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1 Introduction

The conditions for a generic minimally supersymmetric compactification of the heterotic
string to four-dimensional Minkowski space were first given by Hull and Strominger in the
1980s [1, 2]. Since then there has been significant progress in understanding the properties
of these compactifications from both worldsheet [3–11] and spacetime perspectives [12–
29]. A classic solution has been to take the internal space to be a Calabi-Yau manifold
with a gauge bundle satisfying the hermitian Yang-Mills equations [30]. In recent years a
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great amount of mathematics has been developed to use such constructions to find four-
dimensional models with chiral fermions and Standard Model gauge groups [31–38]. Such
models generically admit a large number of massless modes in four dimensions, spurring
much work on ways to stabilise these moduli.

In the hope of stabilising moduli, there has been significant effort devoted to turning on
flux or torsion in heterotic backgrounds [35, 38, 39]. Despite this attention, once one moves
away from Calabi-Yau examples, heterotic backgrounds and their moduli remain poorly
understood. For a long time there was little progress on understanding even the infinites-
imal moduli around generic points in the moduli space, particularly those corresponding
to non-Kähler solutions of the Hull-Strominger system. Recently there has been some suc-
cess with determining the infinitesimal moduli in terms of deformations of a holomorphic
structure on a particular Courant algebroid on the internal space [8, 14, 35, 39–41, 41–47].
This has now been extended to finite deformations, where the moduli are controlled by a
degree-three L∞-algebra satisfying a set of Maurer-Cartan like equations [48]. Results on
finite deformations of so-called holomorphic string algebroids have also recently appeared
in [49, 50]. There have also been many results regarding the superpotential and Kähler
potential for compactifications on Calabi-Yau manifolds [35, 38], manifolds with flux and
torsion [22, 43, 51, 52], and more general non-Kähler manifolds [12, 13, 53]. However there
has yet to be a unified approach that describes the generic properties of heterotic back-
grounds. It is the aim of this paper to provide such a unified description using generalised
geometry. We shall see there is a geometric description of generic N = 1, D = 4 heterotic
backgrounds, with objects such as the superpotential and Kähler potential appearing nat-
urally. We will also see how this new approach is well suited to finding moduli. Much of
this work builds on [54], where analogous structures were identified in M-theory and type
II theories.

Generalised geometry provides a natural framework for analysing the structure of su-
persymmetric backgrounds with a Minkowski external space in terms of integrable G-
structures on a generalised tangent bundle. Here, integrability is defined to mean the
existence of a torsion-free generalised connection that is compatible with the geometric
structure.1 It is known [57] that a generic bosonic field configuration of the NSNS sector of
type II theories is characterised by an integrable O(d)×O(d) structure in O(d, d)×R+ gen-
eralised geometry, where d is the number of internal dimensions. This was extended to the
entire bosonic sector of type II or M-theory in [58] and [59], where the relevant integrable
structure is the maximally compact subgroup Hd ⊂ Ed(d) × R+. Here d (or d − 1) is the
dimension of the internal space of the M-theory (or type II) background. Supersymmetry
of the background further constrains these geometric structures, with preserved supersym-
metry being equivalent to the existence of an integrable GN

d ⊂ H̃d structure [56, 60], where
H̃d is the double cover of Hd, and GN

d depends on the dimension of the internal space d
(or d− 1) and the number of preserved supersymmetries N . A description of the relevant
G-structures for backgrounds preserving eight supercharges in four dimensions was given
in [61], with a description in terms of invariant generalised tensors for various dimensions
given in [55].

1See e.g. [55, 56] for definitions of generalised connections, torsion and compatibility.
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In [54], we analysed the geometry and moduli of M-theory and type II backgrounds
with a four-dimensional Minkowski factor preserving N = 1 supersymmetry. These back-
grounds are characterised by integrable SU(7) structures [60, 62]. Such structures are de-
fined by a nowhere-vanishing generalised tensor ψ transforming in the 9123 of E7(7) ×R+.
Important quantities, such as the superpotential and Kähler potential of the effective the-
ory, were given in terms of ψ. Interestingly, a slightly weaker R+ × U(7) structure can
be defined in terms of a certain subbundle of the generalised tangent bundle, similar to
an almost complex structure. The integrability of the SU(7) structure is then equivalent
to the closure of this subbundle under the Courant bracket, plus a moment map condi-
tion. Using the equivalence of Kähler quotients and complexified quotients, we argued that
the SU(7) moduli can be found by considering deformations of the R+ × U(7) structure
up to complexified generalised diffeomorphisms. We will see that a completely analogous
story appears for heterotic backgrounds. In the case of pure O(d, d) generalised geometry,
a relation between supersymmetry of the underlying sigma model and integrability of a
subbundle has appeared in [63].

The relevant generalised geometry for heterotic (or type I) backgrounds is O(6, 6 +

n)×R+ [24, 48, 60, 64], where n is the dimension of the gauge group G. As we will discuss,
a general N = 1, D = 4 heterotic background is characterised by an integrable SU(3) ×
Spin(6+n) structure [48]. This structure can be defined by a nowhere-vanishing generalised
tensor ψ transforming in the 2201 representation of O(6, 6 + n) × R+. Following [54],
we will also define a weaker R+ × U(3) × Spin(6 + n) structure, equivalent to a certain
subbundle L−1 of the complexified generalised tangent bundle. We will give the conditions
on these structures for them to be integrable. We will see that integrability of the R+ ×
U(3) × Spin(6 + n) structure is given by an involutivity condition on the subbundle L−1.
(Such an involutivity condition has previously appeared in a generalised geometric analysis
of non-linear sigma models whose target spaces are “strong Kähler with torsion” [65].)
Integrability of the full SU(3)×Spin(6+n) structure, equivalent to supersymmetry for the
background, requires an additional condition which takes the form of the vanishing of a
moment map for the action of diffeomorphisms and gauge transformations on the space of
SU(3)×Spin(6+n) structures. We will show that these geometric conditions are equivalent
to the equations of the Hull-Strominger system.2 Moreover, the split into involutivity and
a moment map mirrors the split into F- and D-term conditions in the four-dimensional
effective theory.

These structures are completely generic, defined for any value of the fluxes and field
strengths in the theory. From these we are able to give expressions for the perturbative
Kähler potential and superpotential without resorting to Kaluza-Klein reduction or as-
suming an expansion in terms of harmonic forms on the internal space. Both of these
expressions are written in terms of ψ and hence are covariant. These geometric structures
are ideal for investigating the moduli of general heterotic compactifications. In particu-
lar, the appearance of a complexified quotient by the symmetries naturally gives rise to a

2Note added: shortly after this paper first appeared, an independent moment-map interpretation of the

Hull-Strominger system in terms of holomorphic Courant algebroids was given in [66].
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cohomology which counts the moduli. Using this perspective, we recover the cohomology
found in [41, 48].

The paper is structured as followed. In section 2 we give a brief introduction to the
Hull-Strominger system as well as a review of what is known about the infinitesimal mod-
uli problem in terms of deformations of a holomorphic Courant algebroid. In section 3 we
describe the formulation of heterotic backgrounds in terms of O(6, 6 +n) ×R+ generalised
geometry, giving definitions for the generalised tensor ψ, and the bundle L−1. We do this
first for the case with no gauge bundle in section 3.1, then we reintroduce the gauge bundle
in 3.2. We also discuss the equivalence between supersymmetry and integrability for the
structures. In section 4, we explore involutivity of L−1 and give the superpotential in terms
of ψ. We also show how these are related to the F-term conditions of the Hull-Strominger
system. In section 5, we give the Kähler potential on the space of structures and derive
a moment map for the action of generalised diffeomorphisms. We compute both of these
explicitly and show that the moment map reproduces the final supersymmetry conditions,
now with a geometric interpretation. This reinterpretation of the supersymmetry condi-
tions as the vanishing of some moment map provides some interesting links with geometric
invariant theory which we highlight in section 5.3. In section 6 we find the infinitesimal
moduli and show that they are related to the previously known D̄ cohomology. We finish
with some general comments and further directions in section 7. Appendix A contains
our conventions and appendix B contains detailed calculations of the superpotential, the
Kähler potential, and the moment map.

2 Review of the Hull-Strominger system

We begin with a review of the Hull-Strominger system [2, 67]. This is a set of equations
describing the geometry of general N = 1 backgrounds of the heterotic string on a ten-
dimensional manifold M that is a product of a six-dimensional manifold X with four-
dimensional Minkowski space M = R3,1 ×X, with trivial warp factor in the string frame.

The condition of N = 1 supersymmetry implies the existence of a global nowhere-
vanishing spinor ǫ on X. This defines an SU(3) structure on X which can be equivalently
described in terms of a complex three-form Ω (with a compatible almost complex structure
I) and a real two-form ω satisfying

Ω ∧ ω = 0,
1

8
i Ω ∧ Ω̄ =

1

6
ω ∧ ω ∧ ω. (2.1)

As usual, the forms are defined as bilinears in the spinor ǫ

Ωmnp = ǫTγmnpǫ, ωmn = −i ǫ†γmnǫ. (2.2)

The supersymmetry conditions in the form of the Killing spinor equations imply that this
SU(3) structure is not integrable but instead satisfies

d(e−2ϕΩ) = 0, d(e−2ϕω ∧ ω) = 0, (2.3)
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where ϕ is the dilaton. These conditions are known as “conformally holomorphic” and
“conformally balanced” respectively. Note that the first condition implies that X has an
integrable complex structure whose canonical bundle is holomorphically trivial.

Heterotic compactifications come with a connection A on a vector bundle V → X

whose field strength F is valued in End(V ), and a connection Θ on the tangent bundle T
whose curvature R is valued in End(T ). Supersymmetry implies that both connections are
instantons [68, 69]

F0,2 = 0, ω♯yF = 0, and R0,2 = 0, ω♯yR = 0, (2.4)

where ω♯ is ω with its indices raised using the metric on X and a subscript indicates
the (0, 2)-form part of the curvature with respect to the complex structure defined by
the SU(3) structure. In other words, V and T must be holomorphic vector bundles with
connections that solve the hermitian Yang-Mills equations with zero slope. A theorem
due to Donaldson-Uhlenbeck-Yau then guarantees a unique solution provided V and T are
polystable [70, 71].

The final supersymmetry condition is the anomaly cancellation condition. This couples
the intrinsic torsion of the SU(3) structure with the B field and the connections. It is
given by

i(∂ − ∂̄)ω = H := dB +
1

4
α′ (ω3(A) − ω3(Θ)) , (2.5)

where ω3 is the Chern-Simons three-form for the relevant connection, for example

ω3(A) = tr

(

A ∧ dA+
2

3
A ∧A ∧A

)

. (2.6)

This implies a non-trivial Bianchi identity for the NSNS three-form flux H

dH =
1

4
α′(trF ∧ F − trR ∧R). (2.7)

For convenience, in what follows we will drop explicit reference to α′, absorbing it into
the definition of B and ω. Moreover we will mostly ignore the tangent bundle connection
Θ with the understanding that it can be reintroduced afterwards by taking V to be a
G = Ggauge ×GL(6,R) vector bundle, where Ggauge is the gauge group for A, together with
a suitable definition of the trace, as, for example, in [24].

It is useful to group these equations into so-called F-terms and D-terms. As was
discussed in [43], the F-term conditions correspond to

d(e−2ϕΩ) = 0, i(∂ − ∂̄)ω = H, F0,2 = 0. (2.8)

The remainder are the D-terms

d(e−2ϕω ∧ ω) = 0, ω♯yF = 0. (2.9)

One can view the F-terms as determining a holomorphic structure on a certain bundle
Q [41]. The remaining D-term conditions — a conformally balanced metric and polystabil-
ity of V — must then imposed. More precisely one requires the bundle Q to be holomorphic,
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where Q is defined via a series of extensions as

T ∗1,0 −→ Q −→ A,
(adPG)C −→ A −→ T 1,0.

(2.10)

where adPG is a vector bundle with fibre g, the Lie algebra of the gauge group. This
is an example of a holomorphic Courant algebroid [49, 50]. Equivalently there exists a
holomorphic differential D̄ such that

D̄ : Ω(p,q)(X,Q) → Ω(p,q+1)(X,Q), D̄2 = 0. (2.11)

The condition D̄2 = 0 is equivalent to the integrability of the conventional complex struc-
ture, the holomorphicity of the gauge bundle and the Bianchi identities for F , R and H.3

The moduli of the background appear in the massless spectrum of the four-dimensional
theory and so a full knowledge of the moduli space is important for both phenomenology
and more formal questions. Once one moves away from Calabi-Yau type solutions and
allows non-zero fluxes, the moduli are much more difficult to understand. Fortunately,
identifying the holomorphic structure D̄ streamlines the analysis of the moduli space for
heterotic compactifications [39, 41, 43, 48]. The moduli can be thought of as deformations
of D̄ that still satisfy D̄2 = 0 and the D-term conditions. Given some mild assumptions on
the bundle V , it is known [41] that the hermitian Yang-Mills equations do not impose any
extra conditions on the infinitesimal moduli of the system (and that the same result holds
for T ). It is also known that while deformations of the hermitian structure preserving the
conformally balanced condition (2.3) may a priori be infinite dimensional, once you impose
the anomaly cancellation condition you are reduced to a finite number of moduli. Up to
(0, 2) variations of the NSNS two-form B, the infinitesimal moduli of the Hull-Strominger
system are then given by deformations of the holomorphic structure on Q. That is they
are counted by the cohomology

H0,1

D̄
(X,Q). (2.12)

We should note that these actually include non-physical moduli which correspond to de-
formations of the connection Θ that do not change the physical fields, such as the metric.4

These appear in this construction as one treats Θ as an independent field (and part of
the gauge connection), whereas in reality it is determined by the other fields of the back-
ground. To find the physical moduli, one must remove this over counting — this has yet
to be understood.

