He, X. Chen, Nano Lett. 2015, 15, 6015.
- [51] W. R. Frensley, Heterostructures and Quantum Devices, Academic Press, New York 1994.
- [52]R. D. Nikam, A. Y. Lu, P. A. Sonawane, U. R. Kumar, K. Yadav, L. J. Li, Y. T. Chen, ACS Appl Mater Interfaces 2015, 7, 23328.
- [53]L. Yang, W. Zhou, D. Hou, K. Zhou, G. Li, Z. Tang, L. Li, S. Chen, *Nanoscale* 2015, 7, 5203.
- [54]Q. Qu, J. H. Zhang, J. Wang, Q. Y. Li, C. W. Xu, X. Lu, Sci. Rep. 2017, 7, 41542.
- [55]D. Y. Wang, M. Gong, H. L. Chou, C. J. Pan, H. A. Chen, Y. Wu, M. C. Lin, M. Guan, J.
 Yang, C. W. Chen, Y. L. Wang, B. J. Hwang, C. C. Chen, H. Dai, *J. Am. Chem. Soc.* 2015, *137*, 1587.
- [56]X. Zou, Y. Liu, G. D. Li, Y. Wu, D. P. Liu, W. Li, H. W. Li, D. Wang, Y. Zhang, X. Zou, *Adv. Mater.* **2017**, *29*, 1700404.
- [57]S. Yin, W. Tu, Y. Sheng, Y. Du, M. Kraft, A. Borgna, R. Xu, Adv. Mater. 2018, 30, 1705106.

41

^[58]X. Zhou, Y. Liu, H. Ju, B. Pan, J. Zhu, T. Ding, C. Wang, Q. Yang, *Chem. Mater.* 2016, 28, 1838.

- [59]F. Wang, P. He, Y. Li, T. A. Shifa, Y. Deng, K. Liu, Q. Wang, F. Wang, Y. Wen, Z. Wang,
 X. Zhan, L. Sun, J. He, *Adv. Funct. Mater.* 2017, 27, 1605802.
- [60]L. Chen, J. Zhang, X. Ren, R. Ge, W. Teng, X. Sun, X. Li, Nanoscale 2017, 9, 16632.
- [61]R. Subbaraman, D. Tripkovic, D. Strmcnik, K.-C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, N. M. Markovic, *Science* 2011, *334*, 1256.
- [62] N. Danilovic, R. Subbaraman, D. Strmcnik, K. C. Chang, A. P. Paulikas, V. R. Stamenkovic, N. M. Markovic, Angew. Chem. Int. Ed. Engl. 2012, 51, 12495.
- [63] W. Zhou, D. Hou, Y. Sang, S. Yao, J. Zhou, G. Li, L. Li, H. Liu, S. Chen, J. Mater. Chem. A 2014, 2, 11358.
- [64] B. Conway, B. Tilak, *Electrochim. Acta* 2002, 47, 3571.
- [65] A. J. Bard, L. R. Faulkner, J. Leddy, C. G. Zoski, *Electrochemical methods: fundamentals and applications*, wiley New York, **1980**.
- [66]N. Danilovic, R. Subbaraman, D. Strmcnik, V. R. Stamenkovic, N. M. Markovic, *J. Serb. Chem. Soc.* **2013**, *78*, 2007.
- [67] H. Lehmann, X. Fuentes-Arderiu, L. Bertello, Pure Appl. Chem. 1996, 68, 957.
- [68] P. Quaino, F. Juarez, E. Santos, W. Schmickler, Beilstein J Nanotechnol 2014, 5, 846.
- [69] R. Parsons, Trans. Faraday Soc. 1958, 54, 1053.
- [70] S. Trasatti, J. Electroanal. Chem. Interfacial Electrochem. 1972, 39, 163.
- [71]J. K. Nørskov, T. Bligaard, A. Logadottir, J. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 2005, 152, J23.
- [72]B. Hinnemann, P. G. Moses, J. Bonde, K. P. Jørgensen, J. H. Nielsen, S. Horch, I. Chorkendorff, J. K. Nørskov, J. Am. Chem. Soc. 2005, 127, 5308.

[73]T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, *Science* **2007**, *317*, 100.

[74] Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong, H. Dai, J. Am. Chem. Soc. 2011, 133, 7296.

[75]L. Liao, J. Zhu, X. Bian, L. Zhu, M. D. Scanlon, H. H. Girault, B. Liu, *Adv. Funct. Mater.***2013**, 23, 5326.

[76]E. Skúlason, V. Tripkovic, M. E. Björketun, S. Gudmundsdottir, G. Karlberg, J.Rossmeisl, T. Bligaard, H. Jónsson, J. K. Nørskov, J. Phys. Chem. C 2010, 114, 18182.

[77]Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Norskov, T. F. Jaramillo, *Science* **2017**, *355*.

[78] T. Schmidt, P. Ross, N. Markovic, J. Electroanal. Chem. 2002, 524, 252.

[79]K. Xu, H. Ding, M. Zhang, M. Chen, Z. Hao, L. Zhang, C. Wu, Y. Xie, *Adv. Mater.* 2017, 29, 1606980.

[80] K. K. Ghuman, S. Yadav, C. V. Singh, J. Phys. Chem. C 2015, 119, 6518.

[81]J. Luo, J.-H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N.-G. Park, S. D. Tilley,H. J. Fan, M. Grätzel, *Science* 2014, *345*, 1593.

[82]J. D. Benck, T. R. Hellstern, J. Kibsgaard, P. Chakthranont, T. F. Jaramillo, ACS Catal.2014, 4, 3957.

[83] A. R. Kucernak, C. Zalitis, J. Phys. Chem. C 2016, 120, 10721.

[84] T. Shinagawa, A. T. Garcia-Esparza, K. Takanabe, Sci. Rep. 2015, 5, 13801.

[85]C. H. Hamann, A. Hamnett, W. Vielstich, Weinheim, *Electrochemistry, Second Completely Revised and Updated Edition*, Wiley-VCH, **2007**.

[86]C. Cao, Principles of electrochemistry of corrosion, Chem. Ind. Press, Peking, China

2008.

- [87]J. M. Thomas, W. J. Thomas, *Principles and practice of heterogeneous catalysis*, John Wiley & Sons, 2014.
- [88]C. Costentin, S. Drouet, M. Robert, J. M. Saveant, J. Am. Chem. Soc. 2012, 134, 11235.
- [89] H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han,
- H. C. Manoharan, F. Abild-Pedersen, Nat. Mater. 2016, 15, 48.
- [90] S. Shin, Z. Jin, D. H. Kwon, R. Bose, Y. S. Min, *Langmuir* 2015, 31, 1196.
- [91] J. Kibsgaard, T. F. Jaramillo, F. Besenbacher, Nat. Chem. 2014, 6, 248.
- [92] Y. Yan, X. Ge, Z. Liu, J. Y. Wang, J. M. Lee, X. Wang, Nanoscale 2013, 5, 7768.
- [93] D. Mukherjee, P. M. Austeria, S. Sampath, ACS Energy Lett. 2016, 1, 367.
- [94] J. Zhang, L. Zhao, A. Liu, X. Li, H. Wu, C. Lu, *Electrochim. Acta* 2015, 182, 652.
- [95] M. Ledendecker, G. Clavel, M. Antonietti, M. Shalom, Adv. Funct. Mater. 2015, 25, 393.
- [96]Z.-x. Cai, X.-h. Song, Y.-r. Wang, X. Chen, ChemElectroChem 2015, 2, 1665.
- [97] J. Deng, P. Ren, D. Deng, L. Yu, F. Yang, X. Bao, Energy Environ. Sci. 2014, 7, 1919.
- [98] J. Deng, P. Ren, D. Deng, X. Bao, Angew. Chem. Int. Ed. Engl. 2015, 54, 2100.
- [99] H. Tang, K. Dou, C.-C. Kaun, Q. Kuang, S. Yang, J. Mater. Chem. A 2014, 2, 360.
- [100] J. Yang, D. Voiry, S. J. Ahn, D. Kang, A. Y. Kim, M. Chhowalla, H. S. Shin, Angew. Chem. Int. Ed. Engl. 2013, 52, 13751.
- [101] Y. Lei, S. Pakhira, K. Fujisawa, X. Wang, O. O. Iyiola, N. s. Perea López, A. Laura Elías, L. Pulickal Rajukumar, C. Zhou, B. Kabius, ACS nano 2017, 11, 5103.
- [102] T. A. Shifa, F. Wang, Z. Cheng, X. Zhan, Z. Wang, K. Liu, M. Safdar, L. Sun, J. He, *Nanoscale* 2015, 7, 14760.

[103] Y. Lin, Y. Pan, J. Zhang, Y. Chen, K. Sun, Y. Liu, C. Liu, *Electrochim. Acta* 2016, 222, 246.

- [104] D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, G. Y. Lee, S. O. Kim, *Nano Lett.* **2014**, *14*, 1228.
- [105] Q. Gong, Y. Wang, Q. Hu, J. Zhou, R. Feng, P. N. Duchesne, P. Zhang, F. Chen, N. Han, Y. Li, *Nat. Commun* 2016, *7*, 13216.
- [106] S. Peng, L. Li, X. Han, W. Sun, M. Srinivasan, S. G. Mhaisalkar, F. Cheng, Q. Yan, J.
- Chen, S. Ramakrishna, Angew. Chem. 2014, 126, 12802.
- [107] P. Cao, J. Peng, J. Li, M. Zhai, J. Power Sources 2017, 347, 210.
- [108] I. H. Kwak, H. S. Im, D. M. Jang, Y. W. Kim, K. Park, Y. R. Lim, E. H. Cha, J. Park, ACS Appl Mater Interfaces 2016, 8, 5327.
- [109] D. Kong, J. J. Cha, H. Wang, H. R. Lee, Y. Cui, *Energy Environ. Sci.* 2013, 6, 3553.
- [110] S. Xu, D. Li, P. Wu, Adv. Funct. Mater. 2015, 25, 1127.
- [111] Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, Adv. Mater. 2016, 28, 1917.
- [112] H. Ren, Z.-H. Huang, Z. Yang, S. Tang, F. Kang, R. Lv, J. Energy Chem. 2017, 26, 1217.
- [113] Y. Guo, C. Shang, E. Wang, J. Mater. Chem. A 2017, 5, 2504.
- [114] X. Zhou, X. Yang, M. N. Hedhili, H. Li, S. Min, J. Ming, K.-W. Huang, W. Zhang,
 L.-J. Li, *Nano Energy* 2017, *32*, 470.
- [115] M. Wang, P. Ju, W. Li, Y. Zhao, X. Han, *Dalton Trans.* 2017, 46, 483.
- [116] C. H. Mu, H. X. Qi, Y. Q. Song, Z. P. Liu, L. X. Ji, J. G. Deng, Y. B. Liao, F. Scarpa, *RSC Adv.* 2016, 6, 23.

