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We perform extensive first-principles calculations for heterostructures composed of monolayer graphene and
hexagonal boron nitride (hBN). Employing a symmetry-derived minimal tight-binding model, we extract orbital
and spin-orbit coupling (SOC) parameters for graphene on hBN, as well as for hBN encapsulated graphene.
Our calculations show that the parameters depend on the specific stacking configuration of graphene on hBN.
We also perform an interlayer distance study for the different graphene/hBN stacks to find the corresponding
lowest energy distances. For very large interlayer distances, one can recover the pristine graphene properties,
as we find from the dependence of the parameters on the interlayer distance. Furthermore, we find that orbital
and SOC parameters, especially the Rashba one, depend strongly on an applied transverse electric field, giving a
rich playground for spin physics. Armed with the model parameters, we employ the Dyakonov-Perel formalism
to calculate the spin relaxation in graphene/hBN heterostructures. We find spin lifetimes in the nanosecond
range, in agreement with recent measurements. The spin relaxation anisotropy, being the ratio of out-of-plane
to in-plane spin lifetimes, is found to be giant close to the charge neutrality point, decreasing with increasing
doping, and being highly tunable by an external transverse electric field. This is in contrast to bilayer graphene
in which an external field saturates the spin relaxation anisotropy.
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I. INTRODUCTION

Graphene encapsulated in hBN is emerging as the long-
awaited platform for two-dimensional (2D) spintronics [1,2].
First generation graphene devices, based on SiO2/Si sub-
strates [3–13], show very poor spin transport and ultrafast
spin relaxation (SR) with spin lifetimes of a few hundred
picoseconds. In contrast, theory predicts only a few μeV
SOC in pristine graphene [14–16] and outstanding spin life-
times in the nanosecond range [17–21]. However, due to
electron-hole puddles [22,23], surface roughness, defects and
impurities [24,25] originating from the substrate, graphene’s
SOC can be significantly increased, substantially influencing
electronic and spin transport properties. Furthermore, the
absence of a marked SR anisotropy in these devices [26–28]
was explained by the presence of magnetic resonant scat-
terers [29–31]. One attempt of counteracting the substrate’s
influence is to suspend graphene [32–34], yielding high mo-
bilities but also limited spin transport. Therefore the search for
new substrates revealed that hBN is the material of interest.

The new generation of graphene devices is based on
(hBN)/graphene/hBN stacks [35–47], which have out-
standing transport properties with giant mobilities up to
106 cm2/Vs [48–50] and record spin lifetimes exceeding
10 ns [40]. Owing to the improved growth techniques, large
scale, defect free, and smooth interfaces of graphene and
hBN [22,51–55] can be easily produced. Especially this
second generation of graphene devices is very important
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for the realization of spintronics and spin-logic de-
vices [1,2,36,37,56–68].

There is now experimental evidence that in hBN encapsu-
lated bilayer graphene, SR is due to SOC [69,70]. Finally there
is a graphene-based structure in which spins live long (10 ns)
and SOC is strong enough, relative to other spin-dependent
interactions, to play a dominant role and be used for spin
manipulation. The evidence comes from SR anisotropy. In
2D electron gases in semiconductor quantum wells the out-of-
plane electron spins have lifetimes (τs,z) smaller than in-plane
spins (τs,x), due to the in-plane Rashba fields [2]. Typically
the SR anisotropy ratio ξ = τs,z/τs,x is 0.5, reflecting the fact
that two spin-orbit field components can flip an out-of-plane
spin, but only one component can flip the in-plane spin. In
contrast, as recently predicted [71] and soon experimentally
realized [69,70,72,73], 2D materials offer so far unrivaled
control over ξ . It was found that graphene on a transition metal
dichalcogenide (TMDC) has ξ ≈ 10, due to the strong valley
Zeeman spin-orbit fields, being induced from the TMDC into
graphene. In this system the spin-orbit fields are relatively
large (1 meV [74]) compared to graphene (10 μeV [14]),
which is also reflected in the rather small spin lifetimes of
about 10 ps.

On the other hand, the SR anisotropy in encapsulated
bilayer graphene is also giant (ξ ≈ 10), but the spin lifetime
is three orders of magnitude larger, up to 10 ns [69,70].
Remarkably, the SR anisotropy ξ sharply increases as a
transverse electric field is applied [70] at a fixed doping.
This is counterintuitive, since the applied field should increase
the Rashba field and lower τs,z. The resolution lies in the
idiosyncratic spin-orbit band structure of bilayer graphene.
In the presence of even a moderate electric field, the lowest
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energy bands at K split due to SOC, but the splitting does
not depend on the field, acquiring the intrinsic value of about
24 μeV [75], determined by density-functional theory (DFT).

Since SR anisotropy in mono- and bilayer graphene has
been a hotly debated issue recently, we ask the follow-
ing questions. What are the spin lifetime limits in (hBN)/
graphene/hBN heterostructures? Does monolayer graphene
also have a large SR anisotropy, as shown in hBN encapsu-
lated bilayer graphene? Can the anisotropy be tuned electri-
cally?

Here we focus on monolayer graphene encapsulated in
hBN, or placed on a hBN substrate. We predict, by DFT
calculations and phenomenological modeling, the values of
induced spin-orbit fields, as well as what is the expected SR
anisotropy in a variety of potentially realizable structures. It
is shown (and this should be true for bilayer graphene at
low electric fields as well) that the anisotropy depends on
the actual atomic arrangement of the structures and is highly
electrically tunable. Unlike in bilayer graphene, in our sys-
tems the anisotropy ξ decreases with increasing electric field,
being giant (about 10) at low fields and reaching the Rashba
limit of 50% at large fields. The spin lifetimes are expected
to be on the order of 10 ns, as already seen experimentally,
and also theoretically elaborated for SOC in the tens of μeV
range [22].

II. GEOMETRY & COMPUTATIONAL DETAILS

In order to calculate the electronic band structure of
(hBN)/graphene/hBN heterostructures, we use a common
unit cell for graphene and hBN. Therefore, we fix the lattice
constant of graphene [76] to a = 2.46 Å and change the
hBN lattice constant from its experimental value [77] of a =
2.504 Å to the graphene one. The lattice constants of graphene
and hBN differ by less than 2%, justifying our theoretical con-
siderations of commensurate geometries. While the small lat-
tice mismatch does lead to moiré patterns [78–80], the global
band structure of local individual stacking configurations is
qualitatively similar [81,82]. Nevertheless, here we consider
all structural arrangements for commensurate unit cells, so
as to get a quantitative feeling for spin-orbit phenomena in
a generic experimental setting.