The story outlined above is valid for infinitesimal deformations. Using holomorphicity,
one can also study finite deformations [48]. These are known to obey the Maurer-Cartan
equation for an L3 algebra (an L∞ algebra up to degree 3). The deformations can be
packaged into

y ∈ Ω(0,1)(X,Q), b ∈ Ω(0,2)(X), (2.13)

3Note that this relies on the gauge group G admitting a compact real form. More generally, this statement

may not be true [66].
4These are counted by H

(0,1)

∇̄
(X,EndT ), where ∇̄ is the antiholomorphic part of the covariant derivative

defined by Θ.
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where y encodes deformations of the holomorphic structure — deformations of the complex
structure, complexified hermitian structure and gauge connection — and b encodes the
(0, 2) deformations of the B field. Note that the b modulus vanishes if h0,2 = 0 [47] —
we will make no such assumption here and so shall keep explicit reference to it. To linear
order the moduli are determined by the set of equations

D̄y − 1

2
∂b = 0, (2.14)

∂̄b = 0, (2.15)

∂(e−2ϕıµΩ) = 0, (2.16)

where µ ∈ Ω(0,1)(X,T 1,0) is a complex structure deformation. These are the equations we
will recover in section 6.

3 Generalised structures for N = 1 heterotic backgrounds

Generalised geometry provides a useful framework for studying generic supersymmetric
backgrounds of maximal supergravities in terms of integrable generalised G-structures. In
particular, it gives a geometric interpretation of generic properties of type II and M-theory
backgrounds, such as the superpotential and Kähler potential for N = 1 solutions with
four external dimensions, as well as tools to tackle questions about the moduli space [54].
Heterotic (and type I) theories can also be formulated in terms of generalised geometry, as
we will now summarise briefly. We will then discuss how generalised geometry can be used
to characterise N = 1 heterotic backgrounds.

Ignoring the gauge bundle for now, the bosonic field content of the heterotic theory
is the same as the NSNS sector of type II supergravity. Hence the relevant generalised
geometry is that of O(6, 6) × R+ generalised geometry on a generalised tangent bundle E
defined as an extension of T by T ∗ [72, 73]

T ∗ −→ E′ −→ T, (3.1)

where E admits an O(6, 6)×R+ structure. As usual, there is a natural differential operator
known as the generalised Lie (or Dorfman) derivative on E. An (off-shell) configuration
of the bosonic fields defines a generalised metric that reduces the structure group of E to
SO(6) × SO(6) ≃ SU(4) × SU(4).

We can reintroduce the gauge connection and obtain full heterotic backgrounds as fol-
lows. Combining the connection Θ with the gauge connection A to give a single connection
on the principal bundle PG, where G = Ggauge × GL(6,R), the generalised tangent bundle
E is defined as the extension

T ∗ −→ E′ −→ E,

adPG −→ E −→ T,
(3.2)

where adPG is the vector bundle with fibre g, the Lie algebra of the extended gauge
group G. This structure with its Dorfman derivative is known as a transitive Courant
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algebroid [74] — it has been used to describe heterotic supergravity in [24, 64] (see also [75]
in the double field theory context). We review some of the key points in appendix A. In
particular, given a generalised vector V ∈ Γ(E), there is a Dorfman derivative LV defined
by (A.5). Locally we have a (non-canonical) isomorphism

E ≃ T ⊕ adPG ⊕ T ∗. (3.3)

This has a natural O(6, 6 + n) structure on it defined by the inner product

η(v + Λ + λ,w + Σ + σ) =
1

2
ıvσ +

1

2
ıwλ+ tr(ΛΣ), (3.4)

where n is the dimension of g. While we will not give the exact form of the adjoint bundle
ad F̃ whose fibres are the Lie algebra o6,6+n, we note that

T ∗ ⊗ g ⊆ ad F̃ ≃ ∧2E. (3.5)

An (off-shell) configuration of the bosonic fields, that is a metric g, two-form B and one-
form gauge field A, again define a generalised metric that in this case reduces the structure
group to SO(6) × SO(6 + n) [24]. Further requiring the fields to give a solution preserving
N = 1 supersymmetry is equivalent to a further reduction to an integrable SU(3)×SO(6+n)

structure. As in previous work on N = 1 structures [48], we will find it useful to also
consider a weaker R+×U(3)×SO(6+n) structure. We will see how these are defined in terms
of generalised structures in section 3.2 and how to define the conditions for integrability.

Note that in the formalism where one includes the Θ connection by extending the gauge
bundle V to be a Ggauge ×GL(6,R) bundle, there are non-physical degrees of freedom, since
the connection Θ on the tangent space connection is thought of as independent of the metric
and B. One can remove these by setting the value of Θ by hand. As was discussed in [64],
one can get around this issue by identifying an O(6) subbundle of the GL(6,R) bundle, then
identifying it with one of the O(6) structures defined on the T ⊕T ∗ part of the generalised
tangent bundle. This gives a structure group O(6)×Ggauge ×O(6). The trade off is that the
generalised connections relevant for this construction will not be torsion free, but instead
appear with a particular non-vanishing intrinsic torsion. We will not take this approach in
this paper.

3.1 SU(3) × SU(4) and R+ × U(3) × SU(4) structures

Let us start by considering the simple case where we ignore the gauge bundle, applicable
to both the heterotic and type II theories. As discussed in [48, appendix C], the existence
of a nowhere-vanishing spinor that can parametrise N = 1 supersymmetry transforma-
tions in four dimensions requires a reduction of the structure group from that defined by
the generalised metric, namely SU(4) × SU(4), to SU(3) × SU(4) ⊂ O(6, 6) × R+. Fol-
lowing [54], it will be useful for us to also define a slightly weaker R+ × U(3) × SU(4)

structure. These will play roles analogous to SL(3,C) structures and GL(3,C) structures
in conventional geometry.
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Each structure is defined by a generalised tensor that is invariant under the reduced
structure group5

SU(3) × SU(4) structure: ψ ∈ Γ(detT ∗ ⊗ ∧3EC),

R+ × U(3) × SU(4) structure: J ∈ Γ(ad F̃ ).
(3.6)

They are stabilised by the same SU(3) × SU(4), but J is also invariant under a C∗ action.
As discussed in detail in [54], one should think of this as generalising the relation between
an SL(3,C) structure Ω and a GL(3,C) structure I. The differential conditions which
ensure supersymmetry of the on-shell solution are then equivalent to the integrability of
this structure, in line with the general discussion of [60]. In the next section we will see
how we can reformulate the conditions for integrability of the R+ ×U(3)×SU(4) structure,
and in the following section consider the extra conditions that make the SU(3) × SU(4)

structure integrable.
Let us begin by defining the structure J . At a point on the manifold, the generalised

metric defines an SU(4)×SU(4) subgroup of O(6, 6)×R+, with the invariant spinor reducing
this further to SU(3) × SU(4). There is a U(1) ⊂ SU(4) that commutes with the SU(3).
The commutant of this U(1) inside O(6, 6) ×R+ is an R+ × U(3) × SU(4), where the U(1)

is generated at each point of the internal manifold by a section J ∈ Γ(ad F̃ ).6 This leads
us to define

Definition. A generalised R+ × U(3) × SU(4) structure is a section J ∈ Γ(ad F̃ ) that
generates this U(1) subgroup at each point.

By construction, J defines a generic reduction of the structure group of the generalised
tangent bundle E to R+×U(3)×SU(4).7 Different choices of J are related by local O(6, 6)×
R+ transformations, giving an orbit of structures within the 66 representation space.

Decomposing O(6, 6) using explicit SU(4) × SU(4) indices, we have

66 = (15,1) ⊕ (1,15) ⊕ (6,6) ∋ (µαβ , µ
α̇
β̇, µ

αβα̇β̇), (3.7)

where the nowhere-vanishing spinor ǫ is invariant under an SU(3) subgroup of the first
SU(4) factor. Using this, we can write J as

Jαβ = 4 ǫαǭβ − (ǭǫ)δαβ, J α̇β̇ = Jαβα̇β̇ = 0, (3.8)

where we have normalised ǭǫ = 1. Decomposing further under the SU(3) × U(1) subgroup
of the first SU(4) factor, we have

66 = (8,1)0 ⊕ (3,1)−2 ⊕ (3,1)2 ⊕ (1,1)0 ⊕ (1,15)0 ⊕ (3,6)1 ⊕ (3,6)−1, (3.9)

5Note that, as we will argue below, the particular determinant weight of the ψ structure is required to

make ψ a holomorphic function on the space of SU(3) × SU(4) structures.
6As in the type II and M-theory case [54], one can also define J at each point on the manifold as being

conjugate to a certain element of su4 × su4 that commutes with the desired su3 × su4.
7Note that the standard generalised complex structure [72, 73] is also defined by choosing the generator

of a U(1) subgroup but in that case the commutant would be U(3, 3).
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where a non-bold subscript denotes the U(1) charge. J lies in the singlet (1,1)0

representation.
From the expression (3.8) and the parametrisation of the generalised metric in terms

of a conventional metric g and two-form field B, one finds that J generically takes the form

J =
1

2
e−B · (I − ω + ω♯), (3.10)

where I is the almost complex structure on TC defined by the three-form Ω, and ω is the
compatible fundamental two-form. The B field acts by the exponentiated adjoint action,
which is nilpotent at degree three. In analogy with a conventional complex structure, we
can use J to decompose the generalised tangent space into eigenspaces. Under SU(3) ×
U(1) × SU(4), the adjoint action of J on the complexification of E splits as

EC = L1 ⊕ L−1 ⊕ L0,

12C = (3,1)1 ⊕ (3,1)−1 ⊕ (1,6)0.
(3.11)

Given the form (3.10), it is then easy to see that L−1 takes the generic form

L−1 = e−B−iω · T 0,1 = {v̄ + ıv̄(B + iω) | v̄ ∈ Γ(T 0,1)}, (3.12)

where as above T 0,1 ⊂ TC is the −i eigenbundle for the action of the almost complex
structure I.8 As with a conventional almost complex structure, we have an alternative
definition purely in terms of the subbundle L−1:

Definition. An R+ × U(3) × SU(4) structure is a subbundle L−1 ⊂ EC such that

i) dimC L−1 = 3,

ii) η(L−1, L−1) = 0,

iii) L−1 ∩ L̄−1 = {0},

iv) The map h : L−1 × L−1 → C, defined by h(V,W ) = η(V, W̄ ), is a definite hermitian
inner product.

Note that we could equally well define the structure in terms of L1.
Turning to the SU(3) × SU(4) structure ψ, we note that the bundle

K = detT ∗ ⊗ ∧3E, (3.13)

transforms in the 2201 representation of O(6, 6) × R+ (where the bold subscript denotes
the R+ weight [57]). Decomposing first under SU(4) × SU(4) and then under SU(3) ×
U(1) × SU(4), we have

220 = (10,1) ⊕ (10,1) ⊕ (1,10) ⊕ (1,10) ⊕ (15,6) ⊕ (6,15)

= (1,1)3 ⊕ (6,1)−1 ⊕ (3,1)1 ⊕ (1,1)−3 ⊕ (6,1)1 ⊕ (3̄,1)−1 ⊕ . . . .
(3.14)

8We will denote (0, 1)-vectors with a bar. Unbarred objects will denote either generic vectors or (1, 0)-

vectors depending on context. The complex conjugate of a vector or one-form will be indicated with a

superscript ∗.
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where the subscripts now denote the U(1) charge. In particular, we see that the SU(3) ×
SU(4) singlet in the decomposition implies that each choice of J defines a unique line
bundle UJ ⊂ KC, satisfying

V • ψ = 0 ∀ V ∈ Γ(L−1), η(ψ, ψ̄) 6= 0, (3.15)

where ψ is a local section of UJ , η is the pairing on sections of K induced from the symmetric
pairing η on E, and the product V • ψ is the projection map E ⊗ K → H, where H is
the generalised tensor bundle transforming in the 4951 representation of O(6, 6) × R+.
Equivalently, a local section ψ is defined by Jψ = −3iψ under the adjoint action of J .9

Mirroring the definition of a nowhere-vanishing three-form for an almost complex structure,
we then have

Definition. Given a choice of J with trivial line bundle UJ , a generalised SU(3) × SU(4)

structure is a global nowhere-vanishing section ψ ∈ Γ(UJ).