[117] M. Wu, Y. Huang, X. Cheng, X. Geng, Q. Tang, Y. You, Y. Yu, R. Zhou, J. Xu, Adv. Mater. Interfaces 2017, 4, 1700948.

- [118] Y.-R. Liu, W.-H. Hu, X. Li, B. Dong, X. Shang, G.-Q. Han, Y.-M. Chai, Y.-Q. Liu,
 C.-G. Liu, *Appl. Surf. Sci.* 2016, 384, 51.
- [119] Y.-R. Liu, X. Shang, W.-K. Gao, B. Dong, J.-Q. Chi, X. Li, K.-L. Yan, Y.-M. Chai,
 Y.-Q. Liu, C.-G. Liu, *Appl. Surf. Sci.* 2017, *412*, 138.
- [120] J. Huang, D. Hou, Y. Zhou, W. Zhou, G. Li, Z. Tang, L. Li, S. Chen, J. Mater. Chem. A 2015, 3, 22886.
- [121] P. Liu, J. A. Rodriguez, J. Am. Chem. Soc. 2005, 127, 14871.
- [122] C. Wang, T. Ding, Y. Sun, X. Zhou, Y. Liu, Q. Yang, *Nanoscale* 2015, 7, 19241.
- [123] X. Zhu, M. Liu, Y. Liu, R. Chen, Z. Nie, J. Li, S. Yao, J. Mater. Chem. A 2016, 4, 8974.
- [124] Y. Pan, Y. Liu, Y. Lin, C. Liu, ACS Appl. Mater. Interfaces 2016, 8, 13890.
- [125] M. Liu, L. Yang, T. Liu, Y. Tang, S. Luo, C. Liu, Y. Zeng, J. Mater. Chem. A 2017, 5, 8608.
- [126] X. Wang, Y. V. Kolen'ko, X. Q. Bao, K. Kovnir, L. Liu, *Angew. Chem. Int. Ed.* 2015, 54, 8188.
- [127] W. Tang, J. Wang, L. Guo, X. Teng, T. J. Meyer, Z. Chen, ACS Appl. Mater. Interfaces 2017, 9, 41347.
- [128] Y.-R. Liu, W.-H. Hu, X. Li, B. Dong, X. Shang, G.-Q. Han, Y.-M. Chai, Y.-Q. Liu,
 C.-G. Liu, *Appl. Surf. Sci.* 2016, 383, 276.
- [129] T. Wang, L. Wu, X. Xu, Y. Sun, Y. Wang, W. Zhong, Y. Du, Sci. Rep. 2017, 7, 11891.

[130] J. Jin, Y. Zhu, Y. Liu, Y. Li, W. Peng, G. Zhang, F. Zhang, X. Fan, Int. J. Hydrogen Energy 2017, 42, 3947.

[131] Y. Pan, Y. Lin, Y. Liu, C. Liu, *Catal. Sci. Technol.* **2016**, *6*, 1611.

[132] Y. N. Regmi, A. Roy, L. A. King, D. A. Cullen, H. M. Meyer, G. A. Goenaga, T. A.Zawodzinski, N. Labbé, S. C. Chmely, *Chem. Mater.* 2017, 29, 9369.

[133] E. S. Stoyanov, I. V. Stoyanova, C. A. Reed, J. Am. Chem. Soc. 2010, 132, 1484.

[134] J.-X. Feng, S.-Y. Tong, Y.-X. Tong, G.-R. Li, J. Am. Chem. Soc. 2018, 140, 5118.

[135] Z. Chen, D. Cummins, B. N. Reinecke, E. Clark, M. K. Sunkara, T. F. Jaramillo, *Nano Lett.* **2011**, *11*, 4168.

[136] X. Zhang, P. Ding, Y. Sun, Y. Wang, Y. Wu, J. Guo, J. Alloys Compd. 2017, 715, 53.

[137] C.-L. Wu, P.-C. Huang, S. Brahma, J.-L. Huang, S.-C. Wang, *Ceram. Int.* 2017, 43, S621.

[138] B. Jin, X. Zhou, L. Huang, M. Licklederer, M. Yang, P. Schmuki, Angew. Chem. Int.Ed. Engl. 2016, 55, 12252.

[139] Y. Huang, Y.-E. Miao, L. Zhang, W. W. Tjiu, J. Pan, T. Liu, *Nanoscale* 2014, 6, 10673.

[140] E. Pu, D. Liu, P. Ren, W. Zhou, D. Tang, B. Xiang, Y. Wang, J. Miao, *AIP Advances***2017**, 7, 025015.

[141] Q. Xie, X. Zheng, D. Wu, X. Chen, J. Shi, X. Han, X. Zhang, G. Peng, Y. Gao, H.Huang, *Appl. Phys. Lett.* 2017, *111*, 093505.

[142] B. Galindo, S. G. Alcolea, J. Gómez, A. Navas, A. O. Murguialday, M. P. Fernandez,R. Puelles, presented at IOP Conference Series: Materials Science and Engineering 2014.

47

[143] M. Opitz, D. Go, P. Lott, S. Müller, J. Stollenwerk, A. J. Kuehne, B. Roling, J. Appl.*Phys.* 2017, 122, 105104.

[144] E. Kemppainen, A. Bodin, B. Sebok, T. Pedersen, B. Seger, B. Mei, D. Bae, P. C. K.Vesborg, J. Halme, O. Hansen, *Energy Environ. Sci.* 2015, *8*, 2991.

[145] S. Anantharaj, P. E. Karthik, B. Subramanian, S. Kundu, ACS Catalysis 2016, 6, 4660.

[146] Y. Cheng, S. Lu, F. Liao, L. Liu, Y. Li, M. Shao, Adv. Funct. Mater. 2017, 1700359.

[147] M. Basu, R. Nazir, C. Mahala, P. Fageria, S. Chaudhary, S. Gangopadhyay, S. Pande, *Langmuir* **2017**, *33*, 3178.

[148] X. Huang, Z. Zeng, S. Bao, M. Wang, X. Qi, Z. Fan, H. Zhang, *Nat. Commun* 2013, 4, 1444.

[149] C. Wang, F. Hu, H. Yang, Y. Zhang, H. Lu, Q. Wang, *Nano Research* 2017, 10, 238.

[150] T. G. Kelly, S. T. Hunt, D. V. Esposito, J. G. Chen, *Int. J. Hydrogen Energy* 2013, *38*, 5638.

[151] M. Basu, R. Nazir, P. Fageria, S. Pande, *Sci. Rep.* **2016**, *6*, 34738.

[152] J. Kim, S. Byun, A. J. Smith, J. Yu, J. Huang, J. Phys. Chem. Lett. 2013, 4, 1227.

[153] Y. Luo, D. Huang, M. Li, X. Xiao, W. Shi, M. Wang, J. Su, Y. Shen, *Electrochim. Acta* 2016, 219, 187.

[154] W.-F. Chen, J. T. Muckerman, E. Fujita, *Chem. Commun.* **2013**, *49*, 8896.

[155] L. Liao, S. Wang, J. Xiao, X. Bian, Y. Zhang, M. D. Scanlon, X. Hu, Y. Tang, B. Liu,

H. H. Girault, Energy Environ. Sci. 2014, 7, 387.

[156] J. Houston, G. Laramore, R. L. Park, Science 1974, 185, 258.

48

- [157] L. Bennett, J. Cuthill, A. McAlister, N. Erickson, R. Watson, Science 1974, 184, 563.
- [158] L. Wang, Y. Li, M. Xia, Z. Li, Z. Chen, Z. Ma, X. Qin, G. Shao, J. Power Sources2017, 347, 220.
- [159] F. Harnisch, U. Schröder, M. Quaas, F. Scholz, Appl. Catal., B 2009, 87, 63.
- [160] Y. Liu, G.-D. Li, L. Yuan, L. Ge, H. Ding, D. Wang, X. Zou, *Nanoscale* 2015, 7, 3130.
- [161] J. Su, Y. Yang, G. Xia, J. Chen, P. Jiang, Q. Chen, *Nat. Commun.* 2017, 8, 14969.
- [162] H. Fei, Y. Yang, Z. Peng, G. Ruan, Q. Zhong, L. Li, E. L. Samuel, J. M. Tour, ACS Appl. Mater. Interfaces 2015, 7, 8083.
- [163] D. Zhou, L. He, W. Zhu, X. Hou, K. Wang, G. Du, C. Zheng, X. Sun, A. M. Asiri, J.*Mater. Chem. A* 2016, *4*, 10114.
- [164] T. Kokabu, S. Inoue, Y. Matsumura, *AIP Advances* **2016**, *6*, 115212.
- [165] G. Birkett, D. Do, J. Phys. Chem. C 2007, 111, 5735.
- [166] J. Ma, A. Michaelides, D. Alfe, L. Schimka, G. Kresse, E. Wang, *Phys. Rev. B* 2011, 84, 033402.
- [167] X. Yu, J. Zhao, L.-R. Zheng, Y. Tong, M. Zhang, G. Xu, C. Li, J. Ma, G. Shi, ACS Energy Lett. 2017, 237.
- [168] B. Zhang, J. Liu, J. Wang, Y. Ruan, X. Ji, K. Xu, C. Chen, H. Wan, L. Miao, J. Jiang, *Nano Energy* 2017, *37*, 74.
- [169] J. Hu, C. Zhang, L. Jiang, H. Lin, Y. An, D. Zhou, M. K. Leung, S. Yang, *Joule* 2017, 1, 383.
- [170] X. Zhang, Y. Liang, Adv. Sci. 2018, 5, 1700644.