The stacking of graphene on hBN is a crucial point,
however it was already shown that the configuration with
the lowest energy is when one C atom is over the B atom
and the other C atom is over the hollow site of hBN [82].
Before we proceed, we define a terminology to make sense
of the structural arrangements, used in the following. We
denote the three relevant sites in hBN as the B site (boron),
the N site (nitrogen), and the H site (hollow position in the
center of the hexagon). Similarly, we have two graphene
sublattices α (CA) and β (CB). We call the energetically most
favorable configuration (αB, βH), where CA is over boron,
and CB is over the hollow site. According to this definition we
define the other configurations as (αN, βH) and (αN, βB).
Due to symmetry, the configurations with interchanged CA

and CB sublattices give the same results. The lowest energy
interlayer distances between graphene and hBN are different
for the different stackings [82]. We include a distance study
for all three configurations, in order to reveal what are the
corresponding lowest energy distances.

FIG. 1. Three high-symmetry commensurate stacking configu-
rations of graphene on hBN, (αB, βH), (αN, βH), and (αN, βB)
and the (HαH, BβB) geometry, as an example of hBN encapsulated
graphene.

In analogy, a stacking sequence of hBN encapsulated
graphene is then abbreviated as (UαV, XβY), indicating that
the α (β) sublattice of graphene is sandwiched between the U
and V (X and Y) sites of top and bottom hBN, each of which
can take the values {B, N, H}. It has been shown [81] that
the energetically most favorable sandwich structure is (HαH,
BβB) in agreement with our findings here, meaning that α (β)
is sandwiched between the two H sites (B sites) of top and
bottom hBN. Interlayer distances, used in the encapsulated
geometries, are the ones determined by the distance study of
the nonencapsulated structures. In Fig. 1 we show the three
commensurate stacking configurations of graphene on hBN,
as well as the (HαH, BβB) geometry, as an example of hBN
encapsulated graphene.

First-principles calculations are performed with full po-
tential linearized augmented plane wave (FLAPW) code
based on DFT [83] and implemented in WIEN2k [84].
Exchange-correlation effects are treated with the generalized-
gradient approximation (GGA) [85], including dispersion
correction [86] and using a k-point grid of 42 × 42 × 1 in
the hexagonal Brillouin zone if not specified otherwise. The
values of the muffin-tin radii we use are rC = 1.34 for C atom,
rB = 1.27 for B atom, and rN = 1.40 for N atom. We use the
plane wave cutoff parameter RKMAX = 9.5. In order to avoid
interactions between periodic images of our slab geometry, we
add a vacuum of at least 20 Å in the z direction.

III. MODEL HAMILTONIAN & FULL BAND STRUCTURE

The band structure of proximitized graphene can be
modeled by symmetry-derived Hamiltonians [87]. For
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FIG. 2. Calculated electronic band structure of the (HαH, BβB)
geometry, see Fig. 1. The bands of graphene (hBN) are plotted in
brown (green). The left inset shows a sketch of the low energy
dispersion close to the K point. Due to the presence of the substrate,
graphene’s low energy bands are split into four states εCB/VB

1/2 , with a
band gap.

(hBN)/graphene/hBN heterostructures having C3v symmetry,
the effective low energy Hamiltonian is

H = H0 + H� + HI + HR + HPIA, (1)

H0 = h̄vF(τkxσx − kyσy) ⊗ s0, (2)

H� = �σz ⊗ s0, (3)

HI = τ
(

λA
I σ+ + λB

I σ−
)

⊗ sz, (4)

HR = −λR(τσx ⊗ sy + σy ⊗ sx ), (5)

HPIA = a
(

λA
PIAσ+ − λB

PIAσ−
)

⊗ (kxsy − kysx ). (6)

Here vF is the Fermi velocity and the in-plane wave vector
components kx and ky are measured from ±K, corresponding
to the valley index τ = ±1. The Pauli spin matrices are si,
acting on spin space (↑,↓), and σi are pseudospin matri-
ces, acting on sublattice space (CA, CB), with i = {0, x, y, z}
and σ± = 1

2 (σz ± σ0). The lattice constant is a = 2.46 Å of
pristine graphene and the staggered potential gap is �. The
parameters λA

I and λB
I describe the sublattice resolved intrinsic

SOC, λR stands for the Rashba SOC, and λA
PIA and λB

PIA
are the sublattice resolved pseudospin-inversion asymmetry
(PIA) SOC parameters. The basis states are |
A,↑〉, |
A,↓〉,
|
B,↑〉, and |
B,↓〉, resulting in four eigenvalues εCB/VB

1/2 .
The calculated band structure of encapsulated graphene

in the (HαH, BβB) configuration is shown in Fig. 2, as a
representative example for all considered geometries. Other
stacking geometries, as well as graphene on hBN, exhibit
similar band features. The Dirac bands of graphene are located
within the hBN band gap. In general, the geometries we
consider in the following have broken pseudospin symmetry,
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FIG. 3. Calculated band properties of graphene on hBN in the
vicinity of the K point for (αB, βH) configuration and an interlayer
distance of 3.35 Å. (a) First-principles band structure (symbols) with
a fit to the model Hamiltonian (solid line). (b) The splitting of
conduction band �ECB (blue) and valence band �EVB (red) close to
the K point and calculated model results. (c)–(e) The spin expectation
values of the bands εVB

2 and εCB
1 and comparison to the model results.

The fit parameters are given in Table I.

and a band gap opens in graphene. Then, e.g., CA orbitals
form the conduction band (CB), while CB ones form the
valence band (VB). Further, the low energy bands split into
four states εCB/VB

1/2 due to SOC and the Rashba effect, see left
inset in Fig. 2. The general strategy is now to calculate the low
energy bands and extract the model Hamiltonian parameters
best fitting the DFT results, for all (hBN)/graphene/hBN
geometries.

IV. GRAPHENE ON HBN

In this section we discuss the graphene/hBN heterostruc-
tures. We show our fit results to the low energy Hamiltonian
for the different stacking configurations and analyze the influ-
ence of the interlayer distance, between graphene and hBN, on
the extracted orbital and SOC model parameters. Furthermore,
we show and discuss calculated spin-orbit fields. Before we
turn to the calculation of the SR properties, we show the tun-
ability of the parameters by applying a transverse electric field
for one specific stacking configuration. Finally, we discuss the
accuracy of the model, analyze atomic SOC contributions, and
consider an arbitrary but special graphene/hBN stack.