Note that two different choices of ψ that are related by multiplication by a nowhere-
vanishing complex function define the same structure J . Decomposing with explicit SU(4)×
SU(4) indices we have

220 = (10,1) ⊕ (10,1) ⊕ (15,6) ⊕ (6,15) ⊕ (1,10) ⊕ (1,10)

∋ (καβ , καβ , κ
α
β
α̇β̇, κα̇β̇

αβ , κα̇β̇ , κα̇β̇).
(3.16)

In terms of the spinor ǫ we then have

ψαβ =
√
g e−2ϕ ǫαǫβ, (3.17)

with all the other components vanishing. Recall that ψ is defined up to a complex function.
We fixed the normalisation ǭǫ = 1, so that the phase of ǫ encodes the phase freedom in
ψ, while the overall scale of ψ is parameterised by the dilaton e−2ϕ, in line with the fact
that the combination

√
g e−2ϕ is the O(6, 6) invariant volume defined by the generalised

metric [57].
Again we can use the generalised metric to translate this into a tensor expression

following [48]. As we have mentioned a generalised metric gives a reduction of the structure
group of E to SO(6)+ ×SO(6)− ≃ SU(4)+ ×SU(4)−. The O(6, 6)×R+ generalised tangent
bundle E then decomposes under SO(6)+×SO(6)− as E = C+⊕C−, giving a corresponding
decomposition of ∧3E as

∧3E = ∧3C+ ⊕ (∧2C+ ⊗ C−) ⊕ (C+ ⊗ ∧2C−) ⊕ ∧3C−, (3.18)

as in (3.16), where the ∧3C± spaces decompose into complex self-dual and anti-self-dual
components transforming in the 10 and 10 representations. Note that, in terms of the
splitting defined by the generalised metric we have

(C+)C = L1 ⊕ L−1, (C−)C = L0. (3.19)

9This corresponds to taking ψ ∈ (1,1)−3. We make this choice to match with the usual conventions of

Ω being the holomorphic object on the space of structures.
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Let Ê+
a = êa+ea− ıêa

B be an explicit basis for C+, where êa is an orthonormal basis for T
defined by the metric g, and ea is the dual basis. The expression (3.17) defines the tensor

ψ =
√
g e−2ϕ 1

3!
(ǫTγabcǫ) Ê+

a ∧ Ê+
b ∧ Ê+

c

= e−2ϕ e−B−iω · Ω,

(3.20)

where the exponential e−B−iω acts via the adjoint action and in going to the second line
we use the isomorphism ∧3T ⊗ ∧6T ∗ ≃ ∧3T ∗. This expression ensures ψ is stabilised by
the correct SU(3) × SU(4) subgroup. We note that given an N = 2 structure encoded by
a pair of pure spinors Φ±, one can construct ψ as

ψMNP = (Φ̄+,Γ
MNPΦ−), (3.21)

where ΓM are the O(6, 6) gamma matrices and (·, ·) is the Mukai pairing.

3.2 SU(3) × Spin(6 + n) and R+ × U(3) × Spin(6 + n) structures

It is straightforward to extend this story to include the gauge bundle. Since many of the
results are analogous to the previous section, we will sketch the key points. As noted
in (3.3), the generalised tangent bundle is locally given by

E ≃ T ⊕ adPG ⊕ T ∗, (3.22)

where adPG is the adjoint bundle with fibres given by the Lie algebra g of the gauge group
G. Sections of E thus encode diffeomorphisms and gauge transformations of both the gauge
field A and the two-form B. Again, there are two generalised structures each defined by a
generalised tensor that is invariant under the reduced structure group

SU(3) × Spin(6 + n) structure: ψ ∈ Γ(detT ∗ ⊗ ∧3EC),

R+ × U(3) × Spin(6 + n) structure: J ∈ Γ(ad F̃ ).
(3.23)

These are stabilised by the same SU(3) × Spin(6 + n), but J is also invariant under a C∗

action.
We begin with the weaker R+ × U(3) × Spin(6 + n) structure defined by J . Mirroring

the discussion in the previous subsection, one finds that J generically takes the form

J =
1

2
e−Be−A · (I − ω + ω♯), (3.24)

where now we include a twisting by the one-form gauge field A. Again, we can use J

to decompose the generalised tangent space E into eigenspaces. Noting that the fibres
of E transform in the (12 + n) representation of O(6, 6 + n) and decomposing under
U(1) × SU(3) × Spin(6 + n) we find that

EC = L1 ⊕ L−1 ⊕ L0,

12 + n = (3,1)1 + (3,1)−1 + (1,6 + n)0,
(3.25)
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where (6 + n) is the fundamental representation of Spin(6 + n). Identifying L−1 as the
subbundle transforming as (3,1)−1, given the form of J in (3.24), one can check that L−1

takes the generic form

L−1 = e−B−iωe−AT 0,1 = {v̄ + ıv̄A+ ıv̄(B + iω) − tr(ıv̄AA) | v̄ ∈ Γ(T 0,1)}, (3.26)

where T 0,1 ⊂ TC is the −i eigenbundle for the almost complex structure I. As before,
one can use L−1, subject to some algebraic conditions, as a definition of the R+ × U(3) ×
Spin(6 + n) structure.

As in the case without the gauge bundle, an SU(3) × Spin(6 + n) structure ψ is a
nowhere-vanishing section of

ψ ∈ Γ(detT ∗ ⊗ ∧3EC). (3.27)

Again, ψ is not a generic element but needs to lie in a particular orbit of Spin(6, 6 + n)

so that its stabiliser is SU(3) × Spin(6 + n). Using a generalised metric, we can write
E = C+ ⊕ C−, where C+ is a six-dimensional subbundle on which η is positive definite,
defined in (3.4). Letting Ê+

m be a basis for C+, we can write

ψ =
√
ge−2ϕ 1

3!
(ǫTγmnpǫ)Ê+

m ∧ Ê+
n ∧ Ê+

p

= e−2ϕe−B−iωe−A · Ω.

(3.28)

This expression guarantees that ψ is stabilised by the correct SU(3) × Spin(6 + n) group.

3.3 Supersymmetry and intrinsic torsion

The existence of the ψ structure is just the algebraic part of the supersymmetry conditions
for an N = 1 background (namely the requirement that one has a non-vanishing spinor).
There are also differential conditions given by the Killing spinor equations, which can be
translated into the F- and D-term conditions in (2.8) and (2.9) respectively. As we will
discuss, these are equivalent to the structure being torsion-free or “integrable” [24, 60, 64].
As in [54], it will be useful to consider the intrinsic torsion for both J and ψ as one can view
an integrable ψ in terms of an integrable J together with a further differential condition
in the form of a moment map for generalised diffeomorphisms.

We call a structure torsion-free or integrable if there exists a generalised connection
that is compatible with the structure and is torsion-free. For example, a torsion-free
SU(3) × Spin(6 + n) structure is equivalent to the existence of ψ and a connection D

such that
Dψ = 0, LDV − LV = T (V ) = 0, (3.29)

where LV is the Dorfman derivative defined in (A.5) with the gauge sector turned off,
LDV is the Dorfman derivative with ∂ replaced by D, and the generalised torsion is a map
T : Γ(E) → Γ(ad F̃ ). The obstruction to the existence of such a torsion-free connection is
a non-vanishing intrinsic torsion.

Starting with the simpler case where we ignore the gauge bundle, following the standard
analysis [55–57, 59, 60], we find that the intrinsic torsion for ψ and J live in subbundles of
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∧3E ⊕ E∗ transforming as 220 ⊕ 12 and decomposing under the structure group via

W int
SU(3)×SU(4) : (3,6)−2 ⊕ (3,6)2 ⊕ (1,1)−3 ⊕ (1,1)3

⊕ (3,1)1 ⊕ (3,1)−1 ⊕ (1,6)0,
(3.30)

W int
R+×U(3)×SU(4) : (3,6)−2 ⊕ (3,6)2 ⊕ (1,1)−3 ⊕ (1,1)3, (3.31)

where the subscript denotes the U(1) charge under J .
When we include the gauge bundle the representations in which the intrinsic torsion

for each structure lives are given by

W int
SU(3)×Spin(6+n) : (3,6 + n)−2 ⊕ (3,6 + n)2 ⊕ (1,1)−3 ⊕ (1,1)3

⊕ (3,1)1 ⊕ (3,1)−1 ⊕ (1,6 + n)0,
(3.32)

W int
R+×U(3)×Spin(6+n) : (3,6 + n)−2 ⊕ (3,6 + n)2 ⊕ (1,1)−3 ⊕ (1,1)3, (3.33)

where a subscript denotes the U(1) charge with respect to J and (6+n) is the fundamental
representation of Spin(6 + n).

Since N = 1 supersymmetry in four dimensions follows from integrability of the
SU(3) × SU(4) structure, and integrability is equivalent to the vanishing of the intrin-
sic torsion of the structure, we need some natural differential conditions which enforce the
vanishing of the above components of the intrinsic torsion. These differential conditions
should then be thought of as the supersymmetry conditions for the background, but now
with a geometric interpretation. The form of these conditions will be the subject of the
next two sections.

4 Involutivity, the superpotential and F-terms

In this section we will consider the integrability of the weaker R+ × U(3) × SU(4) and
R+ × U(3) × Spin(6 + n) structures, defined by J , and the show how these conditions can
be defined as an involutivity condition of a subbundle or equally as coming from varying a
superpotential. This matches an earlier observation, in the case of pure O(d, d) generalised
geometry, relating supersymmetry of the underlying sigma model to integrability of a
subbundle [63]. We will also briefly discuss the connection to the holomorphic Courant
algebroid [41, 49, 50] given in (2.10). We will turn to the extra conditions that one must
impose on ψ to guarantee an honest N = 1 background in the next section.

4.1 Involutivity conditions

As with conventional complex structures and the N = 1 structures defined in [54], it turns
out that integrability of the J structure is equivalent to involutivity of a subbundle of the
generalised tangent bundle. For the R+ × U(3) × SU(4) structure we define

Definition. A torsion-free R+ ×U(3)×SU(4) structure J is one for which L−1 is involutive
under the Dorfman derivative

LVW ∈ Γ(L−1) ∀ V,W ∈ Γ(L−1). (4.1)

– 14 –



J
H
E
P
1
1
(
2
0
2
0
)
0
7
1

Note that one can replace the Dorfman derivative with the Courant bracket in this
condition: the difference between the two is a term of the form d(η(V,W )), but η(V,W )

vanishes for V,W ∈ Γ(L−1) from the definition of an R+ × U(3) × SU(4) structure. We
also note that since L̄−1 ≃ L1, involutivity of L−1 is equivalent to involutivity of L1.

It is straightforward to see that involutivity of L−1 is equivalent to vanishing intrinsic
torsion for the R+×U(3)×SU(4) structure. Recall first that we can always find a generalised
connection D that is compatible with the structure, so that DJ = 0, but this is not
necessarily torsion-free. Now consider the definition (3.29) of the torsion of a connection
where we restrict to V,W ∈ Γ(L−1)

LVW = LDVW − T (V ) ·W. (4.2)

Compatibility of the connection guarantees LDVW ∈ Γ(L−1), so involutivity reduces to
checking that T (V ) · W lies only in L−1. Note also that since the left-hand side does not
depend on the choice of connection and LDVW lies in Γ(L−1) for any choice of D, only the
intrinsic torsion can contribute to the components of T (V ) ·W that lie outside of L−1. The
intrinsic torsion representations that appear in T (V ) ·W ∈ Γ(E) are

(3,6)2 ⊗ (3,1)−1 ⊗ (3,1)−1 ⊃ (1,6)0,

(1,1)3 ⊗ (3,1)−1 ⊗ (3,1)−1 ⊃ (3,1)1.
(4.3)

A non-zero (3,6)2 component of the intrinsic torsion would generate a (1,6)0 ≃ L0 term in
LVW , while a non-zero (1,1)3 component would generate a (3,1)1 ≃ L1 part. Requiring
both of these to be absent so that LVW ∈ Γ(L−1) only sets both of these components
of the intrinsic torsion to zero. Complex conjugation then implies that the whole of the
intrinsic torsion vanishes. This shows that the R+ × U(3) × SU(4) structure defined by
J , or equivalently L−1, is integrable if and only L−1 is involutive with respect to the
Dorfman derivative.

The discussion up to this point has been rather abstract. One might wonder how inte-
grability for J translates into concrete equations for the SU(3) structure that underlies the
Hull-Strominger system discussed in section 2. Given that we have an explicit description
of the subbundle L−1, given in (3.12), we can check how involutivity constrains the SU(3)

structure. Taking any v, w ∈ Γ(T ) one finds

Le−B−i ωv(e
−B−iωw) = e−B−iωLH+i dω

v w = e−B−iω(

[v, w] − ıvıw(H + i dω)
)

, (4.4)

where H = dB and we have used the expression for the Dorfman derivative in (A.5) after
setting the gauge field to zero. If in particular we choose the vectors to be v̄, w̄ ∈ Γ(T 0,1)

so that e−B−iωv̄ ∈ Γ(L−1), then for L−1 to be involutive (so that the right-hand side lies
only in L−1), we require that [v̄, w̄] − ıv̄ıw̄(H + i dω) is a section of Γ(T 0,1) alone. Splitting
into vector and one-form equations, this gives the conditions

[v̄, w̄] ∈ Γ(T 0,1), ıv̄ıw̄(H + i dω) = 0, (4.5)

which must hold for all choices of v̄, w̄ ∈ Γ(T 0,1). The first of these is simply the requirement
that the almost complex structure I is integrable, so that it is an honest complex structure.
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This also implies that the corresponding complex three-form Ω satisfies dΩ = ā ∧ Ω for
some ā ∈ Ω0,1(X). The second condition can be understood by decomposing according
to complex type as H = H3,0 + H2,1 + H1,2 + H0,3 and ω = ω1,1. Since v̄ and w̄ are
(0, 1)-vectors, the second of the conditions gives H0,3 = 0 and H1,2 + i ∂̄ω = 0. As both H

and ω are real, these imply H3,0 = H0,3 = 0 and H2,1 +H1,2 + i(∂̄ − ∂)ω = 0. Putting this
together, we have

L−1 is involutive ⇔
[v̄, w̄] ∈ Γ(T 0,1)

H = i(∂ − ∂̄)ω
(4.6)

Note that these are (almost) the equations coming from the F-term conditions (2.8) with
the gauge bundle turned off. The F-term equations are slightly stronger since they imply
that Ω is conformally holomorphic, fixing ā in terms of the dilaton ϕ, whereas the above
conditions leave ā undetermined. We will come back to this point when we discuss the
superpotential in section 4.2. Note also that these are the same set of conditions as the
integrability of a “half generalised complex structure” [65], which appear from a worldsheet
analysis of (2, 0) non-linear sigma model geometry.