[171] S.-Q. Liu, H.-R. Wen, G. Ying, Y.-W. Zhu, X.-Z. Fu, R. Sun, C.-P. Wong, *Nano Energy* **2018**, *44*, 7.

- [172] M. Gao, L. Chen, Z. Zhang, X. Sun, S. Zhang, J. Mater. Chem. A 2018, 6, 833.
- [173] X. Zhang, S. Zhu, L. Xia, C. Si, F. Qu, F. Qu, *Chem Commun (Camb)* 2018, 54, 1201.
- [174] L. Xie, X. Ren, Q. Liu, G. Cui, R. Ge, A. M. Asiri, X. Sun, Q. Zhang, L. Chen, J. Mater. Chem. A 2018.
- [175] Z. Xing, C. Han, D. Wang, Q. Li, X. Yang, ACS Catal. 2017, 7, 7131.
- [176] H. Yin, S. Zhao, K. Zhao, A. Muqsit, H. Tang, L. Chang, H. Zhao, Y. Gao, Z. Tang, *Nat. Commun.* 2015, *6*, 6430.
- [177] M. A. Henderson, Surf. Sci. Rep. 2002, 46, 1.
- [178] A. Hodgson, S. Haq, Surf. Sci. Rep. 2009, 64, 381.
- [179] H. Xu, R. Q. Zhang, A. M. Ng, A. B. Djurišić, H. T. Chan, W. K. Chan, S. Tong, J.
 Phys. Chem. C 2011, *115*, 19710.
- [180] M. Gong, W. Zhou, M. C. Tsai, J. Zhou, M. Guan, M. C. Lin, B. Zhang, Y. Hu, D. Y.Wang, J. Yang, S. J. Pennycook, B. J. Hwang, H. Dai, *Nat. Commun.* 2014, *5*, 4695.
- [181] Z. Weng, W. Liu, L.-C. Yin, R. Fang, M. Li, E. I. Altman, Q. Fan, F. Li, H.-M. Cheng,
 H. Wang, *Nano Lett.* 2015, *15*, 7704.
- [182] R. Zhang, X. Ren, S. Hao, R. Ge, Z. Liu, A. M. Asiri, L. Chen, Q. Zhang, X. Sun, J. *Mater. Chem. A* 2018, 6.
- [183] Z. Wang, H. Du, Z. Liu, H. Wang, A. M. Asiri, X. Sun, *Nanoscale* 2018, 10, 2213.
- [184] C. Wang, B. Tian, M. Wu, J. Wang, ACS Appl. Mater. Interfaces 2017, 9, 7084.

[185] Z. Wang, Z. Liu, G. Du, A. M. Asiri, L. Wang, X. Li, H. Wang, X. Sun, L. Chen, Q.Zhang, *Chem. Commun.* 2018, 54, 810.

[186] J. X. Feng, H. Xu, Y. T. Dong, X. F. Lu, Y. X. Tong, G. R. Li, Angew. Chem. 2017, 129, 3006.

[187] M. Janjua, R. Le Roy, Int. J. Hydrogen Energy 1985, 10, 11.

[188] M. Gong, D.-Y. Wang, C.-C. Chen, B.-J. Hwang, H. Dai, *Nano Research* 2016, 9, 28.

[189] M. Devanathan, M. Selvaratnam, Trans. Faraday Soc. 1960, 56, 1820.

[190] N. Krstajić, M. Popović, B. Grgur, M. Vojnović, D. Šepa, J. Electroanal. Chem. 2001, 512, 16.

[191] C. González-Buch, I. Herraiz-Cardona, E. M. Ortega, S. Mestre, V. Pérez-Herranz, *Int. J. Hydrogen Energy* **2016**, *41*, 764.

[192] C. Zhang, S. Liu, Z. Mao, X. Liang, B. Chen, J. Mater. Chem. A 2017, 5, 16646.

[193] S. Fiameni, I. Herraiz-Cardona, M. Musiani, V. Pérez-Herranz, L. Vázquez-Gómez,
E. Verlato, *Int. J. Hydrogen Energy* 2012, *37*, 10507.

[194] C. He, G. Wang, J. Parrondo, S. Sankarasubramanian, V. Ramani, *J. Electrochem.* Soc. 2017, 164, F1234.

[195] T. An, Y. Wang, J. Tang, W. Wei, X. Cui, A. M. Alenizi, L. Zhang, G. Zheng, J. Mater. Chem. A 2016, 4, 13439.

[196] H. Liu, X. Ma, Y. Rao, Y. Liu, J. Liu, L. Wang, M. Wu, ACS Appl. Mater. Interfaces2018, 10, 10890.

- [197] M. Wu, S. Wang, J. Wang, *Electrochim. Acta* 2017, 258, 669.
- [198] C. Wang, P. Zhang, J. Lei, W. Dong, J. Wang, *Electrochim. Acta* 2017, 246, 712.

[199] P. Chen, K. Xu, S. Tao, T. Zhou, Y. Tong, H. Ding, L. Zhang, W. Chu, C. Wu, Y. Xie, Adv. Mater. 2016, 28, 7527.

[200] G. Zhao, P. Li, K. Rui, Y. Chen, S. X. Dou, W. Sun, *Chem. Eur. J* 2018, DOI: 10.1002/chem.201801693.

[201] Y.-Y. Chen, Y. Zhang, W.-J. Jiang, X. Zhang, Z. Dai, L.-J. Wan, J.-S. Hu, ACS nano2016, 10, 8851.

[202] G.-Q. Han, X. Li, J. Xue, B. Dong, X. Shang, W.-H. Hu, Y.-R. Liu, J.-Q. Chi, K.-L.
Yan, Y.-M. Chai, C.-G. Liu, *Int. J. Hydrogen Energy* 2017, *42*, 2952.

[203] Y. Zhao, K. Kamiya, K. Hashimoto, S. Nakanishi, Angew. Chem. Int. Ed. 2013, 52, 13638.

- [204] Z. Xing, D. Wang, Q. Li, A. M. Asiri, X. Sun, *Electrochim. Acta* 2016, 210, 729.
- [205] R. Kumar, R. Rai, S. Gautam, A. De Sarkar, N. Tiwari, S. N. Jha, D. Bhattacharyya,
- A. K. Ganguli, V. Bagchi, J. Mater. Chem. A 2017, 5, 7764.
- [206] Z. Deng, J. Wang, Y. Nie, Z. Wei, J. Power Sources 2017, 352, 26.
- [207] H. Ren, W. Xu, S. Zhu, Z. Cui, X. Yang, A. Inoue, *Electrochim. Acta* 2016, 190, 221.

[208] T. Li, K. Niu, M. Yang, N. K. Shrestha, Z. Gao, Y.-Y. Song, J. Power Sources 2017, 356, 89.

[209] X. Shang, J.-Q. Chi, S.-S. Lu, B. Dong, X. Li, Y.-R. Liu, K.-L. Yan, W.-K. Gao, Y.-M.
 Chai, C.-G. Liu, *Int. J. Hydrogen Energy* 2017, *42*, 4165.

- [210] D. Yoon, J. Lee, B. Seo, B. Kim, H. Baik, S. H. Joo, K. Lee, *Small* **2017**, *13*.
- [211] A. C. Mtukula, X. Bo, L. Guo, J. Alloys Compd. 2017, 692, 614.
- [212] X. Zheng, J. Xu, K. Yan, H. Wang, Z. Wang, S. Yang, Chem. Mater. 2014, 26, 2344.

[213] L. Zhu, H. Lin, Y. Li, F. Liao, Y. Lifshitz, M. Sheng, S.-T. Lee, M. Shao, Nat. Commun. 2016, 7, 12272.

- [214] N. Bai, Q. Li, D. Mao, D. Li, H. Dong, ACS Appl. Mater. Interfaces 2016, 8, 29400.
- [215] H. Liu, X. Ma, Y. Rao, Y. Liu, J. Liu, L. Wang, M. Wu, ACS Appl. Mater. Interfaces2018, 13, 10890.
- [216] L. Zhang, K. Xiong, S. Chen, L. Li, Z. Deng, Z. Wei, J. Power Sources 2015, 274,
 114.

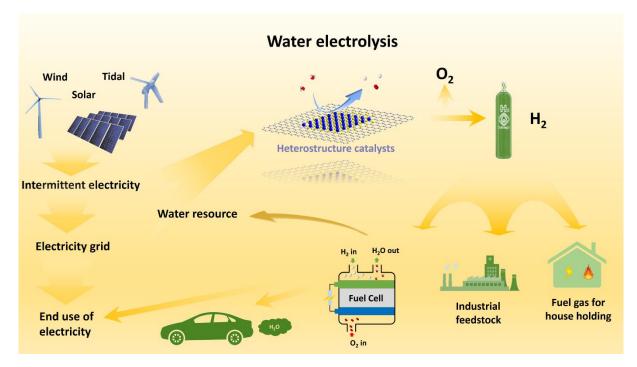


Figure 1. A sustainable pathway for the production and utilization of hydrogen energy.