A. Low energy bands

In Fig. 3 we show the calculated low energy band structure
in the vicinity of the K point with a fit to our minimal
tight-binding Hamiltonian for the (αB, βH) configuration of
graphene on hBN. We can see that the orbital band struc-
ture is perfectly reproduced by our model, see Fig. 3(a), in
a quite large energy window around the Fermi level. The
splittings of the bands are shown in Fig. 3(b), which are in
the μeV range and are defined as �ECB = εCB

2 − εCB
1 and

�EVB = εVB
2 − εVB

1 . Also the splittings are nicely reproduced
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FIG. 4. Calculated band properties of graphene on hBN in the
vicinity of the K point for (αN, βH) configuration and an interlayer
distance of 3.50 Å. (a) First-principles band structure (symbols) with
a fit to the model Hamiltonian (solid line). (b) The splitting of
conduction band �ECB (blue) and valence band �EVB (red) close to
the K point and calculated model results. (c)–(e) The spin expectation
values of the bands εVB

2 and εCB
1 and comparison to the model results.

The fit parameters are given in Table I.

by the model, with a maximum discrepancy of about 10%
compared to the first-principles data. More specifically, the
splittings are overestimated (underestimated) along the K-M
(K-Ŵ) path, by the model. The reason for the discrepancy of
the fit will be explained at a later point. Finally, Figs. 3(c)–3(e)
show the spin expectation values of the bands εVB

2 and εCB
1 ,

which are in perfect agreement with the model. The sx and
sy spin expectation values show a pronounced signature of
Rashba SOC, with a sign change around the K point. The
sz expectation values are maximum at the K point, slowly
decaying away from it.

In Figs. 4 and 5 we show the fits to the model Hamiltonian
for the (αN, βH) and (αN, βB) configurations. The overall
results look similar to the (αB, βH) configuration. The or-
bital band structure, splittings, and spin expectation values
are again nicely reproduced by the model. Compared to the
(αB, βH) case, band splittings are even better reproduced
in these two cases, with a maximum discrepancy of 3% and
1%, respectively. The sx and sy spin expectation values again
show the characteristic signature of Rashba SOC, originating
from the broken inversion symmetry of graphene, due to
the hBN substrate. However, the sz expectation values, also
decaying away from K, are opposite compared to the (αB,
βH) case. We find that our model is very robust and different
stacking configurations are described by different parameter
sets. The extracted parameters are given in Table I for the three
commensurate high-symmetry graphene/hBN stacking con-
figurations, with their corresponding lowest energy distance.

B. Distance study

One has to mention that different stacking configurations
lead to different interlayer distances between graphene and
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FIG. 5. Calculated band properties of graphene on hBN in the
vicinity of the K point for (αN, βB) configuration and an interlayer
distance of 3.55 Å. (a) First-principles band structure (symbols) with
a fit to the model Hamiltonian (solid line). (b) The splitting of
conduction band �ECB (blue) and valence band �EVB (red) close to
the K point and calculated model results. (c)–(e) The spin expectation
values of the bands εVB

2 and εCB
1 and comparison to the model results.

The fit parameters are given in Table I.

hBN, when minimizing the total energy of the individual
geometries. In Fig. 6 we show the fit parameters, as a function
of the distance between graphene and hBN, for the three
stacking configurations. We find that the total energy is lowest
for the (αB, βH) configuration with an interlayer distance
of 3.35 Å, see Fig. 6(a). The lowest energies for the (αN,
βH) and (αN, βB) configurations are obtained at distances
of 3.50 Å and 3.55 Å. The Fermi velocity vF, see Fig. 6(b),
which reflects the nearest neighbor hopping strength via t =
2h̄vF√

3a
, grows as a function of distance, especially for the (αN,

βH) and (αN, βB) configurations. In contrast to that, the
gap parameter � decreases with distance, in agreement with
literature [82]. When moving the graphene away from the
substrate, the sublattice symmetry breaking reduces and the
gap decreases.

One very important observation is that the gap parameter
� of the (αB, βH) configuration is opposite in sign compared
to the other configurations, as seen in a moiré pattern [88–90].
In the (αB, βH) configuration, the CA sublattice is over the
boron. Sublattice CA forms, in this case, the VB which is why
we need a negative value of � in the model, to match the
sublattice character of the DFT results. In contrast, the other
configurations have the CA sublattice over the nitrogen, which
then forms the CB, leading to a positive value of �. This
also explains why the sz spin expectation values for different
configurations are different, compare Figs. 3(e) and 4(e). In
a moiré pattern geometry, with micrometer size flakes of
graphene and hBN, all of these local stacking configurations
appear simultaneously. Consequently, there can be a local
stacking geometry where the orbital gap closes, appearing
when the two sublattices feel the same surrounding potential.
We will calculate and discuss such a situation at a later point,
for a certain choice of stacking.
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TABLE I. Fit parameters for the three graphene/hBN stacks at their energetically most favorable distances. The Fermi velocity vF, gap
parameter �, Rashba SOC parameter λR, intrinsic SOC parameters λA

I and λB
I , and PIA SOC parameters λA

PIA and λB
PIA. In the last row we

average over the configurations for each parameter.

Configuration distance [Å] vF/105[ m
s ] � [meV] λR [μeV] λA

I [μeV] λB
I [μeV] λA

PIA [μeV] λB
PIA [μeV]

(αB, βH) 3.35 8.308 −17.08 10.65 5.00 9.37 33.58 37.57
(αN, βH) 3.50 8.197 16.31 12.67 11.78 13.96 4.431 26.68
(αN, βB) 3.55 8.128 23.50 17.89 12.21 15.82 12.91 29.73
average 3.47 8.211 7.577 13.74 9.66 13.05 16.97 31.33

The Rashba SOC parameter, see Fig. 6(d), also decreases
with distance. When the distance between graphene and hBN
approaches infinity, the inversion symmetry of graphene is
restored and the Rashba SOC parameter vanishes. The two
intrinsic SOC parameters λA

I and λB
I approach the intrinsic

SOC of 12 μeV of pristine graphene [14], as we increase
the distance, see Figs. 6(e) and 6(f). Finally, we find that
the two PIA SOC parameters λA

PIA and λB
PIA, see Figs. 6(g)

and 6(h), also decrease with distance. Overall, as expected,
we restore the pristine graphene properties, as the interlayer
distance gradually increases.