The involutivity condition naturally extends to the R+×U(3)×Spin(6+n) case. Given
the explicit description of L−1 in (3.26) and the expression for the Dorfman derivative
in (A.5), we can relate integrability for the R+ × U(3) × Spin(6 + n) structure, in the
form of involutivity of L−1, to the data of the Hull-Strominger system, namely the SU(3)

structure and the connection on V . Taking generic vectors v, w ∈ Γ(T ) one now finds

Le−B−i ωe−Av(e
−B−iωe−Aw) = e−B−iωe−A(

[v, w] − ıvıw(H + i dω) − ıvıwF
)

, (4.7)

where

H = dB + ω3(A), ω3(A) = tr

(

A ∧ dA+
2

3
A ∧A ∧A

)

, (4.8)

F = dA+A ∧A, dH = tr(F ∧ F ). (4.9)

As before, specialising to v̄, w̄ ∈ Γ(T 0,1) so that e−B−iωe−Av̄ ∈ Γ(L−1), for involutivity of
L−1 we require that the expression in the parentheses in (4.7) lies only in Γ(T 0,1). This
implies

L−1 is involutive ⇔
[v̄, w̄] ∈ Γ(T 0,1)

H = i(∂ − ∂̄)ω

F0,2 = 0

(4.10)

As before, we have an integrable complex structure on the manifold, implying dΩ = ā ∧ Ω

for some ā ∈ Ω0,1(X), and the three-form flux H is fixed by dI of the hermitian form ω.
In addition, the (0, 2) component of the curvature F must vanish, implying that the gauge
bundle is holomorphic. Again, these are the F-term equations (2.8), up to the conformal
holomorphicity condition for Ω.

In order to describe the heterotic theory, as mentioned, we can include the tangent
bundle connection within the gauge sector, as discussed in [24, 50, 64]. This has the effect
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of redefining H to be its full heterotic form and adds a holomorphicity condition for the
tangent bundle connection so that

H = dB + ω3(A) − ω3(Θ), R0,2 = 0, (4.11)

where Θ is the ∇− connection and R is the corresponding curvature two-form.
It is interesting to compare how the involutivity condition on L−1 defines the holo-

morphic structure of the geometry to the holomorphic Courant algebroid Q given in (2.10)
and used in the papers [49, 50]. Defining the perpendicular subbundle L⊥

−1, such that, on
a patch Ui,

V ∈ Γ(L⊥
−1) ⇔ η(V,W ) = 0 ∀ W ∈ Γ(L−1), (4.12)

we have

L⊥
−1/L−1 ≃ e−B−iωe−A ·

(

T 1,0 ⊕ T 0,1 ⊕ T ∗1,0 ⊕ (adPG)C
)

/e−B−iωe−A · T 0,1,

≃ e−B−iωe−A ·
(

T 1,0 ⊕ T ∗1,0 ⊕ (adPG)C
)

,

≃ T 1,0 ⊕ T ∗1,0 ⊕ (adPG)C ≃ Q.

(4.13)

Hence we see that L−1 indeed determines Q and furthermore the involutivity of L−1 implies
that Q is holomorphic.10 As a bundle, all Q are isomorphic to T 1,0 ⊕ T ∗1,0 ⊕ (adPG)C.
However the corresponding holomorphic Courant algebroids (or more precisely “Bott-Chern
algebroids” in the language of [50]) are distinguished by the choice of ω and A, such that
inequivalent algebroids are distinguished by the Aeppli class defined in [50].

4.2 The superpotential

It is known that the F-term conditions in (2.8) can be derived starting from a heterotic
superpotential [43, 51, 52, 76]

W =

∫

X
e−2ϕΩ ∧ (H + i dω), (4.14)

and requiring W = δW = 0 under variations of the structures Ω, ω and fields B and
ϕ [43, 76]. Building on work on flux superpotentials [77, 78] and their description in
generalised geometry [62], we conjectured in [54] that the superpotential is given by the
singlet part of the intrinsic torsion of the ψ structure and explicitly showed this was true
for the examples of G2 in M-theory and generic N = 1 backgrounds of type II theories.
Here we will show that the singlet torsion does indeed give the superpotential in the case of
heterotic backgrounds and that it is a holomorphic function of ψ. We also discuss how the
superpotential conditions imply involutivity of L−1. Not only does this provide a covariant
expression for the superpotential for generic heterotic backgrounds, it also provides further
justification for the claim made in [54].

Given that an infinitesimal change in ψ can be parametrised by an element of the
O(6, 6 + n) × R+ Lie algebra and ψ transforms in the (1,1)−3, the variations of the

10Note that it is the adjoint bundle for the complexified group, GC, that appears here. If L−1 is involutive,

so that we have F0,2 = 0, the transition functions that define (adPG)C can be taken to be holomorphic, so

that Q is also holomorphic.
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SU(3) × Spin(6 + n) structure ψ transform as (1,1)−3, (3,1)−1 and (3,6 + n)−2. Thus
δW/δψ = 0 constrains the dual (1,1)3, (3,1)1 and (3,6 + n)2 components of the intrinsic
torsion. Note that this means the vanishing of the variation of W implies W = 0, as W is
the singlet component of the intrinsic torsion. We also note that the superpotential con-
dition is slightly stronger than involutivity of L−1, which constrained only the (1,1)3 and
(3,6 + n)2 components, leaving (3,1)1 undetermined. The involutivity condition implies
there is an integrable complex structure and hence dΩ = ā ∧ Ω. The extra superpotential
constraint is precisely what is needed to fix the (0, 1)-form ā.

As for E7(7) × R+ backgrounds with N = 1 supersymmetry, one can rephrase invo-
lutivity as a holomorphic condition on ψ itself. Let V ∈ Γ(L−1) and D be a compatible
connection, such that Dψ = 0. From the definition of the torsion of D in (3.29), we have

LV ψ = −T (V ) · ψ for V ∈ Γ(L−1). (4.15)

Naively one would expect LDV ψ to appear on the right-hand side. This would contain terms
of the form DV ψ, (D ×ad V ) · ψ and (D · V )ψ (where the final term appears as ψ has a
non-zero weight under the R+ action). However, using the fact that ψ is a singlet and that
it has weight one under R+, one finds that the terms which involve D acting on V cancel
identically, leaving only DV ψ which vanishes due to the compatibility of the connection.
The remaining torsion term is linear in V and, since LV ψ is independent of D, only the
intrinsic torsion can appear in T (V ) · ψ. Using the U(1) × SU(3) × SU(4) decomposition,
one can check that the (3,6 + n)2, (1,1)3 and (3,1)1 parts of the intrinsic torsion (3.30)
appear, which are the same components that appear in δW/δψ. This gives us an alternative
description of the involutivity condition as

involutive L−1 ⇔ LV ψ = U(V )ψ ∀ V ∈ Γ(L−1), (4.16)

where U ∈ Γ(L∗
−1) is the (3,1)1 component of the SU(3) × SU(4) intrinsic torsion, and

U(V ) = UMV
M is a pairing between sections of E∗ and E so that U(V ) is a scalar function.

If we further require that U vanishes, we have

δW
δψ

= 0 ⇔ LV ψ = 0 ∀ V ∈ Γ(L−1), (4.17)

so that we have an alternative description of the superpotential condition (recall that
δW/δψ = 0 implies W = 0). As discussed in [54], we expect that one can take a given ψ

that satisfies the involutivity condition and rescale it by an appropriate complex function
so that the stronger superpotential condition is satisfied. Note that these expressions
show that involutivity and the superpotential itself are holomorphic in ψ. Since L−1 is
fixed by V • ψ = 0 (see (3.15)), L−1 depends holomorphically on ψ. The conditions that
LV ψ = U(V )ψ and LV ψ = 0 for all V ∈ Γ(L−1) are then also holomorphic in ψ (since ψ̄
does not appear).

Our conjecture that the superpotential is given by the singlet of the intrinsic torsion
can be translated to the statement that

W =

∫

X
W ∼

∫

X
η(ψ, T ), (4.18)
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where T is the intrinsic torsion of the structure. The pairing of T with ψ projects onto
the (1,1)3 component. Note also that ψ is weight one and T is weight zero under the
R+ action, so that their pairing is a weight-one scalar. A weight-one scalar is a section
of detT ∗ and so gives a volume form that can be integrated over the manifold. From the
previous discussion, the (1,1)3 component of the torsion can be obtained from ψ alone,
and so the superpotential itself is a holomorphic function of ψ.

There are alternative ways to write W to make the dependence on ψ more obvious.
One can always find a torsion-free connection D that is compatible with the generalised
metric structure discussed in section 3.2. Using this one can write the integrand of the
superpotential as

W ∼ tr(J,D ×ad ψ), (4.19)

where J is the R+ × U(3) × Spin(6 + n) structure defined in section 3.2.11 Note that
since neither J nor the generalised connection are weighted under R+, the right-hand side
of (4.19) is a section of detT ∗ and hence we can integrate it over the manifold to give

W ∼
∫

X
tr(J,D ×ad ψ). (4.20)

This expression is the easiest to use for direct calculations. Naively it does not appear to
be holomorphic in ψ as J is a function of ψ and ψ̄. However, we can rewrite it as

W ∼
∫

X

η(ψ̄, (D ×ad ψ) · ψ)

η(ψ̄, ψ)
, (4.21)

where, as in [54], the weight of ψ is such that the dependence on ψ̄ drops out. That is,
under an infinitesimal antiholomorphic variation of ψ̄, only the terms that are proportional
to ψ̄ contribute to the variation of η(ψ̄, (D ×ad ψ) · ψ), while the other components are
projected out. This leaves a trivial scaling transformation ψ̄ → ec̄ψ̄, under which our
expression is clearly invariant thanks to η(ψ̄, ψ) in the denominator. Hence W does not
vary under deformations of ψ̄ and so it is indeed holomorphic in ψ, as we claimed.

As we show in appendix B, using the explicit expressions for J and ψ in terms of the
underlying SU(3) structure, the superpotential reduces to

W ∼
∫

X
e−2ϕΩ ∧ (H + i dω). (4.22)

This is precisely the form of the superpotential in (4.14) and used in [43, 51, 76]. Hence our
expression (4.20) is the covariant form of the superpotential for a generic four-dimensional
N = 1 heterotic background determined by ψ.

Having seen how the F-term conditions of the Hull-Strominger system can be under-
stood as involutivity for a subbundle defined by a generalised structure or the vanishing of

11As for the case of E7(7) × R+ generalised geometry [54], it is easy to see that this expression does

not depend on the choice of connection (such torsion-free compatible connections are not unique). In

particular, there are no singlets in the undetermined parts of D when one decomposes under the N = 1

structure group. This means that any expression that is an SU(3) × O(6 + n) singlet, is linear in D and

involves only SU(3)×O(6+n) invariant tensors, will depend only on the singlet part of the SU(3)×O(6+n)

intrinsic torsion.
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the superpotential, in the next section we will discuss how the remaining D-term equations
can be imposed by requiring the vanishing of a moment map for generalised diffeomor-
phisms. This moment map will be defined using ψ, and its vanishing will be equivalent to
the vanishing of the remaining components of the intrinsic torsion for the SU(3)×Spin(6+n)

structure, confirming the claim that a four-dimensional N = 1 heterotic background is
equivalent to an integrable SU(3) × Spin(6 + n) structure.

5 The Kähler potential, moment map and D-terms

As we have seen, integrability of the U(3) × Spin(6 + n) × R+ structure – in the form
of involutivity of L−1 – gives a subset of the supersymmetry conditions required of an
N = 1, D = 4 heterotic background. As we have mentioned, the remaining conditions
come from the vanishing of a moment map for the action of diffeomorphisms and gauge
transformations (generalised diffeomorphisms). Much of what follows is analogous to the
story for E7(7) ×R+ backgrounds. For this reason, we shall be brief and refer the interested
reader to the longer discussion in [54].

5.1 The Kähler potential

We know that the moduli space of a generic four-dimensional N = 1 theory admits a Kähler
metric which will be related to the Kähler poential on the space of SU(3) × Spin(6 + n)

structures. Here we will give an expression for this potential in terms of the object ψ.