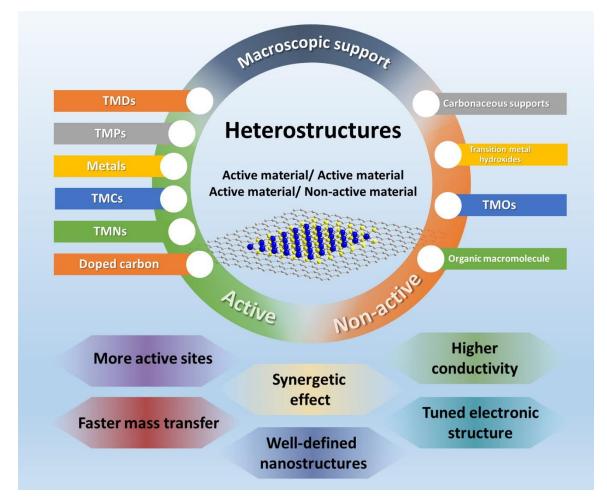


Figure 2. Heterostructured catalysts for HER and their superiorities for achieving enhanced catalytic activity.

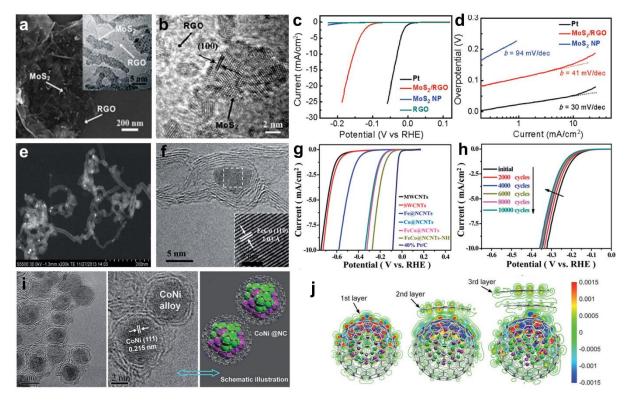
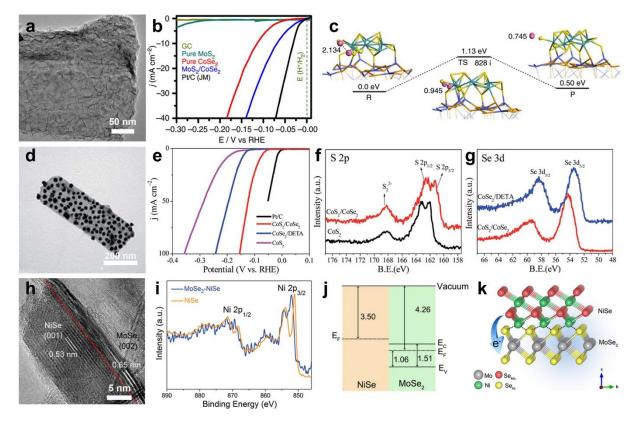
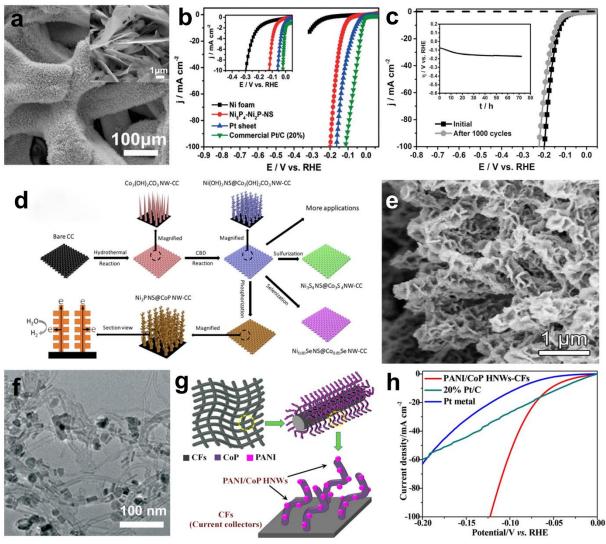




Figure 3. (a) SEM and TEM (inset) images of the MoS₂/RGO heterostructures. (b) HRTEM image showing nano-sized MoS_2 with highly exposed edges stacking on an RGO sheet. (c) LSV curves and (d) the corresponding Tafel plots obtained with several catalysts as indicated, electrolyte: 0.5 M H₂SO₄, catalyst loading: 0.28 mg cm⁻², sweep rate: 2 mV s⁻¹. Reproduced with permission.^[74] Copyright 2011, American Chemical Society. (e) STEM image of FeCo@NCNTs. (f) HRTEM image of FeCo@NCNTs, the inset shows the (110) crystal plane of the FeCo nanoparticle. (g) LSV curves of various catalysts as indicated, electrolyte: 0.1 M H_2SO_4 , catalyst loading: 0.28 mg cm⁻², sweep rate: 2 mV s⁻¹. (h) Durability measurement of FeCo@NCNTs: LSV curves recorded initially and after every 2000 CV sweeps between +0.77 and -0.18 V (vs. RHE) at 100 mV s⁻¹. Reproduced with permission.^[97] Copyright 2014, The Royal Society of Chemistry. (i) HRTEM images of CoNi@NC showing the graphene shells and encapsulated metal nanoparticles, and the schematic illustration of the CoNi@NC structure. (j) The electron densities redistribution after the CoNi clusters have covered by one to three layers of graphene. The differential charge density is defined as the difference in the electron density with and without the CoNi cluster. The red and blue regions are regions of increased and decreased electron density, respectively. Reproduced with permission.^[98] Copyright 2015, Wiley-VCH.

Figure 4. (a) TEM image of $MoS_2/CoSe_2$ heterostructures. (b) LSV curves for HER on various catalysts as indicated, electrolyte: 0.5 M H₂SO₄, catalyst loading: 0.28 mg cm⁻², sweep rate: 2 mV s⁻¹. (c) Reaction pathway of HER on $MoS_2/CoSe_2$ heterostructures based on the Volmer-Tafel route. Blue, orange, azure, yellow and pink indicate Co, Se, Mo, S and H atoms, respectively. Reproduced with permission.^[49] Copyright 2015, Macmillan Publishers Limited. (d) TEM image of the CoS₂/CoSe₂ heterostructures. (e) LSV curves of various catalysts as indicated, electrolyte: 0.5 M H₂SO₄, catalyst loading 0.28 mg cm⁻², sweep rate: 5 mV s⁻¹. (f) S 2p and (g) Se 3d XPS spectra of different materials as indicated. Reproduced with permission.^[113] Copyright 2017, The Royal Society of Chemistry. (h) Cross-sectional HRTEM image of the MoSe₂/NiSe heterostructure. (i) Ni 2p XPS spectra of the bare NiSe and the MoSe₂/NiSe heterostructure. (j) Schematic energy band diagrams of interfacial MoSe₂/NiSe heterostructures and the electron transfer from the NiSe nanocrystallites to the MoSe₂ substrate in the hetero-interface. Reproduced with permission.^[58] Copyright 2016, American Chemical Society.

Figure 5. (a) SEM image of Ni₅P₄-Ni₂P-NS array cathode, the inset is a high-magnification SEM image. (b) LSV curves of various catalysts as indicated, electrolyte: 0.5 M H₂SO₄, sweep rate: 10 mV s⁻¹. (c) LSV curves of the Ni₅P₄-Ni₂P-NS array cathode measured before and after accelerated degradation test for 1000 continuous cycles, sweep rate: 10 mV s⁻¹. Inset: overpotential~t profile recorded at a constant cathodic current of 10 mA cm⁻². All measurements were performed in N₂-saturated 0.5 M H₂SO₄ solution at room temperature. Reproduced with permission.^[126] Copyright 2015, Wiley-VCH. (d) Schematic diagram illustrating the procedure for preparing Ni₂P/CoP/CC electrode. (e) SEM image of the Ni₂P/CoP/CC electrode. Reproduced with permission.^[127] Copyright 2017, American Chemical Society. (f) TEM image of the CoP/MoS₂-CNT heterostructure. Reproduced with permission.^[131] Copyright 2016, The Royal Society of Chemistry. (g) Schematic illustration of the PANI/CoP HNWs-CFs heterostructures. (h) LSV curves of the PANI/CoP HNWs-CFs heterostructures (0.8 mg cm⁻²), Pt metal (Pt loading: 4.5 mg cm⁻²) and 20 wt% Pt/C (Pt loading: 0.012 mg cm⁻²). Reproduced with permission.^[134] Copyright 2018, American Chemical Society.

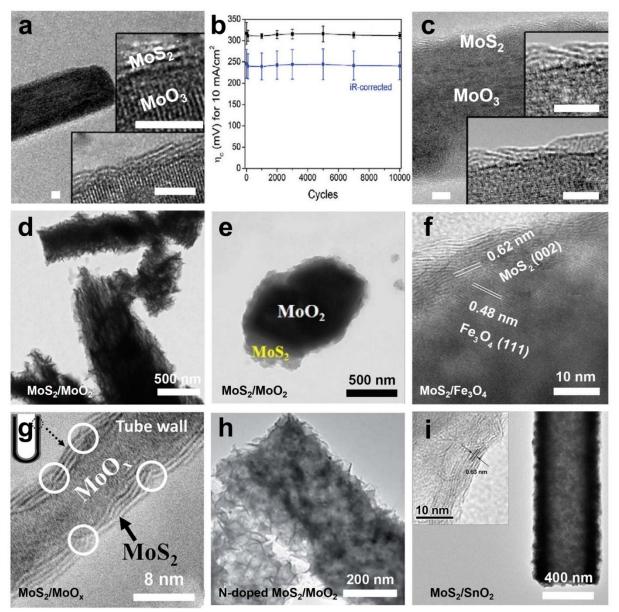


Figure 6. (a) TEM image of MoS₂/MoO₃ nanowires sulfidized at 200 °C, the inset HRTEM shows the lattice fringe of MoO_3 and MoS_2 , scale bar: 5 nm. (b) The overpotential stability required to drive 10 mA cm⁻² with iR correction (blue circles) and without iR correction (black squares). Data points are an average of 3 samples, while error bars represent a 95% confidence interval (two standard deviations). (c) TEM image of the MoS₂/MoO₃ nanowires after 10000 potential cycles. Reproduced with permission.^[135] Copyright 2011, American Chemical Society. (d) TEM image of MoS₂/MoO₂ heterostructure. Reproduced with permission.^[53] Copyright 2015, The Royal Society of Chemistry. (e) TEM image of MoS₂/MoO₂ heterostructure. Reproduced with permission.^[137] Copyright 2017, Elsevier Ltd. (f) TEM image of MoS₂/Fe₃O₄ heterostructure. Reproduced with permission.^[136] Copyright 2017, Elsevier Ltd. (g) TEM image of MoO_x/MoS₂ core-shell structure (annealed in H₂S at 500 °C for 2 min). Inset: position where this TEM image was taken from on the tube wall. The stacking misalignments of MoS₂ layers are marked in the white circles. Reproduced with permission.^[138] Copyright 2016, Wiley-VCH. (h) TEM image of N-doped MoS₂/MoO₂. Reproduced with permission.^[63] Copyright 2014, The Royal Society of Chemistry. (i) TEM image of MoS₂/SnO₂, the inset shows the HRTEM image of MoS₂ nanosheets. Reproduced

with permission.^[139] Copyright 2014, The Royal Society of Chemistry.