C. Spin-orbit fields

In Fig. 7 we show the calculated dispersion as a 2D map
in kx-ky plane in the vicinity of the K point for the (αB,
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FIG. 6. Fit parameters as a function of interlayer distance be-
tween graphene and hBN for the three different stacking configu-
rations. (a) Total energy, (b) the Fermi velocity vF, (c) gap parameter
�, (d) Rashba SOC parameter λR, (e) intrinsic SOC parameter λA

I for
sublattice A, (f) intrinsic SOC parameter λB

I for sublattice B, (g) PIA
SOC parameter λA

PIA for sublattice A, and (h) PIA SOC parameter
λB

PIA for sublattice B.

βH) configuration. The energies of the bands, εVB
2 and εCB

1 ,
do not show any trigonal warping, see Figs. 7(a) and 7(d).
However, already the spin texture shows that trigonal warping
is present with a very pronounced Rashba spin-orbit field,
rotating in a clockwise direction, see Figs. 7(b) and 7(e), as
expected from the inversion symmetry breaking by the hBN
substrate. In contrast to the CB, the VB sz spin expectation
value strongly decays away from the K point. A pronounced
threefold symmetry is observed in the spin splittings �EVB

and �ECB, see Figs. 7(c) and 7(f). Along the K-Ŵ path,
the Dirac bands are more split than along the K-M path.
As we have seen, our model Hamiltonian agrees very well

FIG. 7. Calculated low energy dispersion of graphene on hBN
around the K point for (αB, βH) configuration and an interlayer
distance of 3.35 Å. (a) 2D map of the energy of the valence band εVB

2 ,
with the corresponding spin texture of the band shown in (b) and the
splitting of the valence band �EVB = εVB

2 − εVB
1 shown in (c). (d)–(f)

The same as (a)–(c) but for conduction band εCB
1 and conduction band

splitting �ECB = εCB
2 − εCB

1 . The dashed lines show the edges of the
Brillouin zone with the K point at the center.
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FIG. 8. Calculated low energy dispersion of graphene on hBN
around the K point for (αN, βH) configuration and an interlayer
distance of 3.50 Å. (a) 2D map of the energy of the valence band εVB

2 ,
with the corresponding spin texture of the band shown in (b) and the
splitting of the valence band �EVB = εVB

2 − εVB
1 shown in (c). (d)–(f)

The same as (a)–(c) but for conduction band εCB
1 and conduction band

splitting �ECB = εCB
2 − εCB

1 . The dashed lines show the edges of the
Brillouin zone with the K point at the center.

on a qualitative level for this case, see Fig. 3, however the
band splittings cannot be fully recovered. The reason will be
explained in the last subsection. In Figs. 8 and 9 we show
the calculated dispersion as a 2D map in the kx-ky plane in
the vicinity of the K point for the (αN, βH) and (αN, βB)
configurations. The overall trigonal symmetry features remain
and are very similar to the (αB, βH) configuration. Especially
for the (αN, βB) configuration, only weak trigonal symmetry,
around the K point, can be observed.

D. Transverse electric field

In experiment gating is required to tune the Fermi level
towards the charge neutrality point. By using top and back
gate electrodes, one can tune the doping level and simultane-
ously apply an electric field across a heterostructure. Thereby
the transverse electric field can influence electronic and spin-
orbit properties of graphene, especially the Rashba SOC [14].
We consider the lowest energy configuration (αB, βH) for
graphene on hBN and apply a transverse electric field, which
is modeled by a zigzag potential, across the heterostructure.

For every magnitude of the field we calculate the low
energy band structure and fit it to the model Hamiltonian. In
Fig. 10 we show the fit parameters for (αB, βH) configuration
as a function of external electric field. Indeed, we can tune

FIG. 9. Calculated low energy dispersion of graphene on hBN
around the K point for (αN, βB) configuration and an interlayer
distance of 3.55 Å. (a) 2D map of the energy of the valence band εVB

2 ,
with the corresponding spin texture of the band shown in (b) and the
splitting of the valence band �EVB = εVB

2 − εVB
1 shown in (c). (d)–(f)

The same as (a)–(c) but for conduction band εCB
1 and conduction band

splitting �ECB = εCB
2 − εCB

1 . The dashed lines show the edges of the
Brillouin zone with the K point at the center.

most of the parameters. The Fermi velocity vF, as well as
intrinsic SOC parameters λA

I and λB
I , are barely affected.

However, the field can tune the orbital gap, Rashba and PIA
SOC parameters. Especially the Rashba parameter can be
tuned over a wide range, even from positive to negative values,
with the transition at around 2 V/nm. Tuning the Rashba SOC
parameter, from a positive to a negative value, also allows us
to change the rotation direction of the spin-orbit fields, see
Figs. 7(b) and 7(e). Most importantly we can tune the Rashba
SOC from a finite value to zero. Consequently, we can control
the strength of the in-plane spin-orbit field, dictated by Rashba
SOC, which will significantly influence spin transport and SR
properties. Another feature we notice is that around 2 V/nm,
the PIA SOC parameters are not changing very smoothly with
applied field, which is connected with the transition of the
Rashba SOC through zero.

E. Spin relaxation anisotropy

Since the low energy Hamiltonian H can nicely reproduce
the dispersion around the K point, we can use it together with
our fit parameters to calculate SR times. We calculate, for a
very dense k grid in the vicinity of the K point, the energy
spectrum and spin expectation values for the Dirac bands from
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FIG. 10. Fit parameters as a function of the applied transverse
electric field for the (αB, βH) configuration. (a) Valence band edge
with respect to the Fermi level, (b) the Fermi velocity vF, (c) gap
parameter �, (d) Rashba SOC parameter λR, (e) intrinsic SOC
parameter λA

I for sublattice A, (f) intrinsic SOC parameter λB
I for

sublattice B, (g) PIA SOC parameter λA
PIA for sublattice A, and (h)

PIA SOC parameter λB
PIA for sublattice B.

our model. To calculate the SR time, we define the spin-orbit
field components ωk,i as [62]

ωk,i =
�Ek

h̄
·

sk,i

sk
, (7)

where k is the momentum and sk,i are the spin expectation
values along the direction i = {x, y, z}. The energy splitting
of the Dirac bands is �Ek and sk =

√
s2

k,x + s2
k,y + s2

k,z is
the absolute value of the spin. By that we obtain at each k
point the spin-orbit vector field. Following the derivation of
Refs. [71,91], we then calculate the SR times as follows