At each point p ∈ X, ψ is stabilised by some SU(3) × Spin(6 + n) ⊂ O(6, 6 + n) × R+

subgroup. Hence at each point, ψ is an element of the coset

ψ|p ∈ C =
O(6, 6 + n) × R+

SU(3) × Spin(6 + n)
. (5.1)

An SU(3) × Spin(6 + n) structure is then a section of the fibre bundle

C −→ C −→ X. (5.2)

Hence we can define the space of SU(3) × Spin(6 + n) structures to be the set of sections
of C:

Z ≃ Γ(C). (5.3)

There is a natural Kähler structure on this space, determined by supersymmetry. First,
note that the homogeneous space O(6, 6 + n)/U(3) × Spin(6 + n) admits a pseudo-Kähler
structure [79]. The space C can be viewed as a complex line bundle over this homogeneous
space with the zero section removed. This reflects the fact that we only have an R+ action,
and hence we have a cone over a Kähler base. This complex cone over a Kähler base has
a natural Kähler structure which then induces one on the space of sections. In this case,
the Kähler potential K on Z is given by

K =

∫

X
η(ψ, ψ̄)

1
2 , (5.4)
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where ψ is viewed as a complex coordinate on the space of structures. Note that the weight
of ψ ensures that η(ψ, ψ̄)1/2 is a top-form and hence can be integrated. Different choices
of weight would correspond to different Kähler metrics, with the weight we have chosen
corresponding to the metric picked out by supersymmetry (as we saw with holomorphy of
the superpotential).

As was shown in [48], the object ψ does indeed give a complex coordinate on Z.
The particular form of ψ and its R+ weight turns out to be very natural. Consider the
anchor map

π : E → T, (5.5)

which simply projects on the vector component of a generalised vector. This induces a
map π : ∧3E → ∧3T which, together with ∧3T ⊗ ∧6T ∗ ≃ ∧3T ∗, gives

π(ψ) ∼ e−2ϕ Ω. (5.6)

Thus, via the anchor map, the object ψ defines an ordinary complex three-form π(ψ) on
the manifold. This three-form is Ω up to a dilaton factor, and is precisely the form that
is holomorphic (closed under ∂̄) in the Hull-Strominger system (2.3). Note that, so long
as we consider only deformations fixing the cohomology of the H flux, we are fixing the
underlying Courant algebroid and thus the anchor map π. The induced map is therefore
complex linear and has no moduli dependence. This means that if ψ is holomorphic on the
coset C then so is the three-form e−2ϕ Ω.

We can define a non-holomorphic coordinate on Z as

χ = η(ψ, ψ̄)−1/4ψ. (5.7)

This is a complex section of ∧3E ⊗ (detT ∗)1/2 ∼ 2201/2 and gives the Kähler poten-
tial (5.4) as

K =

∫

X
η(χ, χ̄). (5.8)

We will see that this non-holomorphic parametrisation is useful for writing the symplectic
structure on Z. The symplectic structure on Z is given by ̟ = i ∂′∂̄′K, where δ = ∂′ + ∂̄′

is the functional derivative on Z. Contracting two vectors α, β ∈ Γ(TZ) into ̟, one has

ıβıα̟ =
i

2

∫

X
η(ψ, ψ̄)−1/2

(

η(ıαδψ, ıβδψ̄) − η(ıβδψ, ıαδψ̄)

− 1

2
η(ψ, ψ̄)−1η(ıαδψ, ψ̄)η(ψ, ıβδψ̄) +

1

2
η(ψ, ψ̄)−1η(ıβδψ, ψ̄)η(ψ, ıαδψ̄)

)

.

(5.9)

Rewriting this in terms of χ gives

ıβıα̟ =
i

2

∫

X
(η(ıαδχ, ıβδχ̄) − η(ıβδχ, ıαδχ̄)) . (5.10)

While we leave the full calculation to appendix B, one can show that the Kähler
potential takes the form

K =

∫

X
i e−2ϕΩ ∧ Ω̄. (5.11)
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In fact, it takes this form up to an overall constant which can be removed by rescaling ψ.
With this rescaling χ is given by

χ =
1

3!
g1/4e−ϕΩmnpÊ+

mnp, (5.12)

where Ê+
mnp = Ê+

m ∧ Ê+
n ∧ Ê+

p , and the Ê+
m are defined as in (3.28). We will see later that,

while (5.11) appears to only depend on the complex structure parameters (which vary Ω),
it does in fact capture all possible deformations of the structure.

5.2 The moment map

One can then restrict to the subspace of ψ structures for which L−1 is involutive, that is

Ẑ = {ψ ∈ Z | J is integrable}. (5.13)

As we showed in (4.16) in the discussion of the superpotential, this condition is holomorphic
in ψ. Hence Ẑ inherits its Kähler metric Z, which is defined by the same Kähler potential.
Following the discussion in [54], one can then define a moment map for the action of gen-
eralised diffeomorphisms on Ẑ as follows. Infinitesimally, generalised diffeomorphisms are
generated by the Dorfman derivative along a generalised vector V ∈ Γ(E). A generalised
diffeomorphism defines a deformation of χ as

ıρV
δχ = LV χ, (5.14)

where ρV ∈ Γ(T Ẑ) is the induced vector field. The corresponding moment map is defined by

ıρV
ıα̟ = ıαδµ(V ), (5.15)

from which we deduce

µ(V ) = − i

2

∫

X
η(ψ, ψ̄)−1/2η(LV ψ, ψ̄) = − i

2

∫

X
η(LV χ, χ̄), (5.16)

where µ : Ẑ → gdiff∗ is the moment map. We will use the form of the moment map in
terms of both ψ and χ in the following, so we give them both above.

How does the moment map constrain the structure? In other words, which components
of the intrinsic torsion can appear in µ? Recall that we can always find a compatible
connection (Dψ = Dχ = 0) that is not necessarily torsion free. Using this we can rewrite
the moment map as

µ(V ) = − i

2

∫

X
η(LDV χ, χ̄) +

i

2

∫

X
η(T int(V ) · χ, χ̄). (5.17)

The first term vanishes by the compatibility of D. Assuming that the associated weaker
R+×U(3)×Spin(6+n) structure is integrable, and hence its intrinsic torsion (3.33) vanishes,
the final term is zero for all V ∈ Γ(E) if and only if the (3,1)1+(3,1)−1+(1,6+n)0 part of
the intrinsic torsion in (3.32) vanishes.12 That is, imposing that the moment map vanishes,
µ = 0, gives the final condition for the SU(3) × Spin(6 + n) structure to be integrable. We
then have

12Checking that µ(V ) = 0 for all V is equivalent to showing µ itself vanishes.
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Definition. A torsion-free generalised SU(3) × Spin(6 + n) structure is one where the
associated subbundle L−1 is involutive and the moment map (5.16) vanishes.

We now check that the vanishing of the moment map imposes the remaining equations
of the Hull-Strominger system that do not appear in the involutivity conditions found in
the previous section. Taking a generic generalised vector V = e−Be−A(v + λ + Λ) where
v ∈ Γ(T ), λ ∈ Γ(T ∗) and Λ ∈ Γ(adPG), a long calculation in appendix B shows that

µ(V ) =
1

2

∫

X
ıv(2∂ϕ− 2∂̄ϕ+ ā− a)e−2ϕΩ ∧ Ω̄ − 4 e−2ϕ tr(ΛF ) ∧ ω ∧ ω

+ 2λ ∧ d(e−2ϕω ∧ ω),
(5.18)

where we have used the fact that the complex structure is integrable (which comes from
involutivity) and so dΩ = ā ∧ Ω for some ā ∈ Ω0,1(X). It is clear that imposing the
vanishing of the moment map for all V = e−Be−A(v + λ+ Λ) gives

ā = 2∂̄ϕ, F ∧ ω ∧ ω = 0, d(e−2ϕω ∧ ω) = 0, (5.19)

which are equivalent to

d(e−2ϕΩ) = 0, ω♯yF = 0, d(e−2ϕω ∧ ω) = 0. (5.20)

These are precisely the missing supersymmetry equations. Hence the Hull-Strominger
system is equivalent to an integrable SU(3) × Spin(6 + n) structure.

Physically, SU(3)×Spin(6+n) structures that are related by diffeomorphisms and gauge
transformations (GDiff) give equivalent backgrounds, so the moduli space of structures Mψ

should be viewed as the space of torsion-free SU(3) × Spin(6 + n) structures quotiented
by the action of these transformations. Since Ẑ admits both a symplectic structure and a
Kähler structure, there are two ways to view this quotient, namely as a symplectic quotient
by GDiff or as a standard quotient by the complexified group GDiffC:

Mψ = {ψ ∈ Ẑ | µ = 0}/GDiff ≡ Ẑ//GDiff ≃ Ẑ/GDiffC. (5.21)

How is Mψ related to the moduli space of D = 4, N = 1 heterotic backgrounds? First
note that even within Mψ, different choices of ψ can lead to the same background, that
is, the same set of physical fields.13 Instead, it is the generalised metric that determines
the physical fields, so we should take the moduli space of the background to be choices
of ψ ∈ Mψ that lead to different generalised metrics. Said differently, while deformations
of ψ at a point take values in O(6, 6 + n) × R+/(SU(3) × O(6 + n)), only those that are
also in O(6, 6 + n) × R+/(O(6) × O(6 + n) change the physical fields. Fortunately, it
is easy to take this into account. First note that constant shifts of the dilaton can be
absorbed in the definition of the four-dimensional metric (recall that we are working in
string frame). Second, note that a deformation of ψ that lives in (Spin(6) × Spin(6 +

13Without the gauge sector, this is the statement that there is a family of ψ’s that give the same O(6) ×

O(6) structure.
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n)/(SU(3) × Spin(6 + n)) would correspond to a change of the Killing spinor ǫ that leaves
the physical background unchanged. Such deformations are possible only if there is a
second Killing spinor to rotate into, and so the background would secretly preserve N = 2

supersymmetry. Notice however that changes of ǫ by a constant phase do not lead to
extra Killing spinors and such a phase can be absorbed into the four-dimensional spinors
appearing in the split of the ten-dimensional spinor. This constant phase corresponds to
the U(1) generated by J . Putting this together, assuming we do have an honest N = 1

background, the unphysical deformations of ψ come from constant shifts of the dilaton and
constant phase rotations. Given the form of ψ in (3.28), a constant shift of the dilaton by
ϕ → ϕ− c/2 simply rescales by the exponentiated R+ action of c on a weight-one object.
The physical moduli space M of the background is then

Moduli space of N = 1 background, M = Mψ//U(1) ≃ Mψ/C
∗, (5.22)

where λ ∈ C∗ acts as ψ → λψ. Note that this implies the Kähler potential scales as
K → |λ|K. The Kähler potential K̃ on the physical moduli space is then

K̃ = −3 log K. (5.23)

We can compare this expression with those found in the literature. The generic form
of the Kähler potential, given an arbitrary (conventional) SU(3) structure, in the heterotic
theory was given in [51] following [52, 80, 81] and for generic heterotic vacua in [76, 82]
(matching the original expressions in the case of Calabi-Yau compactifications [83–85]).
One finds

K̃ = − log V − log(S + S̄) − log

∫

X
i Ψ ∧ Ψ̄, (5.24)

where V is the volume calculated from ω, ReS ∝ e−2ϕV and Ψ ∝ e−2ϕΩ. Using the SU(3)

structure relations and that the dilaton is independent of the internal manifold, one can
rewrite the above expression as

K̃ = − log V − log(e−2ϕV) − log e−4ϕV

= − log(e−6ϕV3)

= −3 log

∫

X
i e−2ϕΩ ∧ Ω̄.

(5.25)

This matches both the form of K that we give above and confirms the coefficient of −3 in
moving from the Kähler potential K on the moduli space of SU(3) × Spin(6 + n) structure
to the Kähler potential K̃ on the physical moduli space, as mentioned around (5.23).

When one has an honest Calabi-Yau background, the Kähler potential can be separated
into terms that give the metric for complex structure, Kähler and bundle moduli, plus a
universal term for the dilaton. On a general N = 1 background, such a split is not
possible and one simply has (5.4). This also explains another possible point of confusion.
Looking at (5.11), one might be tempted to think that it depends only on complex structure
parameters (which vary Ω). However, this is an artifact of expressing the general form of
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the Kähler potential (5.4) at a chosen point on the parameter space. Variations of the
Kähler potential should be written in terms of variations of the full structure ψ, and not
simply Ω, and then one will capture all of the possible deformations. Put another way, in
writing (5.4) we have not picked out the holomorphic parameterisation of ψ.14

5.3 Extremisation of the Kähler potential and GIT

As we have seen, the Hull-Strominger system is equivalent to the existence of an involutive
subbundle and the vanishing of a moment map for generalised diffeomorphisms. However,
as for the E7(7) × R+ backgrounds discussed in [54], the vanishing of the moment map
is equivalent to extremising the Kähler potential over complexified generalised diffeomor-
phisms simply because Ẑ is Kähler [87]. This reformulation allows us to make a direct
connection to the work of [50].

If we take I to be the complex structure on Ẑ, then the action of complexified gen-
eralised diffeomorphisms are generated by ρV ∈ Γ(T Ẑ) and IρW ∈ Γ(T Ẑ). Since ψ is a
holomorphic coordinate on the space of structures, we have

LIρV
ψ = ıIρV

∂′ψ = i ıρV
∂′ψ = iLV ψ, (5.26)

where L is the Lie derivative on Ẑ, and we have split the exterior (functional) derivative
into holomorphic and antiholomorphic parts δ = ∂′ + ∂̄′. Varying the Kähler potential
along the orbit of an imaginary GDiff, we have

LIρV
K =

1

2

∫

X
η(ψ, ψ̄)−1/2[

η(ıIρV
δψ, ψ̄) + η(ψ, ıIρV

δψ̄)
]

=
i

2

∫

X
η(ψ, ψ̄)−1/2[

η(LV ψ, ψ̄) − η(ψ,LV ψ̄)
]

= i

∫

X
η(ψ, ψ̄)−1/2η(LV ψ, ψ̄)

= −2µ(V ).