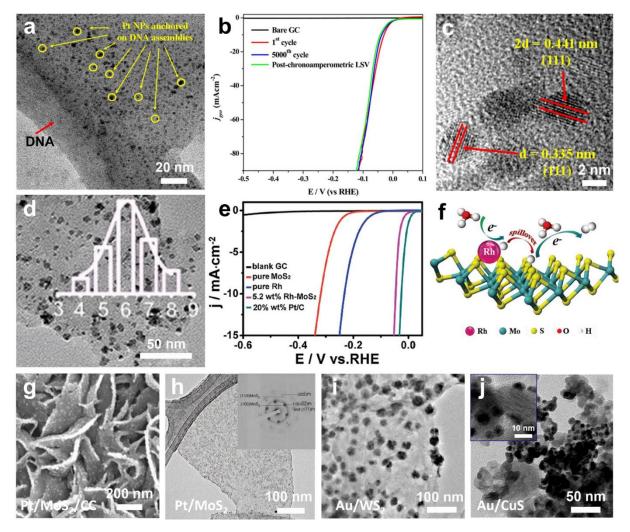


Figure 7. (a) HRTEM image of Pt/DNA molecular self-assemblies. (b) LSV curves of the Pt/DNA catalyst without binder at the first cycle and after 5000 cycles of accelerated degradation along with the post-chronoamperometric LSV and the LSV of bare GC, electrolyte: 0.5 M H₂SO₄, sweep rate: 2mV s⁻¹. (c) HRTEM image of Pt/DNA shows clear lattice fringes assigned to their respective planes in the Pt NPs after HER and aging studies. Reproduced with permission.^[145] Copyright 2016, American Chemical Society. (d) TEM image of 5.2 wt% Rh-MoS₂, the inset shows the size distribution of Rh. (e) LSV curves of various catalysts as indicated, electrolyte: 0.5 M H₂SO₄, catalyst loading: 0.31 mg cm⁻², sweep rate: 5 mV s⁻¹. (f) The illustration for the feasible HER mechanism for the 5.2 wt% Rh-MoS₂ catalyst. Reproduced with permission.^[146] Copyright 2017, Wiley-VCH. (g) SEM image of Pt/MoS₂/CC electrode. Reproduced with permission.^[153] Copyright 2016, Elsevier Ltd. (h) TEM image of epitaxial Pt/MoS₂ heterostructure, the inset is the corresponding FFT patterns showing the epitaxial relationship. Reproduced with permission.^[148] Copyright 2015, Macmillan Publishers Limited. (i) TEM image of Au nanoparticles on WS₂ sheet. Reproduced with permission.^[152] Copyright 2013, American Chemical Society. (j) TEM image of CuS/Au heterostructures, the inset shows small Au particles on CuS plates. Reproduced with permission.^[151] Copyright 2016, Springer Nature.

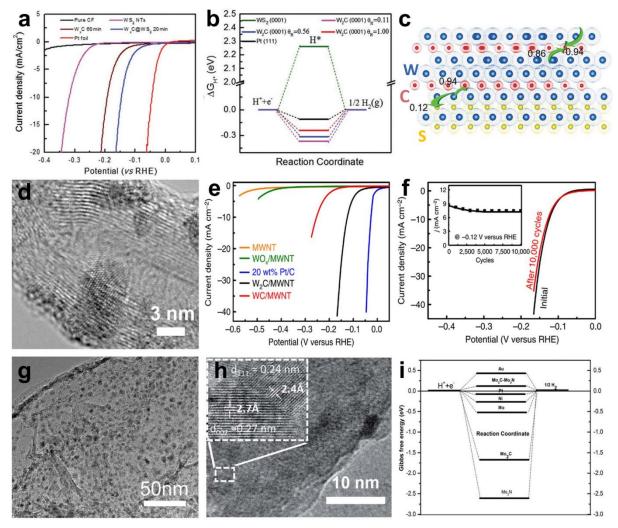
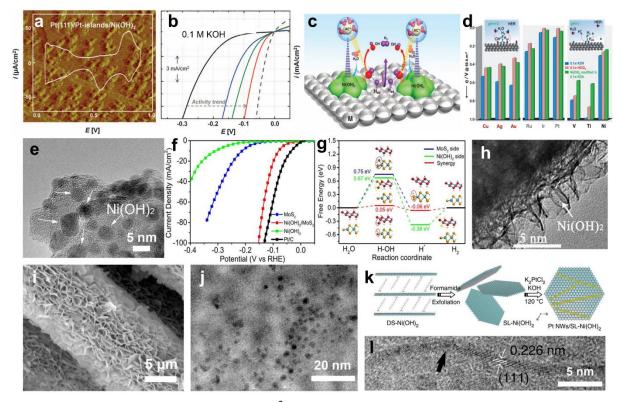
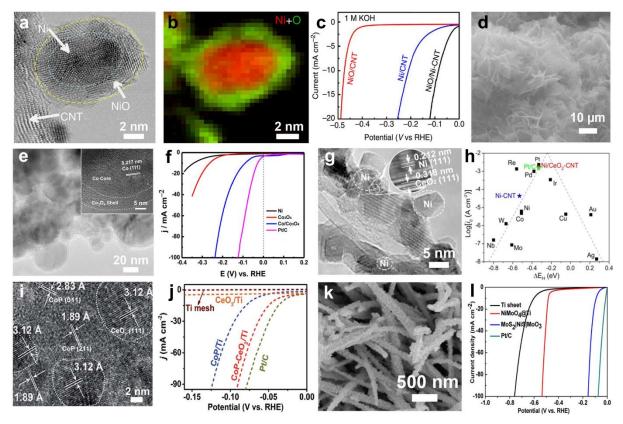
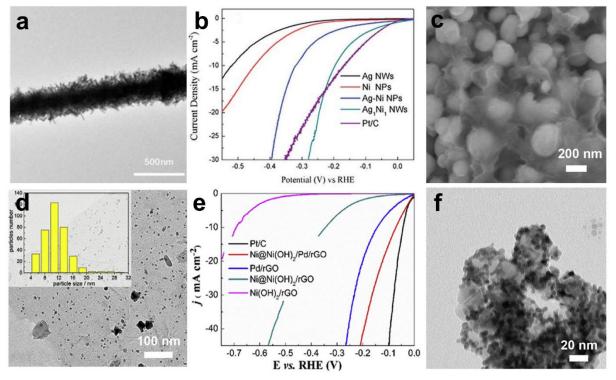


Figure 8. (a) LSV curves and corresponding Tafel plots for HER of various electrodes, electrolyte: 0.5 M H₂SO₄, catalyst loading: 0.3 mg cm⁻², sweep rate: 5 mV s⁻¹. (b) Free energy diagram of HER under different H* coverage ($\theta_{\rm H} = 0.11, 0.56, \text{ and } 1$), as well as the comparison with Pt(111) and WS₂ terrace sites. (c) Charge redistribution in $W_2C@WS_2$ heterostructure. The arrows denote the electron transfer direction. Reproduced with permission.^[59] Copyright 2017, Wiley-VCH. (d) HRTEM images of W₂C/MWNT. (e) LSV curves of various catalysts as indicated, electrolyte: 0.5 M H₂SO₄, catalyst loading: 0.56 mg cm⁻², sweep rate: 10 mV s⁻¹. (f) LSV curves of $W_2C/MWNT$ before and after 10,000 potential cycles, sweep rate: 10 mV s⁻¹. The inset shows the change of HER cathodic current density at -120 mV vs. RHE with respect to the number of potential cycles. Reproduced with permission.^[105] Copyright 2016, Springer Nature. (g) TEM images of P-WN/RGO. Reproduced with permission.^[43] Copyright 2015, Wiley-VCH. (h) HRTEM of Mo₂N/Mo₂C heterostructures showing the interfaces of g-Mo₂N and b-Mo₂C nanocrystals. (i) The calculated free-energy diagram of the HER at the equilibrium potential on the surface of various catalysts as indicated. Reproduced with permission.^[205] Copyright 2017, The Royal Society of Chemistry.