τ−1
s,x (E) = τp ·

〈

ω2
k,y

〉

+ τiv ·
〈

ω2
k,z

〉

, (8)

τ−1
s,y (E) = τp ·

〈

ω2
k,x

〉

+ τiv ·
〈

ω2
k,z

〉

, (9)

τ−1
s,z (E) = τp ·

〈

ω2
k,x + ω2

k,y

〉

. (10)

The average 〈·〉 is taken over all k points that have the same
constant energy E . The momentum relaxation time is τp and
τiv is the intervalley scattering time. For the calculation of
the averages 〈·〉 we use energy steps of 100 μeV with a
smearing of ±50 μeV, corresponding to a temperature of
0.58 K. Measurements [37–40] provide SR lengths of λs ≈
20 μm, SR times of τs ≈ 8 ns, and spin diffusion constants
of Ds ≈ 0.04 m2

s . With the relation λs =
√

τsDs and using
that the spin diffusion constant is roughly equal to the charge
diffusion constant Ds ≈ Dc = 1

2v
2
Fτp and vF ≈ 8 × 105 m

s , we
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FIG. 11. Calculated SR times and anisotropies for (αB, βH)
configuration. (a) Color map of the SR anisotropy ξ = τs,z/τs,x as
a function of N = τiv/τp and the energy. (b) Individual SR times as
a function of energy corresponding to the dashed line in (a) with
τp = 125 fs and τiv = 8 · τp. The gray lines indicate the band edges.

get τp = 125 fs, which we use in the calculations. The value
for τp is reasonable, assuming ultraclean samples.

Since intervalley scattering times are hard to estimate from
experiments, we consider it variable, τiv = N · τp with N =
{1, ..., 15}, for our calculations. By that we obtain the SR
time as a function of the energy, for spins along the x, y, and
z direction for each ratio N = τiv/τp. More interesting than
the individual SR times is the SR anisotropy ξ = τs,z/τs,x, a
measurable fingerprint of the SOC of the system.

We show a color map of the calculated anisotropy ξ as a
function of N and the energy for the (αB, βH) configuration
in Fig. 11(a). Within the band gap of ±17 meV, of course
no states are available and SR times cannot be calculated,
because the smearing we use is only 0.58 K. For holes we
find that the anisotropy is ξ ≈ 1

2 , the Rashba limit, as soon as
we are below −20 meV from the valence band edge, for each
ratio N . For electrons the situation is completely different and
the anisotropy can get very large, even 20 meV away from
the conduction band edge. We also find that, independent of
N , the anisotropy is largest close to the band edges, which
would correspond to the charge neutrality point in experiment.
In Fig. 11(b) we show the individual SR times as a function of
energy, corresponding to N = 8. We find SR times of around
10 ns, consistent with measurements [40]. However, we have
to keep in mind that Fig. 11 is only valid for a certain stacking
configuration, the (αB, βH) one, of graphene on hBN.

In experiment one expects that electrons traveling through
graphene on a hBN substrate would rather experience local
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FIG. 12. Calculated SR times and anisotropies for graphene on
hBN. Here we use the averaged parameters of the graphene/hBN
heterostructures given in the main text. (a) Color map of the SR
anisotropy ξ = τs,z/τs,x as a function of N = τiv/τp and the energy.
(b) Individual SR times as a function of energy corresponding to the
dashed line in (a) with τp = 125 fs and τiv = 8 · τp. The gray lines
indicate the band edges.

spin-orbit fields that can be very different for certain regions
due to the different stacking configurations. Therefore, in
Fig. 12(a) we show a color map of the calculated anisotropy ξ

as a function of N and the energy when using the averaged pa-
rameters of graphene on hBN given in Table I. This averaged
situation should correspond to a more realistic situation in a
real heterostructure, where all kinds of stacking configurations
are present simultaneously. We find that electrons have an
anisotropy ratio ξ ≈ 1

2 almost independent of N and the en-
ergy, see Fig. 12(b), clearly different from the pure (αB, βH)
configuration, compare to Fig. 11. Close to the band edges,
i.e., the charge neutrality point, the anisotropy can reach very
large values. For holes the anisotropy varies around ξ ≈ 1 for
moderate doping densities.

So far, anisotropies of ξ ≈ 1 have been measured for
graphene on hBN and SiO2 [26,27,38,92,93], in agreement
with our averaged parameter results. A first indication of
large anisotropies was found in hBN encapsulated bilayer
graphene heterostructures [69,70]. There it was shown that the
anisotropy ξ decreases with increasing carrier density, in line
with our results for monolayer graphene. They also showed
that the anisotropy, at fixed doping level, can be strongly
enhanced by an applied electric field.

In dual gated structures, one can individually tune the
doping level and the electric field across the heterostructure.
In Fig. 13 we show the SR anisotropy ξ , specifically for
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 τ
s,
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τ s

,x

electric field [V/nm]

E = −80 meV
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(b)

FIG. 13. (a) Calculated SR anisotropy ξ = τs,z/τs,x as a function
of energy and applied transverse electric field for (αB, βH) con-
figuration, using τp = 125 fs and τiv = 8 · τp. (b) Anisotropy ξ at
energies E = ±80 meV corresponding to the dashed lines in (a).

(αB, βH) configuration as a function of energy and applied
transverse electric field, using the parameter sets for several
finite electric field strengths, see Fig. 10. We find that the
anisotropy is strongly tunable by means of external gating.
At around 2 V/nm we find a very strong enhancement of
the anisotropy, which is related to the zero transition of the
Rashba SOC parameter. The anisotropy is giant for λR ≈ 0, as
the states are then mainly sz polarized. In Fig. 13(b) we show
that an electric field can tune the anisotropy by one order of
magnitude at a fixed doping level.

F. Additional considerations

We now want to clarify two remaining issues: (i) Where
does the discrepancy between the model and the first-
principles data, see Fig. 3(b), come from? (ii) Is there a
low-symmetry stacking configuration, where the orbital gap
closes?