(5.27)

Thus we can think of the D-terms as coming from the vanishing of a moment map, or,
since K is invariant under the real group GDiff, the extremisation of the Kähler potential
with respect to GDiffC.

In the work of [50], the Hull-Strominger system is viewed as extremising a “dilaton
functional” over variations of the holomorphic Courant algebroid (2.10) with fixed Aeppli
class. We note first that the dilaton functional is precisely the Kähler potential defined
above. Moreover, as discussed around (4.13), the involutive bundle L−1 defines the holo-
morphic Courant algebroid Q with a hermitian metric (ω,A)15 defining a given Aeppli class.
The authors of [50] show that the variations within a fixed Aeppli class are given by16

δω = 2 tr(θF ) + ∂ξ∗ + ∂̄ξ, δA0,1 = −∂̄Aθ. (5.28)

14Note that even in the Calabi-Yau case, the Kähler potential is naively independent of the gauge field

moduli. However, the holomorphic Kähler moduli are shifted relative to the naive ones, and once these are

picked out the dependence on the gauge moduli becomes explicit [86].
15This is labelled (ω, θh) in the language of [50].
16This is given by δω = i c(h−1δh, Fh) + ∂ξ0,1 + ∂ξ0,1 in the language of [50].
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Examining equations (6.33)–(6.36), one sees that these are precisely the transformations
generated by e−B−iωe−A(−iξ+ iξ∗ + θ) ∈ gdiffC. Hence, extremising the dilaton functional
follows directly from our picture of extremising the Kähler potential over complex gen-
eralised diffeomorphisms. Interestingly, we have a larger set of variations which are not
included in those considered in [50], namely variations parameterised by some complex vec-
tor field v ∈ Γ(TC) ≃ diffC. As shown in (5.18), it is these variations that ensure e−2ϕΩ is a
holomorphic section (closed under ∂̄). As shown in [50], provided such a section exists the
variational problem of the dilaton functional is equivalent to the Hull-Strominger system.
In our formulation however, the existence of a holomorphic volume form becomes part of
the variational problem and does not need to be implemented by hand.

The present work also answers a question posed in [50], namely whether there ex-
ists a moment map interpretation of the Hull-Strominger system. Furthermore, this in-
terpretation provides a fascinating link with geometric invariant theory (GIT).17 As in
many other classic problems (including the hermitian Yang-Mills equations [70, 71, 89, 90]
and the equations of Kähler-Einstein geometry [91–93]), we can view the space of in-
tegrable SU(3) × Spin(6 + n) structures as a quotient by a complexified group of some
infinite-dimensional space of structures. Geometric invariant theory then tells us that we
should identify

Ẑ//GDiff ≃ Ẑps/GDiffC, (5.29)

where Ẑps is the subspace of Ẑ of “polystable points”. This arises as it is not guaranteed
that all GDiffC orbits will intersect with the surface µ−1(0). If an orbit does not intersect
this surface, we call the points along it unstable and these are not included in Ẑps. By
understanding which points are polystable, one would be able to relate the existence of
solutions to a differential equation, namely µ = 0, to the algebraic data of the complex
orbits. In (5.21) we skipped over this subtlety of having to restrict to a subspace of Ẑ as
it turns out that it is not be relevant for the infinitesimal moduli problem in section 6.

The standard procedure for identifying which points in Ẑ are polystable runs as follows.
One considers U(1) ⊂ GDiff actions generated by some ρV ∈ Γ(T Ẑ). Under complexifica-
tion we get some C∗ ⊂ GDiffC action, ψ → ψ(ν), ν ∈ C∗, and we consider the limit ν → 0.
If there is a limiting point in Ẑ/C∗ (for example if the latter space was compact, which
however is not that case here) then in the limit the C∗ action should coincide with the
rescaling action

lim
ν→0

ψ(ν) = νw(ψ,V )ψ0 (5.30)

for some ψ0 ∈ Ẑ. Here w(ψ, V ) ∈ Z is called the weight, and is quantised because we have
a U(1) action. In this limit we also find that

lim
ν→0

K(ν) = |ν|w(ψ,V )K0. (5.31)

By considering all possible U(1) ⊂ GDiff subgroups, or one-parameter-subgroups, one
then defines

if w(ψ, V ) < 0 for all 1-PS then ψ is stable,

if w(ψ, V ) ≤ 0 for all 1-PS then ψ is semistable,

if w(ψ, V ) > 0 for some 1-PS then ψ is unstable.

(5.32)

17See [88] and references therein for a review of GIT.
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The usual argument for the correspondence (5.29) relies on the “norm functional” (in
this case the Kähler potential) being convex over the action of GDiffC. This then ensures
that there is a unique minimum of the functional, i.e. a point where µ = 0, within the
complex orbit of the stable points. However, as is pointed out in [50], there are concave
orbits given by primitive deformations of ω. Therefore, there may be multiple points
along a given GDiffC orbit for which µ = 0 and so the correspondence (5.29) may be more
subtle. Despite this, understanding polystability should give us conditions for the existence
of solutions to the Hull-Strominger system, if not uniqueness.

It is interesting to consider this constraint for U(1) subgroups of the gauge group G,
generated by some θ ∈ Γ(adPG).18 First note that we can express the weight as follows

w(ψ, V )K0 = LIρV
K0 = −2µ0(V ), (5.33)

where µ0(V ) is the moment map evaluated on ψ0. Hence we can define ψ to be semistable
if µ0(V ) ≥ 0. In order to lift the generator of the U(1) action into a generalised vector we
take, as usual, V = e−Be−Aθ = e−Aθ, then from (5.18), we have

µ(θ) ∼
∫

X
e−2ϕ tr(θF ) ∧ ω ∧ ω. (5.34)

For ϕ = 0, this is precisely the expression for the weight for the GIT problem associated to
the hermitian Yang-Mills equations. The requirement that (in an appropriate limit) (5.34)
is greater than or equal to zero for all possible θ has been shown to be equivalent to the
slope stability of the gauge bundle P → M . (See, for example, [94] for a review.) More
generally, for conformally balanced hermitian metrics, in our case when d(e−2ϕω ∧ ω) = 0,
a theorem of Buchdahl and Li-Yau [95, 96] states that solutions of the hermitian Yang-
Mills equations require slope stability with respect to e−2ϕω∧ω, precisely the combination
that appears in our weight expression. Note that here the balanced condition actually
comes from extremizing the Kähler potential under the action of complex one-form gauge
transformations of B, so it would be a consequence of our more general stability condition.

This, of course, requires further investigation. For the moment, we content ourselves
with pointing out that gauge conditions resembling slope stability appear naturally in the
GIT picture, and that by understanding the constraints coming from all possible U(1) sub-
groups, one might be able to characterise polystability for the full Hull-Strominger system.
Note for example, we could consider circle actions on the manifold generated by some vec-
tor field ξ ∈ Γ(T ). One might expect those coming from Hamiltonian symplectomorphisms
to be related to the picture of Calabi-Yau stability developed in [91, 92].

6 Moduli

We will now analyse the massless moduli of a generic heterotic background in terms of some
cohomological structure. We have seen that the conditions for a D = 4, N = 1 Minkowski
background can be rephrased in terms of integrable SU(3) × Spin(6 + n) structures. By

18Note that here θ is an honest gauge parameter and not a section of the generalised tangent space.
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using this language we will be able to give a new interpretation to previous results found
on infinitesimal moduli [41, 48]. We will follow the methods of [54] closely.

As discussed around (5.22), the physical moduli space is given by

M = Mψ/C
∗ Mψ = {ψ |J is integrable}//GDiff ≃ Ẑ/GDiffC. (6.1)

Writing the moduli space in this way greatly simplifies the deformation theory. First,
relating the symplectic quotient to a complex quotient means that we do not need to solve
the moment map condition. Instead, we need only consider deformations of ψ that preserve
the involutivity of L−1, up the action of complexified generalised diffeomorphisms. Second,
those elements of GDiffC that preserve J simply rescale ψ by a function. The moment map
fixes this factor, up to an overall constant C∗ rescaling. Thus we can actually identify the
moduli space simply as a quotient of the space of integrable J structures

M = {J | J is integrable}/GDiffC (6.2)

Hence, to understand the local structure of the physical moduli space, we need to consider
only deformations of L−1 up to complex generalised diffeomorphisms.

Infinitesimally this can be reinterpreted as the cohomology of the following complex

Γ(EC)
d1−−→ Γ(C)

d2−−→ Γ(W int
R+×U(3)×Spin(6+n)), (6.3)

where C is a vector subbundle of ad F̃C such that Ξ · L−1 * L−1 for all non-zero sections
Ξ ∈ Γ(C). We consider deformed bundles

L′
−1 := (1 − Ξ) · L−1 Ξ ∈ Γ(C), (6.4)

such that the new L′
−1 is involutive with respect to the Dorfman derivative to linear order

in Ξ. Since L′
−1 is involutive if and only if the intrinsic torsion of the corresponding

R+ ×U(3)×Spin(6+n) structure vanishes, this defines a linear map, denoted by d2 above.
The deformation is integrable if and only if Ξ ∈ ker d2. There is also a notion of trivial
deformations given by the action of complex generalised diffeomorphisms acting on L−1.
Infinitesimally this is just the Dorfman derivative along a complexified generalised vector.
That is, a deformation L′

−1 = (1 + Ξ) · L−1 is trivial if there is some V ∈ Γ(EC) such that

L′
−1 = (1 + LV )L−1. (6.5)

Again we can define a linear map d1 such that a deformation generated by Ξ ∈ Γ(C) is
trivial if and only if Ξ ∈ im d1. It is simple to show using (A.9) that any trivial deformation
is integrable and hence d2◦d1 = 0. This means (6.3) is a complex whose cohomology counts
the physical moduli.

We will now find explicit expressions for the maps d1 and d2 using the parametrisation
of L−1 given in (3.26), and show that we recover the cohomology of [41, 48]. Note that
the choice of C is not unique for a given L−1 and different choices change the form of the
linear maps. A canonical choice comes from thinking of the fibres of C as quotient spaces
(o6,6+n ⊕ R)/p, where p is the parabolic subalgebra preserving L−1. Since we are only
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interested in the cohomology, which is independent of the exact choice of C, we will choose
convenient a representative.

Recall the form of L−1

L−1 = e−B−iωe−AT 0,1. (6.6)

We take C to be

C ≃ e−B−iωe−A · [

(T 1,0 ⊗ T ∗0,1) ⊕ ∧1,1T ∗
C ⊕ ∧0,2T ∗ ⊕ (T ∗0,1 ⊗ adPG)

]

. (6.7)

We note that these bundles should be taken to be complexified as above, which we assume
from this point forward. For any non-zero section Ξ of this bundle we see that

Ξ: L−1 → e−B−iωe−A(T 1,0 ⊕ T ∗ ⊕ adPG) ≃ EC/L−1,

Ξ = e−B−iωe−A · (−µ+ x+ b+ α) ∈ Γ(C),
(6.8)

where µ ∈ Γ(T 1,0 ⊗ T ∗0,1), x ∈ Γ(T ∗1,1), b ∈ Γ(T ∗0,2), and α ∈ Γ(T ∗0,1 ⊗ adPG) — these
are what one might call complex structure, hermitian, and bundle moduli. (Again note
that we are taking all of the bundles above to be complexified.) This shows that (6.7) is a
good choice of C. We can then define our deformed bundle

L′
−1 = (1 − Ξ)L−1. (6.9)

To linear order in the deformation, we can rewrite this in a more convenient form as

L′
−1 = e−Θ(1 + µ)T 0,1, (6.10)

where Θ = B + iω + x+ b+ tr(A ∧ α) + A+ α.19 It is worth stressing that by deforming
within the space of R+ ×U(3)×SU(4) structures we are including deformations that do not
change the generalised metric, that is do not change the physical supergravity fields. In
terms of the ψ structure, the additional degrees of freedom parameterise Spin(6)/SU(3) and
transform in the 3 of SU(3) — these correspond to deforming the putative Killing spinor,
while keeping the supergravity fields fixed. If there are any such integrable deformations
they would imply that the background actually defined an N = 2 rather than N = 1

solution. We will return to this point below.
We now want to examine the conditions on Ξ (or equivalently Θ) for L′

−1 to be in-
volutive, that is, for the deformation to be integrable. From (6.9), two general sections
V,W ∈ Γ(L′

−1) can be parametrised by Θ, µ and two vectors v̄, w̄ ∈ Γ(T 0,1). The Dorfman
derivative of W along V can then be written in terms of a twisted derivative as

Le−Θ(1+µ)v̄

(

e−Θ(1 + µ)w̄
)

= e−ΘLH̃+F̃
v̄+µ·v̄(w̄ + µ · w̄), (6.11)

where H̃ and F̃ are given to first order in the deformation by

H̃ = dB + ω3(A+ α) + i dω + dx+ db+ d tr(A ∧ α)

= 2i ∂ω + 2 tr(α ∧ F ) + dx+ db,
(6.12)

F̃ = d(A+ α) + (A+ α) ∧ (A+ α)

= F + dAα,
(6.13)

19Here we note that to linear order 1 + x+ b+α = eb+xeα and then used the Baker-Campbell-Hausdorff

formula together with (A.2).
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where dA = d + [A, ·]. Involutivity of L′
−1 is then equivalent to

LH̃+F̃
v̄+µ·v̄(w̄ + µ · w̄) = ū+ µ · ū, (6.14)

for some ū ∈ Γ(T 0,1). Using the expression for the twisted Dorfman derivative from (A.5),
to first-order in the deformation we have

LH̃+F̃
v̄+µ·v̄(w̄ + µ · w̄) = [v̄, w̄] + [µ · v̄, w̄] + [v̄, µ · w̄]

− ıv̄ıw̄
(

2 tr(α ∧ F ) + dx+ db
) − 2i ıµ·v̄ıw̄∂ω − 2i ıv̄ıµ·w̄∂ω

− ıv̄ıw̄∂̄Aα− ıµ·v̄ıw̄F − ıv̄ıµ·w̄F

≡ ū+ µ · ū.