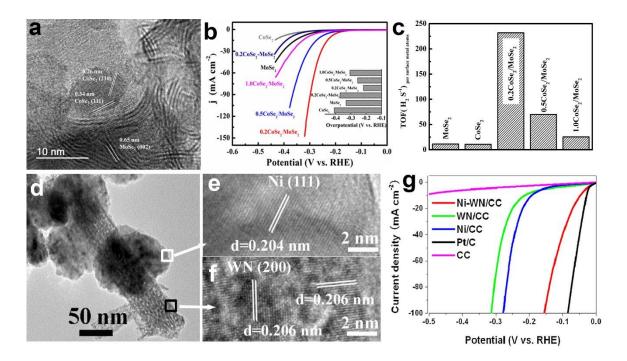

Figure 9. (a) STM image $(60 \times 60 \text{ nm}^2)$ and CV trace of the Ni(OH)₂/Pt-islands/Pt(111) surface. Clusters of Ni(OH)₂ in the STM image appear ellipsoidal with particle sizes between 4 and 12 nm. (b) Comparison of HER activities with Pt(111) as the substrate, with the incremental HER activity sequence: the bare Pt(111) (black line), Pt(111)/Ni(OH)₂ (blue line), Pt(111)/Ni(OH)₂/Pt nanocluster (green line), Pt(111)/Ni(OH)₂/Pt nanocluster/10⁻³ M Li⁺ (red line), and Pt(111) in 0.1 M HClO₄ (dashed line), electrolyte: 0.1 M KOH, sweep rate: 50 mV s^{-1} . (c) Schematic representation of the HER process on Ni(OH)₂/Pt electrode surface. Reproduced with permission.^[61] Copyright 2011, AAAS. (d) Comparison between activities for the HER, expressed as overpotential required for a 5 mA cm⁻² current density, in 0.1 M HClO₄ and 0.1 M KOH for both bare metal surfaces and Ni(OH)₂-modified surfaces. Reproduced with permission.^[62] Copyright 2012, Wiley-VCH. (d) TEM image of the Ni(OH)₂/MoS₂ heterostructure. (f) LSV curves of various catalysts as indicated, electrolyte: 1 2 mV s^{-1} . (g) The corresponding free energy diagram for HER on the M KOH, sweep rate: MoS₂ edge and Ni(OH)₂/MoS₂ interface. The surface structures of catalysts at different stages are shown in the inset. Reproduced with permission.^[168] Copyright 2017, Elsevier Ltd. (h) TEM image of Ni(OH)₂/CoS₂ heterostructure, showing Ni(OH)₂ layers on the surface of CoS₂ nanowires. Reproduced with permission.^[60] Copyright 2017, Royal Society of Chemistry. (i) SEM image of the Pt/Co(OH)₂/CC electrode. (j) TEM image of Pt/Co(OH)₂ heterostructure. Reproduced with permission.^[175] Copyright 2017, American Chemical Society. (k) Scheme for synthesis of Pt NWs/SL-Ni(OH)₂. (1) TEM images of Pt NWs/SL-Ni(OH)₂. Reproduced with permission.^[176] Copyright 2015, Springer Nature.

Figure 10. (a) HRTEM image of the NiO/Ni-CNT heterostructures. (b) The corresponding EDX mapping image of (a). (c) LSV curves of various catalysts as indicated, electrolyte: 1 M KOH, catalyst loading: 0.28 mg cm⁻², sweep rate 1 mV s⁻¹. Reproduced with permission.^[180] Copyright 2015, Springer Nature. (d) SEM and (e) TEM images of Co/Co₃O₄ nanosheets, the inset shows the core-shell structure. (f) LSV curves of various catalysts as indicated, electrolyte: 1 M KOH, sweep rate: 2 mV s⁻¹. Reproduced with permission.^[50] Copyright 2015, American Chemical Society. (g) HRTEM image of the Ni/CeO₂-CNT heterostructure. (h) The volcano plot of the experimentally measured exchange current density vs. the DFT calculated hydrogen binding energy. Reproduced with permission.^[181] Copyright 2015, American Chemical Society. (i) HRTEM image of the CoP-CeO₂ nanosheet. (j) LSV curves of various catalysts as indicated, electrolyte: 1 M KOH, sweep rate: 2 mV s⁻¹. Reproduced with permission.^[182] Copyright 2015, American Chemical Society. (i) HRTEM image of the CoP-CeO₂ nanosheet. (j) LSV curves of various catalysts as indicated, electrolyte: 1 M KOH, sweep rate: 2 mV s⁻¹. Reproduced with permission.^[182] Copyright 2018, The Royal Society of Chemistry. (k) SEM image of the MoS₂/NiS/MoO₃ heterostructures. (l) LSV curves of various catalysts as indicated, electrolyte: 1 M KOH, sweep rate: 2 mV s⁻¹. Reproduced with permission.^[184] Copyright 2011, American Chemical Society.

Figure 11. (a) TEM image of Ag-Ni nanowires with an atomic ratio of Ag to Ni of 1:1. (b) LSV curves of various catalysts as indicated, electrolyte: 0.1 M KOH, catalyst loading: 0.12 mg cm⁻², sweep rate: 10 mV s⁻¹. Reproduced with permission.^[192] Copyright 2017, The Royal Society of Chemistry. (c) SEM image of Ni@Ni(OH)₂/RGO heterostructure without Pd seed. (d) TEM image Ni@Ni(OH)₂/Pd/RGO, the inset is the statistical particle size from 356 particles. (e) LSV curves of various catalysts as indicated, electrolyte: 1 M KOH, catalyst loading: 0.25 mg cm⁻², sweep rate: 5 mV s⁻¹. Reproduced with permission.^[206] Copyright 2017, Elsevier Ltd. (f) TEM image of Pt/RTO heterostructure. Reproduced with permission.^[194] Copyright 2017, permission conveyed through Copyright Clearance Center, Inc.

Figure 12. (a) TEM image of $0.2\text{CoSe}_2/\text{MoSe}_2$ heterostructures. (b) LSV curves of various catalysts as indicated, the inset is the overpotential at 10 mA cm⁻², electrolyte: 1 M KOH, catalyst loading: 0.2 mg cm⁻², sweep rate: 5 mV s⁻¹. (c) TOF at the overpotential of 300 mV. Reproduced with permission.^[200] Copyright 2018, John Wiley and Sons (d) TEM image of Ni-WN. HRTEM of (e) Ni and (f) WN, corresponding to the white and black square in d. (g) LSV curves of various electrode as indicated, electrolyte: 1 M KOH, sweep rate: 5 mV s⁻¹, catalyst loading: 8.9, 4.5, 4.4 mg cm⁻² for Ni-WN, WN, Ni, respectively. Reproduced with permission.^[204] Copyright 2016, Elsevier Ltd.

Catalyst	Morphology	Electrode	Overpotential	Tafel slope (mV	Catalyst	Sweep	Electrolyte	Reference
			@10 mA	dec ⁻¹)	loading	rate (mV		
			cm^{-2} (mV)		$(mg cm^{-2})$	s ⁻¹)		
1.82 % Pt/NPC	Pt nanoparticles on a 3D N,	GC	20	36	0.28	50	0.5 M	149
	P co-doped carbon network						H_2SO_4	
5.2% Rh-MoS ₂	Rh nanoparticles on MoS ₂	GC	~50	24	0.31	5	0.5 M	146
	nanosheets						H_2SO_4	
Ag ₂ S/Ag	Ag ₂ S/Ag nanowires	GC	199	102	1.06	20	0.5 M	147
							H_2SO_4	
Ag ₂ S/CuS	Nanoporous Ag ₂ S/CuS	GC	~190	75	0.28	5	0.5 M	207
	composites						H_2SO_4	

Table 1. Heterostructures for HER in acidic solutions

Ag ₂ S/MoS ₂	Ag_2S	ITO	~200	42		5	0.5 M	115
	nanoparticle-decorated						H_2SO_4	
	MoS ₂ nanosheets							
Co ₃ S ₄ /CoP	Porous Co ₃ S ₄ /CoP nanorods	GC	86	45	0.28	5	0.5 M	129
							H_2SO_4	
Co ₉ S ₈ /MoS _x /C	3D flower-like MoS _x	CC	98	65		0.5	0.5 M	114
С	incorporated Co ₉ S ₈						H_2SO_4	
	nanosheets supported on CC							
Co-FeS ₂ /CNT	Cobalt-doped FeS ₂	GC	160	46	0.4	1	0.5 M	55
	nanosheets grown on CNTs						H_2SO_4	
CoNi@NC	CoNi nanoparticles	GC	142	105	1.6	2	0.1 M	98
	encapsulated in few-layered						H_2SO_4	

graphene spheres							
CoP in situ grown on MoS ₂	GC	12	42		5	0.5 M	131
and CNT						H_2SO_4	
CoP nanorods in situ grown	GC	~150	5 ₂	0.4	10	0.5 M	103
on N,S codoped-GO						H_2SO_4	
CoP nanoparticles	GC	150	86	0.29	5	0.5 M	130
combined with WS ₂						H_2SO_4	
nanosheets							
Core-shell Co ₃ O ₄ /CoS ₂	CC	~150	45		2	0.5 M	208
nanoneedle arrays on CC						H_2SO_4	
CoS ₂ nanoparticles dotted	GC	80	34	0.28	5	0.5 M	113
on CoSe ₂ /DETA nanobelts						H_2SO_4	
	CoP <i>in situ</i> grown on MoS ₂ and CNT CoP nanorods <i>in situ</i> grown on N,S codoped-GO CoP nanoparticles combined with WS ₂ nanosheets Core-shell Co ₃ O ₄ /CoS ₂ nanoneedle arrays on CC CoS ₂ nanoparticles dotted	CoP <i>in situ</i> grown on MoS ₂ GC and CNT CoP nanorods <i>in situ</i> grown GC on N,S codoped-GO CoP nanoparticles GC combined with WS ₂ nanosheets Core-shell Co ₃ O ₄ /CoS ₂ CC nanoneedle arrays on CC	CoP <i>in situ</i> grown on MoS ₂ GC 12 and CNT CoP nanorods <i>in situ</i> grown GC ~150 on N,S codoped-GO CoP nanoparticles GC 150 combined with WS ₂ nanosheets Core-shell Co ₃ O ₄ /CoS ₂ CC ~150 nanoneedle arrays on CC CoS ₂ nanoparticles dotted GC 80	CoP in situ grown on MoS2GC1242and CNT	CoP in situ grown on MoS2GC1242and CNT	CoP in situ grown on MoS2GC12425and CNTCoP nanorods in situ grownGC~150520.410on N,S codoped-GOCoP nanoparticlesGC150860.295combined with WS2nanosheets2nanoneedle arrays on CC2CoS2 nanoparticles dottedGC80340.285	CoP in situ grown on MoS2 GC 12 42 5 0.5 M and CNT H2SO4 10 0.5 M CoP nanorods in situ grown GC ~150 52 0.4 10 0.5 M on N,S codoped-GO