1. Model discrepancy

In the case of the (αB, βH) configuration, we have found
that the splittings are overestimated (underestimated) along
the K-M (K-Ŵ) path, by the model. The discrepancy in the
splitting of the bands is due to the influence of the substrate.
In general, the model Hamiltonian H just considers effective
π orbitals of graphene, however there seems to be a subtle
influence from a hybridization to the p orbitals of hBN. If
we look at the density of states (DOS) for the (αB, βH)
case, see Fig. 14, we find that close to the Dirac point there
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FIG. 14. Density of states of graphene on hBN around the Fermi
level for (αB, βH) configuration and an interlayer distance of 3.35 Å.
The DOS is multiplied by a factor of 100. Each subfigure (a)–(d) cor-
responds to a different atom. For each atom, the orbital contributions
to the DOS are multiplied with the corresponding prefactor. The DOS
is calculated with a k-point grid of 180 × 180 × 1.

is a small contribution from nitrogen and boron p states.
Especially boron pz orbitals and nitrogen px + py orbitals are
contributing close to the charge neutrality point. Moreover,
from our distance study we find that the discrepancy between
the model and the first-principles data is getting smaller as we
increase the interlayer distance.

Finally, we calculate the low energy band structures, when
SOC is artificially turned off on the nitrogen, boron, or carbon
atoms, respectively. The fit parameters for these situations are
given in Table II, along with the maximum discrepancy for

each situation. When SOC of the boron atom is turned off, the
parameters and the fit accuracy are barely different. A severe
improvement of the fit is accomplished, when SOC of the
nitrogen atom is turned off, reflected in the strongly reduced
discrepancy between model and DFT data. Furthermore, if
we turn off SOC on the carbon atoms of graphene, we can
identify the contribution solely coming from the substrate,
where we find negative intrinsic SOC parameters λA

I and λB
I .

Thus, nitrogen gives a non-negligible contribution to the SOC
splitting of the Dirac bands.

From our analysis, we conclude that the discrepancy comes
from nitrogen px + py orbitals that hybridize with π orbitals
of graphene. Already such a very small contribution of px +
py orbitals, see Fig. 14(a), can substantially influence the spin
splitting and an effective model, based only on π orbitals
of graphene, can no longer perfectly describe the results.
However, the overall fit is still very good and sufficient for
our needs.

2. Gap closing stacking

We have seen that different stackings can lead to a different
sign of the gap parameter �, see Table I. Consequently, as
already mentioned, a local stacking geometry can exist, in a
real moiré pattern geometry, that has a closed orbital gap. In
Fig. 15 we show the low energy band properties of an arbitrary
stacking geometry, without having any symmetry [94].

First of all, we notice that the Dirac point is no longer
located at the K point. From the corresponding geometry
in Fig. 15(a), we find that the hoppings, from say CA to
the three nearest neighbors CB, are all different due to the
substrate. This asymmetry in the nearest neighbor hopping
amplitudes leads to the shift of the Dirac point in momentum
space [95,96]. Since our model Hamiltonian considers only
high-symmetry stacking configurations, without shifted Dirac
cone, we cannot fit the data with it. From the spin expectation
values we find a very pronounced Rashba spin-orbit field, as
the sz component is strongly suppressed.

In order to identify the location of the Dirac point in
momentum space, we calculate the dispersion as a 2D map
in kx-ky plane in the vicinity of the K point, see Fig. 16.
Indeed, we find that the Dirac point is shifted away from the
corner of the Brillouin zone. At the Dirac point, the orbital
gap is 1.64 meV large. Due to the limited number of k points
in the calculation grid for the 2D map, we cannot identify
the exact position of the Dirac point, so the orbital gap is
not fully closed but much smaller than in the high-symmetry

TABLE II. Summary of the fitting parameters of Hamiltonian H, for graphene on hBN for (αB, βH) configuration and an interlayer
distance of 3.35 Å. Here, we have artificially turned off SOC on nitrogen, boron, or carbon atoms, respectively. The Fermi velocity vF, gap
parameter �, Rashba SOC parameter λR, intrinsic SOC parameters λA

I and λB
I for sublattice A and B, and PIA SOC parameters λA

PIA and λB
PIA

for sublattice A and B. The discrepancy is the calculated residual of the fit along the M-K-Ŵ path given in arbitrary units.

SOC on vF/105[ m
s ] � [meV] λR [μeV] λA

I [μeV] λB
I [μeV] λA

PIA [μeV] λB
PIA [μeV] discr. [a.u.]

N, B, C 8.308 −17.08 10.65 5.00 9.37 33.58 37.57 1.265
N, C 8.308 −17.08 12.22 5.01 8.95 34.65 34.82 1.269
B, C 8.308 −17.08 10.23 12.08 12.66 −0.06 −34.82 0.260
N, B 8.308 −17.07 −1.82 −7.09 −2.79 −9.53 66.55 1.349
C 8.308 −17.07 11.85 12.07 12.25 −4.60 −32.67 0.268
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FIG. 15. Calculated band properties of graphene on hBN in the
vicinity of the K point and an interlayer distance of 3.45 Å. (a) First-
principles band structure and local stacking geometry. (b) The split-
ting of conduction band �ECB (blue) and valence band �EVB (red)
close to the K point. (c)–(e) The spin expectation values of the bands
εVB

2 and εCB
1 .

stacking cases, see Table I. We also notice that the spin-orbit
field is almost purely in-plane without any sz component, see
Figs. 16(b) and 16(e), in a very large area around the Dirac
point. Consequently, Rashba SOC plays an important role in
this low-symmetry stacking configuration. If we look at the
spin-orbit splitting of the bands, Figs. 16(c) and 16(f), we
find that there is no trigonal symmetry remaining. Such a
stacking configuration completely breaks the symmetry of the
graphene, due to the different hopping amplitudes between
nearest neighbors caused by the hBN substrate. Of course, in
a moiré geometry, several other stackings are present that lead
to very different local orbital gaps, spin-orbit fields, and spin
splittings.

V. HBN ENCAPSULATED GRAPHENE

In this section we discuss the hBN/graphene/hBN het-
erostructures. We show our fit results to the low energy Hamil-
tonian for the different stacking configurations. Compared
to the previous section, symmetry plays an important role
when fitting the Hamiltonian. Again, we show the tunabil-
ity of the parameters by applying a transverse electric field
across the heterostructures. Finally we calculate SR times
and anisotropies, and highlight differences to experimental
findings in bilayer graphene.