(6.15)

Decomposing according to complex type, we require

[v̄, w̄] + [µ · v̄, w̄]0,1 + [v̄, µ · w̄]0,1 = ū (6.16)

[µ · v̄, w̄]1,0 + [v̄, µ · w̄]1,0 = µ · ū, (6.17)

ıv̄ıw̄∂̄Aα+ ıµ·v̄ıw̄F − ıµ·w̄ıv̄F = 0, (6.18)

ıv̄ıw̄
(

2 tr(α ∧ F ) + ∂̄x+ ∂b
)

+ 2i ıµ·v̄ıw̄∂ω + 2i ıv̄ıµ·w̄∂ω = 0, (6.19)

ıv̄ıw̄∂̄b = 0. (6.20)

Let us consider each of these conditions in turn. As we are working to first order in the
deformations, dotting (6.16) with µ and substituting into (6.17) gives

µ · [v̄, w̄] = [µ · v̄, w̄]1,0 + [v̄, µ · w̄]1,0. (6.21)

Expanding out in components and using a torsion-free compatible GL(3,C) connection,20

one can show this condition is equivalent to ıw̄ıv̄∂̄µ = 0, where µ is treated as a (0, 1)-form
with a holomorphic vector index. As this must vanish for all v̄ and w̄, we find

∂̄µ = 0. (6.22)

This is the expected condition on first-order deformations of a complex structure.

The third condition (6.18) can be rewritten using ıv̄ıw̄ıµF = ıµ·v̄ıw̄F − ıµ·w̄ıv̄F , where
ıµF = ea ∧ ıµaF , to give

∂̄Aα+ ıµF = 0. (6.23)

The fourth condition (6.19) can be rewritten using ıv̄ıµ·w̄∂ω−ıw̄ıµ·v̄∂ω = −ıw̄ıv̄ıµ∂ω to give

2 tr(α ∧ F ) + ∂̄x+ ∂b+ 2i ıµ∂ω = 0. (6.24)

The final condition (6.20) is simply

∂̄b = 0. (6.25)

20This exists as the undeformed solution admits an honest complex structure, I.
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Taken together, the conditions are

∂̄µ = 0, (6.26)

∂̄b = 0, (6.27)

∂̄x+ 2i ıµ∂ω + 2 tr(α ∧ F ) + ∂b = 0, (6.28)

∂̄Aα+ ıµF = 0. (6.29)

These equations give the map d2 on the different components of Ξ. It is comforting to
note that these equations agree with those that have appeared before in work on heterotic
moduli. To be precise, our equations match those in [41, 48], which we reproduce in (2.14)
and (2.15), after noting that xhere = 2xthere, µhere = −µthere and bhere = Bthere.21 The only
equation we are missing is (2.16) which is equivalent to the deformed complex three-form
being conformally holomorphic. However, as we saw in section 5.2, this condition is imposed
by the moment map, not involutivity. (Alternatively, one can see it as the extra condition
that is imposed by the superpotential.) The particular missing equation is associated to
the moment map condition that fixes ψ (up to an overall constant) as a section of UJ once
J is determined. Since we have shown that we can describe the moduli space in terms
of deformations of J alone it does not appear. Note however, even if we had been using
ψ to parameterise the moduli space, we would still not have had to impose this relation.
The point is that, as we have argued, at the level of the cohomology imposing moment
map conditions is equivalent to quotienting by complex generalised diffeomorphisms. In
other words, there will be representatives in the cohomology class for which this missing
condition is satisfied and hence we do not need to impose it as an extra condition here.
(This was actually the reason we could parameterise the moduli space using J alone.) This
illustrates the usefulness of this approach as it reduces the complexity of the equations
governing the moduli. As a separate point, note also that the integrability conditions
above are holomorphic in the complex parameters Ξ, as we would expect from our general
discussion around (4.16).

We now examine the conditions for a deformation to be trivial. This will tell us what an
“exact” deformation is and thus give the resulting cohomology that counts the inequivalent,
non-trivial deformations. A deformation is to be regarded as trivial if the resulting L′

−1

is related to the undeformed subbundle by the action of the Dorfman derivative. In other
words, if L′

−1 is simply a GDiffC rotation of L−1, the deformation is trivial. Let V be a
section of L−1 and W be a section of EC such that

V = e−B−iωe−Av̄,

W = e−B−iωe−A(w + w̄ + ξ + ξ̄ + θ) = e−B−iωe−AW ′,
(6.30)

where w is a (1, 0)-vector, v̄ and w̄ are (0, 1)-vectors, ξ and ξ̄ are (1, 0)- and (0, 1)-forms, and
θ is a complex gauge parameter. Note that w and w̄ (and ξ and ξ̄) are independent degrees
of freedom and not related by complex conjugation, w̄ 6= w∗. Peeling off the twisting by

21The factor of two in x is down to a choice of conventions. The minus sign that appears in µ is due to

our µ deforming T 0,1 while the µ in [41, 48] is a deformation of T ∗1,0.
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−B − iω and −A, the action of GDiffC by W on a section of L−1 is

(1 + LH+i dω+F
W ′ )v̄ = v̄ + [w + w̄, v̄] − ıv̄d(ξ + ξ̄) − ıw+w̄ıv̄(H + i dω)

+ 2 tr(θ ıv̄F ) − ıv̄dAθ − ıw+w̄ıv̄F

= v̄′ − ıv̄′ ∂̄w − ıv̄′ ∂̄ξ − ıv̄′∂ξ̄ − ıv̄′ ∂̄ξ̄ − 2i ıwıv̄′∂ω

+ 2 tr(θ ıv̄′F ) − ıv̄′ ∂̄Aθ − ıwıv̄′F,

(6.31)

where v̄′ = v̄ + [w̄, v̄] + [w, v̄]0,1 is a trivial rotation of v̄ and we are working to first order
in the components of W .

We want to compare this with the expression for a linear deformation of L−1. Using
the O(6, 6+n) algebra [64] given in (A.2) and the Baker-Campbell-Hausdorff formula, L′

−1

can be rewritten as

L′
−1 = e−B−iω−x−b−tr(A∧α)e−A−α(1 + µ)v̄

= e−B−iωe−A(v̄ + µ · v̄ + ıv̄x+ ıv̄b+ ıv̄α).
(6.32)

Comparing (6.31) with the components in the parenthesis in (6.32), one sees that a defor-
mation of L′

−1 is actually the action of GDiffC, and so trivial, if

µ = −∂̄w, (6.33)

x = −∂̄ξ − ∂ξ̄ + 2i ıw∂ω + 2 tr(θ F ), (6.34)

b = −∂̄ξ̄, (6.35)

α = −∂̄Aθ + ıwF. (6.36)

Combined, these derivatives form the operator d1. One can check that these satisfy (6.26)–
(6.29) (so that exact deformations are automatically closed) provided {∂, ∂̄} = 0, ∂̄2 =

∂̄2
A = 0, implying the original solution has a complex structure and a holomorphic gauge

bundle, and F and H satisfy the appropriate Bianchi identities. These will each hold as
we are assuming we are deforming around an N = 1 solution. Combining (6.33)–(6.36)
with (6.26)–(6.29), we recover precisely the cohomology of [41] up to the b term which is
not present in their analysis. This is included in the linear terms in the same calculation
in [48] and is related to deformations of B0,2.

It is worth analysing this b modulus further. As we mentioned above, our parameter-
isation of the deformation includes not only deformations of the physical fields preserving
N = 1 supersymmetry but also potential deformations of the Killing spinors, with the
same background geometry. The latter type of deformations correspond to the background
admitting additional supersymmetries. Specifically one can show that a particular combi-
nation of b and µ will leave the generalised metric invariant and hence correspond to such
additional supersymmetries. From the form of the equations (6.27) and (6.34) we see that if
h0,2 vanishes then there are no moduli for deformations of b and hence all the deformations
correspond to physical deformations of the background — in other words this is sufficient
for the background not to admit additional supersymmetries. A counter example is the
solution on K3 × T2 with trivial gauge group. In this case h0,2 6= 0 and the b modulus
survives. The additional degree of freedom corresponds to rotating the choice of N = 1

subalgebra picked out by ψ within the N = 2 supersymmetry algebra.
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7 Conclusions

We have shown that the Hull-Strominger system can be reformulated as an integrable
SU(3) × Spin(6 +n) structure within O(6, 6 +n) ×R+ generalised geometry. The structure
is defined by a particular generalised tensor ψ ∈ Γ(∧3E⊗∧6T ∗), where supersymmetry for
the background is equivalent to the differential condition that the structure is torsion-free
or integrable. The integrability conditions for ψ split into an involutivity condition of a
subbundle L−1 ⊂ E (the “F-term” condition) and the vanishing of a moment map for the
action of generalised diffeomorphisms on the space of structures (the “D-term” condition).
Furthermore, this formalism gives O(6, 6 + n) × R+ covariant expressions for both the
superpotential and Kähler potential of a generic off-shell heterotic background.

Starting with the work of Fu, Li and Yau [25, 26], several constructions of explicit
solutions to the Hull-Strominger system are now known (for a review see [97]). It would,
of course, be interesting to have theorems about the existence and uniqueness of solutions,
and some steps in this direction were made in the work of [50] which showed that the system
could be reinterpreted in terms of an extremisation problem within a particular class of
holomorphic Courant algebroids. Our work gives a reinterpretation of this structure, in
particular showing that it follows from a moment map, as for the conventional Calabi-Yau
case. Specifically, the holomorphic algebroid is determined by the solution of the F-terms,
that is the choice of involutive sub-bundle L−1. Because the space of such structures is
Kähler, solving the moment map is equivalent to extremizing the Kähler potential, which
is indeed the “dilaton functional” discussed in [50]. We discussed briefly how this setup
defines a GIT quotient that includes as special cases both the standard notion of stability
for the hermitian Yang-Mills equations (that is, for the gauge fields, suitably generalised
to non-Kähler backgrounds) and the notion of stability of Calabi-Yau metrics.

We also studied the moduli of these backgrounds by reformulating the problem in terms
of finding integrable deformations of the subbundle L−1 up to complexified generalised
diffeomorphisms. From this we were able to match to the known D̄ cohomology of [41, 48]
with considerably less work. In doing so, we defined the differentials d1 and d2 that
appear in the relevant complex. Note however that there is another natural differential
associated with the structures. The subbundle L−1 is involutive and, since L−1 is isotropic,
η(L−1, L−1) = 0, the Dorfman derivative satisfies a Jacobi identity (while generic sections
of E do not). Together, this means that L−1 defines a Lie algebroid and hence comes with
a natural differential dL. Following [98], it would be interesting to see how this relates to
the differential D̄ found in [41] and whether the cohomology that counts the moduli can
be reformulated in terms of dL. We hope to return to this in the future.

It is natural to ask whether we can use our formalism to explore finite deformations of
the background and compare this to the results found in [48]. Note that this would require
understanding whether the deformations are obstructed. For the infinitesimal moduli, the
moment map condition is imposed indirectly via the quotient by GDiffC. For this to work,
there must be some deformed ψ ∈ Ẑ in the orbit of GDiffC that satisfies the moment map
constraint. If the moment map is well behaved and the GDiff action has no fixed points,
the moment map implies that solutions will always exist in some finite neighbourhood,
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that is there will be no obstructions when we go beyond first order (though there may be
some “jumping” behaviour when the deformation gets large enough). In our set-up, fixed
points correspond to a supersymmetric background which is invariant under some action of
LV ∈ gdiff that also preserves ψ. Since the generalised metric (and hence the conventional
metric) are determined by ψ, these must be isometries that preserve the full solution. For
the case where the original solution is simply Calabi-Yau (viewed as an N = 1 solution),
there are no continuous symmetries that preserve the solution and hence we would argue
that the deformations are unobstructed. Note that this goes beyond the usual statement
that the Calabi-Yau moduli space is unobstructed, as this also includes turning on flux and
deforming the gauge bundle.

We might also ask how much of this structure is relevant to other string backgrounds.
First we note that backgrounds with higher supersymemtry can always be viewed as N = 1

solutions. Thus, for example, by choosing a particular N = 1 subalgebra, our calculation is
good for both the N = 1 and N = 2 solutions of [28, 99, 100]. In the latter case, following
the discussion at the end of the last section, we would expect to find additional moduli
corresponding to deforming the choice of N = 1 inside N = 2. More broadly, generic
backgrounds in type II or M-theory that preserve eight supercharges can also be described
in generalised geometry [55], where now one has two compatible structures (dubbed V
and H structures). The H structure is defined by an SU(2) triplet of generalised tensors
Jα transforming in the adjoint bundle. These define a G-structure where the particular
group depends on the dimension of the external space. Similar to our discussion in this
paper, one can pick out a weaker C∗ × G structure, defined by J+ alone. Again, this
turns out to be defined by a subbundle of the generalised tangent, with the corresponding
integrability conditions coming from involutivity. In the AdS case [101], since deformations
of the structure are “holomorphic” in a certain sense, this formulation might provide a way
to explore the conformal manifold of the dual CFTs. We hope to make progress on this in
the near future.