Hybridized CoS ₂ /MoS ₂	GC	180	67	0.35	5	0.5 M	118
grown on CNTs						H_2SO_4	
Ternary CoS ₂ /MoS ₂ /RGO	GC	160	56		5	0.5 M	119
heterostructure with CoMoS						H_2SO_4	
phase							
In situ grown CoS ₂ /RGO	Freestanding	142	51		2	0.5 M	106
uniformly distributed in						H_2SO_4	
CNT networks							
$Co_x S_y/WS_2$ nanosheets	CC	120	89		5	0.5 M	209
supported on CC						H_2SO_4	
Cactus-like hollow Cu	GC	82	48	0.23	2	0.5 M	210
_{2-x} S/Ru Nanoplates						H_2SO_4	
	grown on CNTs Ternary CoS ₂ /MoS ₂ /RGO heterostructure with CoMoS phase <i>phase</i> <i>In situ</i> grown CoS ₂ /RGO uniformly distributed in CNT networks Co _x S _y /WS ₂ nanosheets supported on CC Cactus-like hollow Cu	grown on CNTs Ternary CoS ₂ /MoS ₂ /RGO GC heterostructure with CoMoS phase In situ grown CoS ₂ /RGO Freestanding uniformly distributed in CNT networks Co _x S _y /WS ₂ nanosheets CC supported on CC Cactus-like hollow Cu GC	grown on CNTs Ternary CoS ₂ /MoS ₂ /RGO GC 160 heterostructure with CoMoS phase <i>In situ</i> grown CoS ₂ /RGO Freestanding 142 uniformly distributed in CNT networks Co _x S _y /WS ₂ nanosheets CC 120 supported on CC Cactus-like hollow Cu GC 82	grown on CNTs Ternary CoS ₂ /MoS ₂ /RGO GC 160 56 heterostructure with CoMoS phase <i>In situ</i> grown CoS ₂ /RGO Freestanding 142 51 uniformly distributed in CNT networks Co _x S _y /WS ₂ nanosheets CC 120 89 supported on CC Cactus-like hollow Cu GC 82 48	grown on CNTs Ternary CoS ₂ /MoS ₂ /RGO GC 160 56 heterostructure with CoMoS phase <i>In situ</i> grown CoS ₂ /RGO Freestanding 142 51 uniformly distributed in CNT networks Co _x S _y /WS ₂ nanosheets CC 120 89 supported on CC Cactus-like hollow Cu GC 82 48 0.23	grown on CNTs Ternary CoS ₂ /MoS ₂ /RGO GC 160 56 5 heterostructure with CoMoS phase <i>In situ</i> grown CoS ₂ /RGO Freestanding 142 51 2 uniformly distributed in CNT networks Co _x S _y /WS ₂ nanosheets CC 120 89 5 supported on CC 5 Cactus-like hollow Cu GC 82 48 0.23 2	grown on CNTs H2SO4 Ternary CoS2/MoS2/RGO GC 160 56 5 0.5 M heterostructure with CoMoS Image H2SO4 H2SO4 H2SO4 phase Image Image Image H2SO4 In situ grown CoS2/RGO Freestanding 142 51 2 0.5 M uniformly distributed in Image Image

CuS/Au	Au nanoparticle grown on	GC	179	75	2.55	50	0.5 M	151
	the surface of CuS						H_2SO_4	
Fe ₂ P/C	Carbon-coated hollow	GC	115	56	0.72	5	0.5 M	123
	mesoporous FeP						H_2SO_4	
	microcubes							
Fe ₂ P/RGO/Fe ₂ P	Fe ₂ P/RGO/Fe ₂ P	Ti plate	101	55		2	0.5 M	125
	sandwich-structure						H_2SO_4	
FeCo@NCNTs	FeCo alloy encapsulated in	GC	~280	70	0.28	2	0.1 M	97
-NH	N-doped CNT with						H_2SO_4	
	increased N							
FeP/Carbon	Carbon-shell-protected FeP	GC	71	52			0.5 M	35
	nanoparticles						H_2SO_4	

FeP/graphene	FeP nanoparticles grown on	GC	123	50	0.28	5	0.5 M	37
	graphene sheets						H_2SO_4	
Mo ₂ C-Mo ₂ N/C	β -Mo ₂ C and γ -Mo ₂ N	GC	96	37	0.4	2	1 M	205
NT	nanoparticles grown on						H_2SO_4	
	CNTs							
MoO ₂ /N-MoS ₂	MoO ₂ nanobelts hybridized	GC	~210	48	0.28	5	0.5 M	63
	with N-doped MoS ₂						H_2SO_4	
	nanosheets							
MoO ₂ /WN/Mo ₂	MoO ₂ /WN/Mo ₂ N grown on	GC	120	84	0.21		0.5 M	211
Ν	N-doped graphene						H_2SO_4	
MoO ₃ /MoS ₂	Vertically oriented	FTO	~250	~55		5	0.5 M	135
	core-shell MoO ₃ -MoS ₂						H_2SO_4	

	nanowires							
MoO _x /MoS ₂	Aligned MoO _x /MoS ₂	Mo foil	259	63		5	0.5 M	138
	core-shell nanotubular in						H_2SO_4	
	situ grown on Mo foils							
MoS ₂ /Au	Spontaneous gold	GC	~330	57		5	0.5 M	152
	nanoparticle decorated						H_2SO_4	
	MoS_2							
MoS ₂ /C	Amorphous MoS ₂ supported	GC	122	39	0.28	5	0.5 M	107
	by carbon black						H_2SO_4	
MoS ₂ /CNT	Low-crystalline MoS ₂	GC	~175	45	0.136	5	0.5 M	92
	nanosheet coated on CNT						H_2SO_4	
	network							

MoS ₂ /CoS ₂ /CC	MoS ₂ nanosheet-coated	CC	87	73		5	0.5 M	120
	CoS ₂ nanowire arrays on						H_2SO_4	
	CC							
MoS ₂ /CoSe ₂	Quasi-amorphous	GC	68	36	0.28	2	0.5 M	49
	MoS ₂ -coated CoSe ₂						H_2SO_4	
MoS ₂ /Fe3O ₄	Shell-core MoS ₂	GC	~210	52	0.14	5	0.5 M	136
	nanosheets/Fe ₃ O ₄ sphere						H_2SO_4	
	heterostructure							
MoS ₂ /MGF	In situ formation of MoS ₂	GC	~100	42	0.21	2	0.5 M	75
	nanoparticles on						H_2SO_4	
	mesoporous graphene foams							
MoS ₂ /MoO ₂	3D heterostructures of MoS_2	CC	~200	35.6		5	0.5 M	52

	nanosheets on conducting						H_2SO_4	
	MoO ₂							
MoS ₂ /MoO ₂	MoS ₂ /MoO ₂ core-shell	GC	210	129	0.28	5	0.5 M	137
	structure						H_2SO_4	
MoS ₂ /MoO ₂	MoS ₂ nanosheets supported	GC	240	76	0.22	5	0.5 M	53
	by porous metallic MoO ₂						H_2SO_4	
MoS ₂ /N-doped	Amorphous MoS ₂ layer	GC	110	40	0.102	5	0.5 M	104
CNT	bound at vertical N-doped						H_2SO_4	
	carbon nanotube (NCNT)							
	forest surface							
MoS ₂ /RGO	MoS ₂ Nanoparticles grown	GC	~150	41	0.28	5	0.5 M	74
	on Graphene						H_2SO_4	

MoS ₂ /RGO	Space-confined grown	GC	~160	41	0.2	5	0.5 M	212
	MoS ₂ nanosheets on RGO						H_2SO_4	
MoSe ₂ /CoSe ₂	Nanosheet-assembled	GC	~200	73	0.28	2	0.5 M	116
	hierarchical MoSe ₂ /CoSe ₂						H_2SO_4	
	microcages							
MoSe ₂ /NiSe	Epitaxial MoSe ₂ /NiSe	GC	210	56	0.285	5	0.5 M	58
	vertical heterostructures						H_2SO_4	
MoSe ₂ /RGO	MoSe ₂ sheets grown on	GC	115	69	0.16	10	0.5 M	99
	RGO						H_2SO_4	
Ni ₂ P/CoP	Ni ₂ P nanosheets/CoP	CC	55	48		2	0.5 M	127
	nanowires on CC						H_2SO_4	
Ni ₂ P/Graphene/	Ni ₂ P nanosheets on 3D	NF	75	51		5	0.5 M	96

NF	graphene/NF						H_2SO_4	
Ni ₂ P/Mo ₂ C/M	Ni ₂ P/Mo ₂ C hybridized with	GC	154	83	0.2	5	0.5 M	132
WCNT	MWCNT						H_2SO_4	
Ni ₂ P/MoS ₂	Ni ₂ P nanoparticles on MoS ₂	GC	~200	76		10	0.5 M	128
	nanoflowers						H_2SO_4	
Ni ₂ P-Ni ₅ P ₄ -NS	3D self-supported biphasic	NF	120	79		10	0.5 M	126
	Ni ₅ P ₄ -Ni ₂ P nanosheet array						H_2SO_4	
NiCo/graphene	NiCo alloy encapsulated by	GC	224	104	0.32		0.5 M	98
	graphene sheets						H_2SO_4	
PANI/CoP	Polyaniline (PANI)	CF	57	34.5	0.8		0.5 M	134
HNWs-CFs	nanodots decorated CoP						H_2SO_4	
	hybrid nanowires							