A. Low energy bands

From our previous study of graphene on hBN, we already
know what is the energetically most favorable distance for
each stacking geometry, which we keep for the encapsulated
cases, respectively. Depending on the stacking of the top and
bottom hBN with respect to the graphene, different interlayer
distances can be present. The stacking sequences are defined
in analogy to the graphene on hBN cases. The energetically

FIG. 16. Calculated low energy dispersion of graphene on hBN
around the K point for stacking configuration in Fig. 15 and an
interlayer distance of 3.45 Å. (a) 2D map of the energy of the valence
band εVB

2 , with the corresponding spin texture of the band shown in
(b) and the splitting of the valence band �EVB = εVB

2 − εVB
1 shown

in (c). (d)–(f) The same as (a)–(c) but for conduction band εCB
1 and

conduction band splitting �ECB = εCB
2 − εCB

1 . The dashed lines show
the edges of the Brillouin zone with the K point at the center.

most favorable configuration is (HαH, BβB), which we name
C1 configuration. According to this, we define several other
configurations.

For such a configuration, like (HαH, BβB) = C1, we re-
cover the mirror symmetry of graphene, see Fig. 1, reflected in
the D3h symmetric version of the Hamiltonian with vanishing
Rashba and PIA contributions [87]. In Fig. 17, we show the
low energy band properties of the C1 configuration, along
with a fit to our model Hamiltonian. We can see perfect
agreement with the first-principles data, just using the four pa-
rameters vF, �, λA

I , and λB
I . Rashba and PIA SOC parameters

are not necessary and strictly zero for the fit, especially for
this mirror symmetric configuration, as explained. Therefore
the bands are purely sz polarized.

In Figs. 18 and 19, we show the low energy band properties
of the (BαN, NβH) and (NαN, BβH) configurations, along
with a fit to our model Hamiltonian, as further examples of
the robustness of the Hamiltonian. We can see again perfect
agreement with the first-principles data. Even though the low
energy band properties are somewhat similar, each configura-
tion has a very individual parameter set.

The parameters, best fitting the DFT results, are given in
Table III. We find that there is another configuration, (HαB,
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FIG. 17. Calculated band properties of hBN encapsulated
graphene in the vicinity of the K point for (HαH, BβB) = C1
configuration and interlayer distances of 3.35 Å between graphene
and the hBN layers. (a) First-principles band structure (symbols)
with a fit to the model Hamiltonian (solid line). (b) The splitting of
conduction band �ECB (blue) and valence band �EVB (red) close to
the K point and calculated model results. (c)–(e) The spin expectation
values of the bands εVB

2 and εCB
1 and comparison to the model results.

The fit parameters are given in Table III.

BβH), having almost the same total energy as the (HαH,
BβB) one, in agreement with literature [81]. Overall, the mag-
nitudes of SOCs are tens of μeV, while the parameters can
differ (also in sign) from structure to structure. For example,
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FIG. 18. Calculated band properties of hBN encapsulated
graphene in the vicinity of the K point for (BαN, NβH) configuration
with a distance of 3.55 Å (3.50 Å) between graphene and the top
(bottom) hBN layer. (a) First-principles band structure (symbols)
with a fit to the model Hamiltonian (solid line). (b) The splitting of
conduction band �ECB (blue) and valence band �EVB (red) close to
the K point and calculated model results. (c)–(e) The spin expectation
values of the bands εVB

2 and εCB
1 and comparison to the model results.

The fit parameters are given in Table III.
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FIG. 19. Calculated band properties of hBN encapsulated
graphene in the vicinity of the K point for (NαN, BβH) configuration
with a distance of 3.55 Å (3.50 Å) between graphene and the top
(bottom) hBN layer. (a) First-principles band structure (symbols)
with a fit to the model Hamiltonian (solid line). (b) The splitting of
conduction band �ECB (blue) and valence band �EVB (red) close to
the K point and calculated model results. (c)–(e) The spin expectation
values of the bands εVB

2 and εCB
1 and comparison to the model results.

The fit parameters are given in Table III.

the (HαB, BβH) configuration is in the D3d subgroup and the
only allowed SOC parameters are λA

I = λB
I = λI. In this case

the orbital gap � = 0, since the overall potential, from top and
bottom hBN layer, is equal for the two graphene sublattices.
When � = 0, the spectrum opens a gap due to SOC with
degenerate CB and VB, just as for pristine graphene [14]. Also
worth noticing is, that if one takes the average of λA

I and λB
I of

the C1 configuration, you arrive at the parameter λI for the
(HαB, BβH) configuration. In addition, some encapsulated
configurations show a negative Rashba SOC parameter. This
means that the spin-orbit field rotates in a counterclockwise
direction, in contrast to the graphene/hBN cases, see for
example Fig. 7.

In real systems, one expects that all of these configurations
are present at the same time, due to the moiré pattern that is
formed as a consequence of slightly different lattice constants
of graphene and hBN. In addition stacking configurations
can occur that, locally, have no symmetry at all, as shown
in the previous section, making these heterostructures quite
complicated to describe on the global scale. In experiments,
also asymmetric hBN encapsulated graphene structures are
used, say with two hBN layers below graphene and one hBN
layer above it. We also calculate this scenario, especially for
the configurations that are energetically most favorable. The
stacking of hBN itself is (BN, NB) (boron over nitrogen,
nitrogen over boron) and we take a distance of 3.35 Å between
the hBN layers. These configurations and their fit parameters
are also summarized in Table III, with the naming convention
in analogy to the other cases. Comparing the results of this
asymmetric encapsulations with the corresponding symmet-
ric encapsulations—for example compare (HαH, BβB) and
(BαBN, HβHH)—we find that they are almost the same. The
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TABLE III. Fit parameters for different hBN encapsulated graphene geometries, using the energetically most favorable graphene-hBN
interlayer distances. The energy difference �E with respect to the C1 configuration, the Fermi velocity vF, gap parameter �, Rashba SOC
parameter λR, intrinsic SOC parameters λA

I and λB
I , and PIA SOC parameters λA

PIA and λB
PIA. In the case of hBN/graphene/2hBN, the energy

difference is with respect to the (BαBN, HβHH) configuration.