In a similar vein, an obvious application of the analysis used here and in [54] is to AdS4

backgrounds in M-theory. Previous work on backgrounds which preserve eight supersym-
metries showed that generalised geometry could be used to understand properties of the
dual three-dimensional CFTs with N = 2 supersymmetry [102, 103]. It would be interest-
ing to use the N = 1 language developed in this paper and [54] to extend this analysis to
N = 1 CFTs in three dimensions. Unlike the Kähler structure on the moduli space that
we encountered in this work, we expect the moduli space to have a real structure. While
the moduli space itself will again come from an involutivity condition and a moment map,
we expect that this will not have a picture as a complexified quotient, but rather simply be
a symplectic quotient. It would be interesting to identify the corresponding picture in the
dual field theory. A final direction would be to try to match our description of the mod-
uli space of heterotic compactifications to that of “universal geometry”, as has appeared
in [47, 82, 104]. There one finds that the resulting moduli space is beautifully described
by combining the heterotic geometry and parameter space into a single space, with the
geometry fibred over the parameter space. This allows one to write differential operators
that act on the total space, leading to compact expressions for both the linear deformation
conditions and the Kähler potential of the background.
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A O(6, 6 + n) generalised geometry

Here we collect a number of useful formula for the O(6, 6 + n) × R+ generalised geom-
etry relevant for type I and heterotic backgrounds. A more detailed discussion can be
found in [64].

The adjoint action of a two-form B, a two-vector β and a one-form gauge field A on a
generalised vector V = v + λ+ Λ are given by

eBV = v + λ− ıvB + Λ,

eβV = v + λ− βyλ+ Λ,

eAV = v + λ+ 2 tr(ΛA) − tr(ıvAA) + Λ − ıvA.

(A.1)

Note that B commutes with itself, while A has a non-trivial commutator with itself

[A,A′] = −2 tr(A ∧A′). (A.2)

One can check that the natural inner product

η(v + Λ + λ,w + Σ + σ) =
1

2
ıvσ +

1

2
ıwλ+ tr(ΛΣ), (A.3)

is preserved by the above action.
The twisted Dorfman derivative is defined by

Le−Be−AV (e−Be−AW ) = e−Be−ALH+F
V W, (A.4)

where for V = v + λ+ Λ and W = w + ρ+ Σ, we have

LH+F
V W = [v, w]

+ Lvρ− ıwdλ− ıvıwH + 2 tr(Σ dAΛ) − 2 tr(Σ ıvF ) + 2 tr(Λ ıwF ) (A.5)

+ [Λ,Σ] + ıvdAΣ − ıwdAΛ − ıvıwF,

where we have defined

dAΛ = dΛ + [A,Λ], (A.6)

F = dA+A ∧A, (A.7)

H = dB + tr

(

A ∧ dA+
2

3
A ∧A ∧A

)

. (A.8)
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We also have the usual rule for the commutator of two Dorfman derivatives

[LU , LV ]W = LLUVW = LJU,V KW, (A.9)

where J·, ·K is the Courant bracket, the antisymmetrisation of the Dorfman derivative.

B Explicit calculations of the superpotential, Kähler potential and mo-

ment map

In this appendix, we lay out in detail how one calculates the superpotential, Kähler poten-
tial and the moment map using the explicit form of ψ and J given in the main text.

B.1 The superpotential

To see that our expression for the superpotential (4.20) matches the conventional expression
given in (4.14), we expand in O(6, 6 + n) indices:

W ∼
∫

X
JABDCψ

CB
A

∼
∫

X
DC(JABψ

CB
A) − ψCBAD[C JAB]

∼
∫

X
ψABCD[AJBC]

∼
∫

X

√
g e−2ϕΩµ̄ν̄ρ̄D[µ̄J ν̄ρ̄],

(B.1)

where we have used the fact that the boundary term vanishes identically, and have
raised/lowered indices with η. To reach the final lines we have used results from the
previous section on the contraction of ψ with a section of ∧3E. Hence all that remains is
to determine the form of D[µ̄J ν̄ρ̄]. Using the components of the connection from [24], we
have that

D[µ̄Jν̄ρ̄] = ∇[µ̄Jν̄ρ̄] − 1

3
H[µ̄

σ
ν̄|J|σ|ρ̄]

=
1

3
(−dω)µ̄ν̄ρ̄ +

i

3
H[µ̄

σ
ν̄g|σ|ρ̄]

∼ (H + idω)µ̄ν̄ρ̄,

(B.2)

where we have used gµν̄ = −iωµν̄ for an SU(3) structure. Hence

W ∼
∫

X

√
g e−2ϕΩµ̄ν̄ρ̄(H + i dω)µ̄ν̄ρ̄

∼
∫

X
e−2ϕΩ ∧ (H + i dω).

(B.3)

This is precisely the form of the superpotential in (4.14) and used in [43, 76]. Hence our
expression (4.20) is the covariant form of the superpotential for a generic four-dimensional
N = 1 heterotic background determined by ψ.
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B.2 The Kähler potential

The Kähler potential is

K =

∫

X
η(ψ, ψ̄)1/2, (B.4)

where η is the symmetric pairing on sections of ∧3E. We fix our conventions for this in
terms of η on sections of E by examining how the usual inner product defined by g acts
on tri-vectors. For α, β ∈ Γ(∧3T ), the pairing is

g(α, β) =
1

3!

1

3!
αmnpβqrsg(êmnp, êqrs)

≡ 1

3!
αmnpβqrsg(êm, êq)g(ên, êr)g(êp, ês)

=
1

3!
αmnpβmnp

= αyβ,

(B.5)

where we have used êmnpye
qrs = 3!δq[mδ

r
nδ
s
p]. Similarly we define

η(Ê+
mnp, Ê

+
qrs) = 3!η(Ê+

m, Ê
+
q )η(Ê+

n , Ê
+
r )η(Ê+

p , Ê
+
s )

= 3!δmqδnrδps,
(B.6)

where an antisymmetrisation over mnp is assumed and for simplicity we take êm to be an
orthonormal frame, implying η(Ê+

m, Ê
+
n ) = gmn = δmn. With χ defined as in (5.12)

χ =
1

3!
g1/4e−ϕΩmnpÊ+

mnp, (B.7)

the pairing η(χ, χ̄) is given by

η(χ, χ̄) =
1

3!
g1/2e−2ϕΩmnpΩ̄mnp

= g1/2e−2ϕΩ♯
yΩ̄

= i e−2ϕΩ ∧ Ω̄,

(B.8)

where we have used the standard SU(3) structure relations

Ω♯
yΩ̄ = 8, g1/2 = vol =

i

8
Ω ∧ Ω̄. (B.9)

Integrated over X, this gives the expression for the Kähler potential given in the main text.

B.3 The moment map

The expression for the moment map given in the main text is

µ(V ) = − i

2

∫

X
η(LV χ, χ̄). (B.10)
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To evaluate this, we need an expression for the Dorfman derivative of χ. For V =

e−Be−A(v + λ+ Λ), where v ∈ Γ(T ), λ ∈ Γ(T ∗) and Λ ∈ Γ(adP ), we have

LV χ =
1

3!
Lv(g1/4e−ϕΩmnp)Ê+

mnp +
1

2
g1/4e−ϕΩmnpLV Ê

+
m ∧ Ê+

np, (B.11)

LV Ê
+
m = e−Be−A (Lv(êm + em) − ıêm

dλ− ıvıêm
H + 2 tr(Λıêm

F ) − ıêm
dAΛ − ıvıêm

F ) .

(B.12)

The expression for the moment map is then

µ(V ) = − i

2

∫

X
η

(

1

3!
Lv(g1/4e−ϕΩmnp)Ê+

mnp +
1

2
g1/4e−ϕΩmnpLV Ê

+
m ∧ Ê+

np,

1

3!
g1/4e−ϕΩ̄qrsÊ+

qrs

)

= − i

2

∫

X

1

3!
Lv(g1/4e−ϕΩmnp)g1/4e−ϕΩ̄mnp

− i

2

∫

X

1

2
g1/4e−ϕΩmnp 1

3!
g1/4e−ϕΩ̄qrsη(LV Ê

+
m ∧ Ê+

np, Ê
+
qrs),

(B.13)

where we have used

η(LV Ê
+
m ∧ Ê+

np, Ê
+
qrs) = 3! η(LV Ê

+
m, Ê

+
q )δnrδps, (B.14)

with an assumed antisymmetrisation over mnp and

η(LV Ê
+
m, Ê

+
n ) = η

(Lv(êm + em) − ıêm
dλ− ıvıêm

H

+ 2 tr(Λıêm
F ) − ıêm

dAΛ − ıvıêm
F, ên + en

)

=
1

2
ıLv êm

en +
1

2
ıên

Lvem − 1

2
ıên
ıêm

dλ− 1

2
ıên
ıvıêm

H + ıên
tr(Λıêm

F ).

(B.15)

Our task is now to find what conditions µ = 0 imposes. To do this, we examine µ(V ) = 0

where V consists of an arbitrary vector, one-form or gauge parameter in turn. First,
consider V = e−Be−Aλ:

∫

X
η(LV χ, χ̄) =

∫

X

1

2
g1/4e−ϕΩmnpg1/4e−ϕΩ̄qrs

(

−1

2

)

ıêq
ıêm

dλ δnrδps

= −1

4

∫

X
e−2ϕΩmnpΩ̄q

npıêq
ıêm

dλ vol

= 2i

∫

X
e−2ϕdλ ∧ ω ∧ ω

= 2i

∫

X
λ ∧ d(e−2ϕω ∧ ω),

(B.16)

where we have used the SU(3) structure identity

ΩmnpΩ̄q
np(ıêq

ıêm
α2) vol = −8iα2 ∧ ω ∧ ω, (B.17)

which holds for an arbitrary two-form α2.
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Next, consider V = e−Be−AΛ:
∫

X
η(LV χ, χ̄) =

∫

X

1

2
g1/4e−ϕΩmnp 1

3!
g1/4e−ϕΩ̄qrs3!

(

ıêq
tr(Λıêm

F )
)

δnrδps

=

∫

X

1

2
vol e−2ϕΩmnpΩ̄q

npıêq
ıêm

tr(ΛF )

=

∫

X

1

2
e−2ϕ(−8i) tr(ΛF ) ∧ ω ∧ ω

= −4i

∫

X
tr(ΛF ) ∧ e−2ϕω ∧ ω,

(B.18)

where again we have used (B.17).
Finally, consider V = e−Be−Av:

∫

X
η(LV χ, χ̄) =

∫

X

1

3!
Lv(g1/4)g1/4e−2ϕ8 · 3! +

1

3!
Lv(e−ϕΩmnp)g1/2e−ϕΩ̄mnp

+

∫

X

1

4
g1/2e−2ϕΩmnpΩ̄q

np
(

ıêq
Lvem − ıêm

Lveq − ıêq
ıvıêm

H
)

.
(B.19)

Now note that the first term is real while
∫

X η(LV χ, χ̄) is imaginary (after an integration
by parts), so it cancels. The remaining terms can be rewritten as

∫

X
η(LV χ, χ̄) =

∫

X

1

2

1

3!
g1/2e−2ϕLvΩmnpΩ̄mnp +

1

2

1

3!
g1/2e−2ϕLvΩ̄mnpΩmnp

+

∫

X

1

4
g1/2e−2ϕ

(

2Ω̄yLvΩ − 2ΩyLvΩ̄ − ΩmnpΩ̄q
npıêq

ıvıêm
H

)

,
(B.20)

where we have the SU(3) structure identities Ω♯
yΩ̄ = 8 and 8 vol = iΩ ∧ Ω̄, and

ΩmnpΩ̄q
np = 8gmq + 8i Imq = 8gmq − 8iωmq, (B.21)

2Ω̄yLvΩ =
1

3
LvΩmnpΩ̄mnp + ΩmnpΩ̄q

npıêq
Lvem, (B.22)

2ΩyLvΩ̄ =
1

3
LvΩ̄mnpΩmnp + ΩmnpΩ̄q

npıêm
Lveq. (B.23)

Again, note that the first two terms of (B.20) combine to give something real, and so they
must cancel. We can then massage the remaining terms to give

∫

X
η(LV χ, χ̄) =

∫

X

1

4
e−2ϕ

(

2iLvΩ ∧ Ω̄ + 2iLvΩ̄ ∧ Ω − 8iıvH ∧ ω ∧ ω
)

= i
1

2

∫

X
e−2ϕ(2ıvā− 2ıva+ 2ıv∂ϕ− 2ıv∂̄ϕ) Ω ∧ Ω̄

+ 2e−2ϕıv∂ϕΩ ∧ Ω̄ − 2e−2ϕıv∂̄ϕΩ ∧ Ω̄

= i

∫

X
e−2ϕ(ıvā− ıva+ 2ıv∂ϕ− 2ıv∂̄ϕ) Ω ∧ Ω̄.

(B.24)

To reach this result, we have integrated by parts and used dΩ = ā∧Ω for ā ∈ Ω0,1(X), which
is implied by integrability of the complex structure which in turn comes from involutivity
of L−1. We have also used Ω̄yα3 vol = iα3 ∧ Ω̄ for an arbitrary three-form α3. Summed
up, the three contributions to µ(V ) in (B.16), (B.18) and (B.24) give the expression for
the moment map given in the main text.
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