Pt/DNA	Pt nanoparticles anchored	GC	30	26	15 µg Pt	2	0.5 M	145
	on self-assemblies of DNA				cm ⁻²		H_2SO_4	
	molecules							
Pt/MoS ₂	Epitaxial Pt/MoS ₂	GC	50	40		2	0.5 M	148
	heterostructures						H_2SO_4	
Pt/MoS ₂ /CC	Trace-Pt-decorated MoS ₂	CC	50(@50 mA	49		2	0.5 M	153
	nanosheets supported on CC		cm ⁻²)				H_2SO_4	
P-WN/RGO	P-modified WN/RGO	GC	85	54	0.34	5	0.5 M	43
							H_2SO_4	
RGO/WS ₂	Vertical-oriented WS ₂	W foil	229	73		2	0.5 M	102
	nanosheets decorated by						H_2SO_4	
	ultrathin RGO							

Rh/Si	Rh nanoparticles grown on	GC	180 (@100	24	0.193		0.5 M	213
	Si nanowires		$mA cm^{-2}$)				H_2SO_4	
W ₂ C/MWCNT	Ultrasmall phase-pure W ₂ C	GC	123	45	0.56	10	0.5 M	105
	nanoparticles						H_2SO_4	
WS ₂ /RGO	2D WS_2 nanosheets on	GC	270	58	0.4	5	0.5 M	100
	RGO						H_2SO_4	
W _x C@WS ₂	Ravenala leaf-like W _x C on	GC	146	61	0.3	5	0.5 M	59
	WS ₂ nanotubes						H_2SO_4	
ZnSe/MoSe ₂	Arrays of ZnSe/MoSe ₂	FTO	200	73		5	0.5 M	117
	nanotubes on FTO						H_2SO_4	

Note: CC: carbon cloth, CF: Carbon fiber, FTO: fluorine-doped tin oxide, GC: glassy carbon electrode, ITO: indium tin oxide, NF: nickel foam

Catalyst	Description	Electrode	Overpoten	Tafel slope	Catalyst	Sweep rate	Electrolyte	Reference
			tial @10	$(mV dec^{-1})$	loading (mg	$(mV s^{-1})$		
			mA cm ⁻²		cm ⁻²)			
			(mV)					
$1T-MoS_2/Ni_{2+\delta}O$	Nickel hydr(oxy)oxide	CFP	72	77	0.4 based on	5	1 M KOH	170
$_{\delta}(OH)_{2-\delta}$	nanoparticles on 1T				MoS_2			
	MoS ₂ nanosheets							
Ag-Ni	Core/shell Ag/Ni	GC	197	84	0.12	10	0.1 M KOH	192
	nanowires							
CeO ₂ /Cu ₃ P/NF	CeO ₂ /Cu ₃ P nanoarray	NF	148(@20	132		5	1 M KOH	183
	supported on NF		mA cm ⁻²)					

Table 2. Heterostructures for HER in alkaline solutions

Co/Co ₃ O ₄ /NF	3D	NF	90	44		2	1 M KOH	50
	Crystalline/amorphous							
	Co/Co ₃ O ₄ core/shell							
	nanosheets grown on NF							
Co/CoP/NF	Crystalline/amorphous	NF	35	71		2	1 M NaOH	214
	Co/CoP film							
	electrodeposited on NF							
CoP-CeO ₂	CoP/CeO ₂ hybrid	TM	45	43		2	1 M KOH	182
	nanosheet film on TM							
0.2CoSe ₂ /MoSe ₂	Cubic phase CoSe ₂	GC	218	76	0.203	5	1 M KOH	200
	quantum dots decorated							
	on MoSe ₂ surface							

MoS ₂ /NiCo-LD	Vertical MoS ₂ sheets	CFP	78	77		5	1 M KOH	169
Н	hybridiized with							
	NiCo-LDH							
MoS ₂ /NiS/MoO	MoS ₂ /NiS/MoO ₃	Ti foil	91	55		2	1 M KOH	184
3	nanowires on Ti foil							
MoSe ₂ /Ni _{0.85} Se	3D MoSe ₂ /Ni _{0.85} Se	NF	117	66	6.48	2	1 M KOH	45
	nanowire network							
Ni(OH) ₂ /CoS ₂ /C	Ni(OH) ₂ /CoS ₂ hybrid	CC	99(@20m	118		5	1 M KOH	60
С	nanowire array on CC		A cm ⁻²)					
Ni(OH) ₂ /CuS	Mesoporous nano-shelled	GC	95	104	0.29	2	1 M KOH	171
	amorphous							
	Ni(OH) ₂ /crystalline CuS							

	hollow spheres							
Ni(OH) ₂ /Fe ₂ P/T	Amorphous Ni(OH) ₂	TM	76	105	1.34	5	1 M KOH	173
М	decorated Fe ₂ P nanoarray							
	supported by TM							
Ni(OH) ₂ /MoS ₂ /	Ni(OH) ₂ /MoS ₂	CC	80	60		2	1 M KOH	168
CC	heterostructure supported							
	by CC							
Ni(OH) ₂ /Ni ₃ N/T	Ni(OH) ₂ /Ni ₃ N	TM	72(@	86		5	1 M KOH	172
М	nanoarrays supported by		20mA					
	TM		cm ⁻²)					
Ni(OH) ₂ /PtO ₂ /T	Ni(OH) ₂ /PtO ₂ hybrid	TM	31.4(@4	89		5	0.1 M KOH	174
М	nanosheet array		$mA cm^{-2}$)					

	supported by TM							
Ni/CeO ₂ -CNT	Ni/CeO ₂ nanointerfaces	CFP	90		0.8	5	1 M KOH	181
	coupled with CNTs							
Ni/graphene	Ni nanoparticles	NF	57	89		5	1 M NaOH	158
	supported on graphene							
	layers							
Ni@Ni(OH) ₂ /Pd	Ni/Ni(OH) ₂ /Pd	GC	76	70	0.25	5	1 M KOH	206
/RGO	heterostructure supported							
	on RGO sheets							
NiCo ₂ S ₄ /Ni ₃ S ₂ /	3D heteromorphic	NF	119	105.2		5	1 M KOH	215
NF	NiCo ₂ S ₄ /Ni ₃ S ₂							
	nanosheetson NF							

NiO/Ni-CNT	Nanoscale NiO/Ni	GC	80	82	0.28	1	1 M KOH	180
	heterostructures formed							
	on CNT sidewalls							
Ni-P/MoSx	Electrodeposited hybrid	FTO	140	64		10	1 M KOH	202
	Ni-P/MoS _x film							
Ni-WN/CC	Ni particles	CC	47	71		5	1 M KOH	204
	electrodeposited on							
	WN/CC heterostructures							
Pt/Co(OH) ₂ /CC	Ultrafine Pt	CC	32	70	6.9	5	1 M KOH	175
	nanoparticle-decorated							
	Co(OH) ₂ nanosheet							
	arrays on CC							

Pt/Ni	Pt-modified 3D Ni		75 (@ 100	~120		1	1 M KOH	193
	electrode		mA cm ⁻²)					
Pt/Ni(OH) ₂	Ultrathin platinum	CC	~150			10	1 M KOH	176
	nanowires grown on							
	single-layered Ni(OH) ₂							
PtO ₂ /Co(OH)F	Ultrafine PtO ₂	TM	160(@100	63	1.32	5	0.1 M KOH	185
	nanoparticles coupled		mA cm ⁻²)					
	with Co(OH)F nanowire							
	array							
RuCo/NC	RuCo nanoalloys	GC	28	31	0.28	2	1 M KOH	161
	encapsulated in							
	nitrogen-doped graphene							

RuO ₂ /NiO	RuO ₂ /NiO nanorods	NF	100 (@	38.5		5	6 M NaOH	216
	arrays on NF		100 mA					
			cm ⁻²)					
TiO2 NDs/Co	Co nanotubes decorated	CF	106	62	0.75	5	1 M KOH	186
nanotubes	with TiO ₂ nanodots							

Note: CC: carbon cloth, CF: Carbon fiber, CFP: carbon fiber paper, FTO: fluorine-doped tin oxide, GC: glassy carbon electrode, NF: nickel

foam, TM: titanium mesh

Guoqiang Zhao received his Bachelor degree from Harbin Engineering University in 2011 and Master degree from Institute of Metal Research, Chinese Academy of Sciences (IMR, CAS) in 2014. From Jul. 2014 to Dec. 2015, he worked as a Research Assistant in IMR, CAS. From Jan. 2016 to Jul. 2016, he worked as an Engineer in Amperex Technology Limited. Now he is a PhD student at the Institute for Superconducting & Electronic Materials at the University of Wollongong under the supervision of Dr. Wenping Sun and Prof. Shi Xue Dou. His research is focused on developing efficient catalysts for electrochemical water splitting.

Wenping Sun received his B.S. in 2008 and PhD in Materials Science in 2013 from University of Science and Technology of China (USTC). From September 2013 to May 2015, he worked as a Research Fellow at Nanyang Technological University, Singapore. In June 2015, he moved to Institute for Superconducting & Electronic Materials at the University of Wollongong. His research expertise includes batteries, electrocatalysis, and fuel cells, especially the design of novel materials and structures, and fundamental understanding of related electrochemical processes.


Recent research progress on heterostructured catalysts for electrochemical hydrogen evolution reaction (HER) are summarized in terms of materials design and synthesis, electrochemical performance, and the related mechanisms for performance enhancement. This review will not only provide new insights into designing low-cost and highly active HER catalysts, but also shed light on designing and synthesizing functional heterostructures towards a wide range of catalysis applications.

Electrocatalysis

Guoqiang Zhao, Kun Rui, Shi Xue Dou, Wenping Sun*

Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review

ToC figure