Configuration �E [meV] vF/105 [ m
s ] � [meV] λR [μeV] λA

I [μeV] λB
I [μeV] λA

PIA [μeV] λB
PIA [μeV]

(HαB, BβH) 0.01 8.296 0 0 2.19 2.19 0 0
(HαN, NβH) 26.60 8.068 0 0 13.31 13.31 0 0
(NαB, BβN) 32.05 7.931 0 0 15.76 15.76 0 0
(HαH, BβB) = C1 0 8.294 34.24 0 6.65 −2.05 0 0
(NαN, HβH) 26.09 8.070 34.10 0 11.38 15.47 0 0
(BαB, NβN) 31.76 7.932 −48.00 0 18.95 12.34 0 0
(HαB, NβH) 13.12 8.175 −34.85 −1.97 6.51 9.05 3.15 31.35
(NαB, BβH) 15.89 8.110 6.29 −7.75 5.09 12.84 1.26 22.72
(BαN, NβH) 29.20 7.998 −6.50 −4.97 15.23 13.92 −61.34 49.22
(NαB, HβH) 13.16 8.176 −0.069 −2.58 4.76 11.01 16.02 15.98
(BαB, NβH) 15.85 8.108 −41.50 −7.37 8.31 9.55 6.71 16.36
(NαN, BβH) 28.82 8.000 41.14 −3.29 11.89 17.26 94.83 −106.79

(HαBN, BβHH) 0.07 8.296 0.093 0.40 2.06 2.22 0 0
(BαBN, HβHH) 0 8.298 −34.06 0.31 −2.23 6.66 0 0

only thing is that the CA and CB sublattice are interchanged
in these two configurations, which is reflected in the intrinsic
SOC parameters.

One of the main conclusions is that in the case of hBN
encapsulated graphene, the average Rashba SOC parameter
is reduced in contrast to the graphene/hBN average Rashba
parameter, while intrinsic SOC parameters have similar
magnitudes. Therefore, in spin transport, hBN encapsulated
graphene should have longer SR times for out-of-plane spins.

B. Transverse electric field

In the case of hBN encapsulated graphene we consider
the C1 configuration. The tunability of the parameters for
C1, by electric field, is shown in Fig. 20. The Rashba and
PIA parameters—which are due to inversion asymmetry—are
odd functions (almost linear) of electric field and strongly
tunable. In contrast, the orbital parameters vF and �, as well
as intrinsic SOC parameters λA

I and λB
I , are even functions and

only weakly affected by the field. Applying an external field,
we find a linear tunability of roughly 5 μeV per V/nm of λR,
similar to freestanding graphene [14], which is expected for
the mirror-symmetric C1.

In Fig. 21 we show the low energy band properties of the
C1 configuration, along with a fit to our model Hamiltonian
with applied external electric field of 5 V/nm. Comparing the
two results, Figs. 17 and 21, we can clearly see that the orbital
low energy band structure looks the very same. However, the
band splittings away from the K point are strongly enhanced
and the spin expectation values show a clear signature of
Rashba SOC. The application of a realistic electric field of
5 V/nm enhances the spin-orbit band splittings by a factor of
5 away from the K point. This has substantial influence on the
spin lifetimes and SR anisotropies.

C. Spin relaxation anisotropy

While experimental spectral sensitivities approach the lim-
its of tens of μeV for encapsulated graphene, making the

above calculations relevant for sensitive mesoscopic transport
measurements, the most striking ramifications of the obtained
spin-orbit tunability is expected to be in SR anisotropy, which
has been a hotly debated issue recently. Indeed, we predict
a wide electrical tunability of the SR time of this basic
structure. Similar to the previous section, we calculate the
SR times and anisotropies for the selected lowest energy C1
configuration.
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FIG. 20. Fit parameters as a function of the applied transverse
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FIG. 21. Calculated band properties of hBN encapsulated
graphene in the vicinity of the K point for C1 configuration and
interlayer distances of 3.35 Å between graphene and the hBN layers
with external electric field of 5 V/nm. (a) First-principles band
structure (symbols) with a fit to the model Hamiltonian (solid line).
(b) The splitting of conduction band �ECB (blue) and valence band
�EVB (red) close to the K point and calculated model results. (c)–(e)
The spin expectation values of the bands εVB

2 and εCB
1 and comparison

to the model results. The fit parameters are given in the main text.

For completeness, we first show the SR anisotropy of C1,
in Fig. 22, as a function of N = τiv/τp and the energy for fixed
electric field of 1 V/nm. The individual SR times are up to
100 ns close to the band edges, see Fig. 22(b), due to weak
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FIG. 22. Calculated SR times and anisotropies for C1 configura-
tion and an electric field of 1 V/nm. (a) SR anisotropy ξ = τs,z/τs,x

as a function of N = τiv/τp and the energy. (b) Individual SR times
as a function of energy corresponding to the dashed line in (a) with
τp = 125 fs and τiv = 8 · τp. The gray lines indicate the band edges.
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FIG. 23. (a) Calculated SR anisotropy ξ = τs,z/τs,x as a function
of energy and applied transverse electric field for C1 configuration
of hBN encapsulated graphene, using τp = 125 fs and τiv = 8 · τp.
(b) Anisotropy ξ at energies E = ±80 meV corresponding to the
dashed lines in (a).

Rashba SOC in hBN encapsulated graphene. The anisotropy is
giant close to the band edges and decreases with increasing the
doping. Depending on the exact value of τiv and the doping,
the anisotropy can change within one order of magnitude.

In Fig. 23 we show the SR anisotropy ξ , specifically for C1,
as a function of energy and transverse electric field. We find
that the anisotropy is strongly tunable by both the field and the
doping level. At 0 V/nm the anisotropy is giant due to λR = 0,
as shown in Fig. 20(d), so that spin-orbit fields are out of
plane. As the applied field increases, the anisotropy decreases.
Overall, the anisotropy can be tuned electrically from the
usual 2D Rashba limit (0.5) to the opposite case of strong
out-of-plane fields (ξ ≫ 1), for a fixed doping, see Fig. 23(b).
This is an unprecedented tunability for an electronic system.

Curiously, the SR anisotropy decreases with increasing
electric field (for a fixed doping), while in encapsulated
bilayer graphene the opposite was found [70]. The reason
is that in bilayer graphene the spin splitting at K is not
tunable beyond a certain threshold [75], at marked contrast
to monolayer graphene.

VI. SUMMARY & CONCLUSIONS

In summary, we were able, by combining extensive first-
principles calculations and a minimal tight-binding model, to
extract useful orbital and spin-orbit coupling parameters for
(hBN)/graphene/hBN heterostructures. The extracted param-
eters depend on stacking configurations, interlayer distances,
and a transverse electric field, giving a rich playground for
spin physics. The consideration of different stacking config-
urations is important for realistic moiré pattern geometries
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of graphene and hBN. Spin-orbit fields in graphene, and
consequently spin transport, can be controlled by the appli-
cation of a transverse electric field. Finally, the calculated
SR times exhibit giant and tunable anisotropies, which are
experimentally testable fingerprints of the ultimate role of
SOC in SR in graphene.
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